fix sparc32 breakage (result of vmlinux.lds.S bug)
[linux-2.6-block.git] / arch / x86 / kernel / i8253.c
CommitLineData
8d016ef1 1/*
2 * i8253.c 8253/PIT functions
3 *
4 */
e9e2cdb4 5#include <linux/clockchips.h>
18de5bc4
TG
6#include <linux/init.h>
7#include <linux/interrupt.h>
8d016ef1 8#include <linux/jiffies.h>
8d016ef1 9#include <linux/module.h>
18de5bc4 10#include <linux/spinlock.h>
8d016ef1 11
12#include <asm/smp.h>
13#include <asm/delay.h>
14#include <asm/i8253.h>
15#include <asm/io.h>
16
8d016ef1 17DEFINE_SPINLOCK(i8253_lock);
18EXPORT_SYMBOL(i8253_lock);
19
e9e2cdb4
TG
20/*
21 * HPET replaces the PIT, when enabled. So we need to know, which of
22 * the two timers is used
23 */
24struct clock_event_device *global_clock_event;
25
26/*
27 * Initialize the PIT timer.
28 *
29 * This is also called after resume to bring the PIT into operation again.
30 */
31static void init_pit_timer(enum clock_event_mode mode,
32 struct clock_event_device *evt)
33{
34 unsigned long flags;
35
36 spin_lock_irqsave(&i8253_lock, flags);
37
38 switch(mode) {
39 case CLOCK_EVT_MODE_PERIODIC:
40 /* binary, mode 2, LSB/MSB, ch 0 */
41 outb_p(0x34, PIT_MODE);
e9e2cdb4 42 outb_p(LATCH & 0xff , PIT_CH0); /* LSB */
e9e2cdb4
TG
43 outb(LATCH >> 8 , PIT_CH0); /* MSB */
44 break;
45
e9e2cdb4
TG
46 case CLOCK_EVT_MODE_SHUTDOWN:
47 case CLOCK_EVT_MODE_UNUSED:
7671988b
TG
48 if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
49 evt->mode == CLOCK_EVT_MODE_ONESHOT) {
50 outb_p(0x30, PIT_MODE);
51 outb_p(0, PIT_CH0);
52 outb_p(0, PIT_CH0);
53 }
18de5bc4
TG
54 break;
55
6b3964cd 56 case CLOCK_EVT_MODE_ONESHOT:
e9e2cdb4
TG
57 /* One shot setup */
58 outb_p(0x38, PIT_MODE);
18de5bc4
TG
59 break;
60
61 case CLOCK_EVT_MODE_RESUME:
62 /* Nothing to do here */
e9e2cdb4
TG
63 break;
64 }
65 spin_unlock_irqrestore(&i8253_lock, flags);
66}
67
68/*
69 * Program the next event in oneshot mode
70 *
71 * Delta is given in PIT ticks
72 */
73static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
8d016ef1 74{
75 unsigned long flags;
76
77 spin_lock_irqsave(&i8253_lock, flags);
e9e2cdb4
TG
78 outb_p(delta & 0xff , PIT_CH0); /* LSB */
79 outb(delta >> 8 , PIT_CH0); /* MSB */
8d016ef1 80 spin_unlock_irqrestore(&i8253_lock, flags);
e9e2cdb4
TG
81
82 return 0;
83}
84
85/*
86 * On UP the PIT can serve all of the possible timer functions. On SMP systems
87 * it can be solely used for the global tick.
88 *
89 * The profiling and update capabilites are switched off once the local apic is
90 * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
91 * !using_apic_timer decisions in do_timer_interrupt_hook()
92 */
93struct clock_event_device pit_clockevent = {
94 .name = "pit",
95 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
96 .set_mode = init_pit_timer,
97 .set_next_event = pit_next_event,
98 .shift = 32,
99 .irq = 0,
100};
101
102/*
103 * Initialize the conversion factor and the min/max deltas of the clock event
104 * structure and register the clock event source with the framework.
105 */
106void __init setup_pit_timer(void)
107{
108 /*
109 * Start pit with the boot cpu mask and make it global after the
110 * IO_APIC has been initialized.
111 */
2feae215 112 pit_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
e9e2cdb4
TG
113 pit_clockevent.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, 32);
114 pit_clockevent.max_delta_ns =
115 clockevent_delta2ns(0x7FFF, &pit_clockevent);
116 pit_clockevent.min_delta_ns =
117 clockevent_delta2ns(0xF, &pit_clockevent);
118 clockevents_register_device(&pit_clockevent);
119 global_clock_event = &pit_clockevent;
8d016ef1 120}
5d0cf410 121
f5e0e93f 122#ifndef CONFIG_X86_64
5d0cf410 123/*
124 * Since the PIT overflows every tick, its not very useful
125 * to just read by itself. So use jiffies to emulate a free
126 * running counter:
127 */
128static cycle_t pit_read(void)
129{
130 unsigned long flags;
131 int count;
6415ce9a 132 u32 jifs;
133 static int old_count;
134 static u32 old_jifs;
5d0cf410 135
136 spin_lock_irqsave(&i8253_lock, flags);
e9e2cdb4 137 /*
6415ce9a 138 * Although our caller may have the read side of xtime_lock,
139 * this is now a seqlock, and we are cheating in this routine
140 * by having side effects on state that we cannot undo if
141 * there is a collision on the seqlock and our caller has to
142 * retry. (Namely, old_jifs and old_count.) So we must treat
143 * jiffies as volatile despite the lock. We read jiffies
144 * before latching the timer count to guarantee that although
145 * the jiffies value might be older than the count (that is,
146 * the counter may underflow between the last point where
147 * jiffies was incremented and the point where we latch the
148 * count), it cannot be newer.
149 */
150 jifs = jiffies;
5d0cf410 151 outb_p(0x00, PIT_MODE); /* latch the count ASAP */
152 count = inb_p(PIT_CH0); /* read the latched count */
153 count |= inb_p(PIT_CH0) << 8;
154
155 /* VIA686a test code... reset the latch if count > max + 1 */
156 if (count > LATCH) {
157 outb_p(0x34, PIT_MODE);
158 outb_p(LATCH & 0xff, PIT_CH0);
159 outb(LATCH >> 8, PIT_CH0);
160 count = LATCH - 1;
161 }
5d0cf410 162
6415ce9a 163 /*
164 * It's possible for count to appear to go the wrong way for a
165 * couple of reasons:
166 *
167 * 1. The timer counter underflows, but we haven't handled the
168 * resulting interrupt and incremented jiffies yet.
169 * 2. Hardware problem with the timer, not giving us continuous time,
170 * the counter does small "jumps" upwards on some Pentium systems,
171 * (see c't 95/10 page 335 for Neptun bug.)
172 *
173 * Previous attempts to handle these cases intelligently were
174 * buggy, so we just do the simple thing now.
175 */
176 if (count > old_count && jifs == old_jifs) {
177 count = old_count;
178 }
179 old_count = count;
180 old_jifs = jifs;
181
182 spin_unlock_irqrestore(&i8253_lock, flags);
5d0cf410 183
6415ce9a 184 count = (LATCH - 1) - count;
5d0cf410 185
186 return (cycle_t)(jifs * LATCH) + count;
187}
188
189static struct clocksource clocksource_pit = {
190 .name = "pit",
191 .rating = 110,
192 .read = pit_read,
6415ce9a 193 .mask = CLOCKSOURCE_MASK(32),
5d0cf410 194 .mult = 0,
195 .shift = 20,
196};
197
198static int __init init_pit_clocksource(void)
199{
3f4a0b91 200 if (num_possible_cpus() > 1) /* PIT does not scale! */
5d0cf410 201 return 0;
202
203 clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
a2752549 204 return clocksource_register(&clocksource_pit);
5d0cf410 205}
6bb74df4 206arch_initcall(init_pit_clocksource);
f5e0e93f
TG
207
208#endif