Merge tag 'tpmdd-next-6.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / arch / x86 / kernel / hpet.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
e9e2cdb4 2#include <linux/clockchips.h>
4588c1f0 3#include <linux/interrupt.h>
69c60c88 4#include <linux/export.h>
28769149 5#include <linux/delay.h>
5d0cf410 6#include <linux/hpet.h>
58ac1e76 7#include <linux/cpu.h>
9bc9e1d4 8#include <linux/irq.h>
5d0cf410 9
3d7295eb 10#include <asm/irq_remapping.h>
4588c1f0 11#include <asm/hpet.h>
16f871bc 12#include <asm/time.h>
6e3cd952 13#include <asm/mwait.h>
5d0cf410 14
46e5b64f
TG
15#undef pr_fmt
16#define pr_fmt(fmt) "hpet: " fmt
17
9e16e493
TG
18enum hpet_mode {
19 HPET_MODE_UNUSED,
20 HPET_MODE_LEGACY,
21 HPET_MODE_CLOCKEVT,
22 HPET_MODE_DEVICE,
23};
24
e37f0881 25struct hpet_channel {
4d5e6833 26 struct clock_event_device evt;
e37f0881 27 unsigned int num;
4d5e6833 28 unsigned int cpu;
2460d587 29 unsigned int irq;
45e0a415 30 unsigned int in_use;
9e16e493 31 enum hpet_mode mode;
e37f0881 32 unsigned int boot_cfg;
4d5e6833 33 char name[10];
e37f0881
TG
34};
35
36struct hpet_base {
37 unsigned int nr_channels;
4d5e6833 38 unsigned int nr_clockevents;
e37f0881
TG
39 unsigned int boot_cfg;
40 struct hpet_channel *channels;
41};
42
4588c1f0 43#define HPET_MASK CLOCKSOURCE_MASK(32)
5d0cf410 44
f1c18071
TG
45#define HPET_MIN_CYCLES 128
46#define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
47
e9e2cdb4
TG
48/*
49 * HPET address is set in acpi/boot.c, when an ACPI entry exists
50 */
4588c1f0 51unsigned long hpet_address;
c8bc6f3c 52u8 hpet_blockid; /* OS timer block num */
3d45ac4b 53bool hpet_msi_disable;
73472a46 54
441ccc35 55#if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ)
4d5e6833 56static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
8c273f2c 57static struct irq_domain *hpet_domain;
e951e4af 58#endif
8c273f2c 59
4588c1f0 60static void __iomem *hpet_virt_address;
45e0a415 61
e37f0881 62static struct hpet_base hpet_base;
e9e2cdb4 63
8c273f2c
TG
64static bool hpet_legacy_int_enabled;
65static unsigned long hpet_freq;
66
67bool boot_hpet_disable;
68bool hpet_force_user;
69static bool hpet_verbose;
70
3535aa12 71static inline
4d5e6833 72struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
3f7787b3 73{
4d5e6833 74 return container_of(evt, struct hpet_channel, evt);
3f7787b3
FW
75}
76
5946fa3d 77inline unsigned int hpet_readl(unsigned int a)
e9e2cdb4
TG
78{
79 return readl(hpet_virt_address + a);
80}
81
5946fa3d 82static inline void hpet_writel(unsigned int d, unsigned int a)
e9e2cdb4
TG
83{
84 writel(d, hpet_virt_address + a);
85}
86
06a24dec
TG
87static inline void hpet_set_mapping(void)
88{
4bdc0d67 89 hpet_virt_address = ioremap(hpet_address, HPET_MMAP_SIZE);
06a24dec
TG
90}
91
92static inline void hpet_clear_mapping(void)
93{
94 iounmap(hpet_virt_address);
95 hpet_virt_address = NULL;
96}
97
e9e2cdb4
TG
98/*
99 * HPET command line enable / disable
100 */
4588c1f0 101static int __init hpet_setup(char *str)
e9e2cdb4 102{
b2d6aba9
JB
103 while (str) {
104 char *next = strchr(str, ',');
105
106 if (next)
107 *next++ = 0;
e9e2cdb4 108 if (!strncmp("disable", str, 7))
3d45ac4b 109 boot_hpet_disable = true;
b17530bd 110 if (!strncmp("force", str, 5))
3d45ac4b 111 hpet_force_user = true;
b98103a5 112 if (!strncmp("verbose", str, 7))
3d45ac4b 113 hpet_verbose = true;
b2d6aba9 114 str = next;
e9e2cdb4
TG
115 }
116 return 1;
117}
118__setup("hpet=", hpet_setup);
119
28769149
TG
120static int __init disable_hpet(char *str)
121{
3d45ac4b 122 boot_hpet_disable = true;
28769149
TG
123 return 1;
124}
125__setup("nohpet", disable_hpet);
126
e9e2cdb4
TG
127static inline int is_hpet_capable(void)
128{
4588c1f0 129 return !boot_hpet_disable && hpet_address;
e9e2cdb4
TG
130}
131
e9e2cdb4 132/**
3fe50c34 133 * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
e9e2cdb4
TG
134 */
135int is_hpet_enabled(void)
136{
137 return is_hpet_capable() && hpet_legacy_int_enabled;
138}
1bdbdaac 139EXPORT_SYMBOL_GPL(is_hpet_enabled);
e9e2cdb4 140
b98103a5
AH
141static void _hpet_print_config(const char *function, int line)
142{
0b5c597d
IM
143 u32 i, id, period, cfg, status, channels, l, h;
144
46e5b64f 145 pr_info("%s(%d):\n", function, line);
0b5c597d
IM
146
147 id = hpet_readl(HPET_ID);
148 period = hpet_readl(HPET_PERIOD);
149 pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
150
151 cfg = hpet_readl(HPET_CFG);
152 status = hpet_readl(HPET_STATUS);
153 pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
154
b98103a5
AH
155 l = hpet_readl(HPET_COUNTER);
156 h = hpet_readl(HPET_COUNTER+4);
46e5b64f 157 pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
b98103a5 158
0b5c597d
IM
159 channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
160
161 for (i = 0; i < channels; i++) {
b98103a5
AH
162 l = hpet_readl(HPET_Tn_CFG(i));
163 h = hpet_readl(HPET_Tn_CFG(i)+4);
46e5b64f 164 pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
0b5c597d 165
b98103a5
AH
166 l = hpet_readl(HPET_Tn_CMP(i));
167 h = hpet_readl(HPET_Tn_CMP(i)+4);
46e5b64f 168 pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
0b5c597d 169
b98103a5
AH
170 l = hpet_readl(HPET_Tn_ROUTE(i));
171 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
46e5b64f 172 pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
b98103a5
AH
173 }
174}
175
176#define hpet_print_config() \
177do { \
178 if (hpet_verbose) \
02f1f217 179 _hpet_print_config(__func__, __LINE__); \
b98103a5
AH
180} while (0)
181
e9e2cdb4 182/*
3fe50c34 183 * When the HPET driver (/dev/hpet) is enabled, we need to reserve
e9e2cdb4
TG
184 * timer 0 and timer 1 in case of RTC emulation.
185 */
186#ifdef CONFIG_HPET
f0ed4e69 187
2460d587 188static void __init hpet_reserve_platform_timers(void)
e9e2cdb4 189{
e9e2cdb4 190 struct hpet_data hd;
2460d587 191 unsigned int i;
e9e2cdb4 192
4588c1f0
IM
193 memset(&hd, 0, sizeof(hd));
194 hd.hd_phys_address = hpet_address;
2460d587
TG
195 hd.hd_address = hpet_virt_address;
196 hd.hd_nirqs = hpet_base.nr_channels;
5761d64b 197
64a76f66
DB
198 /*
199 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
200 * is wrong for i8259!) not the output IRQ. Many BIOS writers
201 * don't bother configuring *any* comparator interrupts.
202 */
e9e2cdb4
TG
203 hd.hd_irq[0] = HPET_LEGACY_8254;
204 hd.hd_irq[1] = HPET_LEGACY_RTC;
205
45e0a415
TG
206 for (i = 0; i < hpet_base.nr_channels; i++) {
207 struct hpet_channel *hc = hpet_base.channels + i;
5761d64b 208
45e0a415
TG
209 if (i >= 2)
210 hd.hd_irq[i] = hc->irq;
26afe5f2 211
45e0a415
TG
212 switch (hc->mode) {
213 case HPET_MODE_UNUSED:
214 case HPET_MODE_DEVICE:
215 hc->mode = HPET_MODE_DEVICE;
216 break;
217 case HPET_MODE_CLOCKEVT:
218 case HPET_MODE_LEGACY:
219 hpet_reserve_timer(&hd, hc->num);
220 break;
221 }
222 }
5761d64b 223
45e0a415 224 hpet_alloc(&hd);
e9e2cdb4 225}
af5a1dad
TG
226
227static void __init hpet_select_device_channel(void)
228{
229 int i;
230
231 for (i = 0; i < hpet_base.nr_channels; i++) {
232 struct hpet_channel *hc = hpet_base.channels + i;
233
234 /* Associate the first unused channel to /dev/hpet */
235 if (hc->mode == HPET_MODE_UNUSED) {
236 hc->mode = HPET_MODE_DEVICE;
237 return;
238 }
239 }
240}
241
e9e2cdb4 242#else
2460d587 243static inline void hpet_reserve_platform_timers(void) { }
af5a1dad 244static inline void hpet_select_device_channel(void) {}
e9e2cdb4
TG
245#endif
246
3fe50c34 247/* Common HPET functions */
8d6f0c82 248static void hpet_stop_counter(void)
e9e2cdb4 249{
3d45ac4b 250 u32 cfg = hpet_readl(HPET_CFG);
0b5c597d 251
e9e2cdb4
TG
252 cfg &= ~HPET_CFG_ENABLE;
253 hpet_writel(cfg, HPET_CFG);
7a6f9cbb
AH
254}
255
256static void hpet_reset_counter(void)
257{
e9e2cdb4
TG
258 hpet_writel(0, HPET_COUNTER);
259 hpet_writel(0, HPET_COUNTER + 4);
8d6f0c82
AH
260}
261
262static void hpet_start_counter(void)
263{
5946fa3d 264 unsigned int cfg = hpet_readl(HPET_CFG);
0b5c597d 265
e9e2cdb4
TG
266 cfg |= HPET_CFG_ENABLE;
267 hpet_writel(cfg, HPET_CFG);
268}
269
8d6f0c82
AH
270static void hpet_restart_counter(void)
271{
272 hpet_stop_counter();
7a6f9cbb 273 hpet_reset_counter();
8d6f0c82
AH
274 hpet_start_counter();
275}
276
59c69f2a
VP
277static void hpet_resume_device(void)
278{
bfe0c1cc 279 force_hpet_resume();
59c69f2a
VP
280}
281
17622339 282static void hpet_resume_counter(struct clocksource *cs)
59c69f2a
VP
283{
284 hpet_resume_device();
8d6f0c82 285 hpet_restart_counter();
59c69f2a
VP
286}
287
610bf2f1 288static void hpet_enable_legacy_int(void)
e9e2cdb4 289{
5946fa3d 290 unsigned int cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
291
292 cfg |= HPET_CFG_LEGACY;
293 hpet_writel(cfg, HPET_CFG);
3d45ac4b 294 hpet_legacy_int_enabled = true;
e9e2cdb4
TG
295}
296
310b5b3e 297static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
e9e2cdb4 298{
310b5b3e 299 unsigned int channel = clockevent_to_channel(evt)->num;
5946fa3d 300 unsigned int cfg, cmp, now;
e9e2cdb4
TG
301 uint64_t delta;
302
c8b5db7d
VK
303 hpet_stop_counter();
304 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
305 delta >>= evt->shift;
306 now = hpet_readl(HPET_COUNTER);
307 cmp = now + (unsigned int)delta;
d415c754 308 cfg = hpet_readl(HPET_Tn_CFG(channel));
c8b5db7d
VK
309 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
310 HPET_TN_32BIT;
d415c754
IM
311 hpet_writel(cfg, HPET_Tn_CFG(channel));
312 hpet_writel(cmp, HPET_Tn_CMP(channel));
c8b5db7d
VK
313 udelay(1);
314 /*
315 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
316 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
317 * bit is automatically cleared after the first write.
318 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
319 * Publication # 24674)
320 */
d415c754 321 hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
c8b5db7d
VK
322 hpet_start_counter();
323 hpet_print_config();
324
325 return 0;
326}
327
310b5b3e 328static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
c8b5db7d 329{
310b5b3e 330 unsigned int channel = clockevent_to_channel(evt)->num;
c8b5db7d
VK
331 unsigned int cfg;
332
d415c754 333 cfg = hpet_readl(HPET_Tn_CFG(channel));
c8b5db7d
VK
334 cfg &= ~HPET_TN_PERIODIC;
335 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
d415c754 336 hpet_writel(cfg, HPET_Tn_CFG(channel));
c8b5db7d
VK
337
338 return 0;
339}
340
310b5b3e 341static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
c8b5db7d 342{
310b5b3e 343 unsigned int channel = clockevent_to_channel(evt)->num;
c8b5db7d
VK
344 unsigned int cfg;
345
d415c754 346 cfg = hpet_readl(HPET_Tn_CFG(channel));
c8b5db7d 347 cfg &= ~HPET_TN_ENABLE;
d415c754 348 hpet_writel(cfg, HPET_Tn_CFG(channel));
c8b5db7d
VK
349
350 return 0;
351}
352
310b5b3e 353static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
bb68cfe2
TG
354{
355 hpet_enable_legacy_int();
c8b5db7d 356 hpet_print_config();
c8b5db7d 357 return 0;
e9e2cdb4
TG
358}
359
310b5b3e
TG
360static int
361hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
e9e2cdb4 362{
310b5b3e 363 unsigned int channel = clockevent_to_channel(evt)->num;
f7676254 364 u32 cnt;
995bd3bb 365 s32 res;
e9e2cdb4
TG
366
367 cnt = hpet_readl(HPET_COUNTER);
f7676254 368 cnt += (u32) delta;
853acaf0 369 hpet_writel(cnt, HPET_Tn_CMP(channel));
e9e2cdb4 370
72d43d9b 371 /*
995bd3bb
TG
372 * HPETs are a complete disaster. The compare register is
373 * based on a equal comparison and neither provides a less
374 * than or equal functionality (which would require to take
375 * the wraparound into account) nor a simple count down event
376 * mode. Further the write to the comparator register is
377 * delayed internally up to two HPET clock cycles in certain
f1c18071
TG
378 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
379 * longer delays. We worked around that by reading back the
380 * compare register, but that required another workaround for
381 * ICH9,10 chips where the first readout after write can
382 * return the old stale value. We already had a minimum
383 * programming delta of 5us enforced, but a NMI or SMI hitting
995bd3bb
TG
384 * between the counter readout and the comparator write can
385 * move us behind that point easily. Now instead of reading
386 * the compare register back several times, we make the ETIME
387 * decision based on the following: Return ETIME if the
f1c18071 388 * counter value after the write is less than HPET_MIN_CYCLES
995bd3bb 389 * away from the event or if the counter is already ahead of
f1c18071
TG
390 * the event. The minimum programming delta for the generic
391 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
72d43d9b 392 */
995bd3bb 393 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
72d43d9b 394
f1c18071 395 return res < HPET_MIN_CYCLES ? -ETIME : 0;
e9e2cdb4
TG
396}
397
ea99110d
TG
398static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
399{
400 struct clock_event_device *evt = &hc->evt;
401
402 evt->rating = rating;
403 evt->irq = hc->irq;
404 evt->name = hc->name;
405 evt->cpumask = cpumask_of(hc->cpu);
406 evt->set_state_oneshot = hpet_clkevt_set_state_oneshot;
407 evt->set_next_event = hpet_clkevt_set_next_event;
408 evt->set_state_shutdown = hpet_clkevt_set_state_shutdown;
409
410 evt->features = CLOCK_EVT_FEAT_ONESHOT;
411 if (hc->boot_cfg & HPET_TN_PERIODIC) {
412 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
413 evt->set_state_periodic = hpet_clkevt_set_state_periodic;
414 }
415}
416
49adaa60
TG
417static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
418{
419 /*
420 * Start HPET with the boot CPU's cpumask and make it global after
421 * the IO_APIC has been initialized.
422 */
423 hc->cpu = boot_cpu_data.cpu_index;
4108d141 424 strscpy(hc->name, "hpet", sizeof(hc->name));
49adaa60
TG
425 hpet_init_clockevent(hc, 50);
426
427 hc->evt.tick_resume = hpet_clkevt_legacy_resume;
428
429 /*
430 * Legacy horrors and sins from the past. HPET used periodic mode
431 * unconditionally forever on the legacy channel 0. Removing the
432 * below hack and using the conditional in hpet_init_clockevent()
433 * makes at least Qemu and one hardware machine fail to boot.
434 * There are two issues which cause the boot failure:
435 *
436 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
437 * the next interrupt is not delivered despite the HPET channel
438 * being programmed correctly. Reprogramming the HPET after
439 * switching to IOAPIC makes it work again. After fixing this,
440 * the next issue surfaces:
441 *
442 * #2 Due to the unconditional periodic mode availability the Local
443 * APIC timer calibration can hijack the global clockevents
444 * event handler without causing damage. Using oneshot at this
445 * stage makes if hang because the HPET does not get
446 * reprogrammed due to the handler hijacking. Duh, stupid me!
447 *
448 * Both issues require major surgery and especially the kick HPET
449 * again after enabling IOAPIC results in really nasty hackery.
450 * This 'assume periodic works' magic has survived since HPET
451 * support got added, so it's questionable whether this should be
452 * fixed. Both Qemu and the failing hardware machine support
453 * periodic mode despite the fact that both don't advertise it in
454 * the configuration register and both need that extra kick after
455 * switching to IOAPIC. Seems to be a feature...
456 */
457 hc->evt.features |= CLOCK_EVT_FEAT_PERIODIC;
458 hc->evt.set_state_periodic = hpet_clkevt_set_state_periodic;
459
460 /* Start HPET legacy interrupts */
461 hpet_enable_legacy_int();
462
463 clockevents_config_and_register(&hc->evt, hpet_freq,
464 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
465 global_clock_event = &hc->evt;
466 pr_debug("Clockevent registered\n");
467}
c8b5db7d 468
58ac1e76 469/*
470 * HPET MSI Support
471 */
441ccc35 472#if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ)
3d7295eb 473static void hpet_msi_unmask(struct irq_data *data)
58ac1e76 474{
4d5e6833 475 struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
5946fa3d 476 unsigned int cfg;
58ac1e76 477
d415c754 478 cfg = hpet_readl(HPET_Tn_CFG(hc->num));
6acf5a8c 479 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
d415c754 480 hpet_writel(cfg, HPET_Tn_CFG(hc->num));
58ac1e76 481}
482
3d7295eb 483static void hpet_msi_mask(struct irq_data *data)
58ac1e76 484{
4d5e6833 485 struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
5946fa3d 486 unsigned int cfg;
58ac1e76 487
d415c754 488 cfg = hpet_readl(HPET_Tn_CFG(hc->num));
6acf5a8c 489 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
d415c754 490 hpet_writel(cfg, HPET_Tn_CFG(hc->num));
58ac1e76 491}
492
3d7295eb 493static void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
58ac1e76 494{
d415c754
IM
495 hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
496 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
58ac1e76 497}
498
3d7295eb
DW
499static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
500{
501 hpet_msi_write(irq_data_get_irq_handler_data(data), msg);
502}
503
504static struct irq_chip hpet_msi_controller __ro_after_init = {
505 .name = "HPET-MSI",
506 .irq_unmask = hpet_msi_unmask,
507 .irq_mask = hpet_msi_mask,
508 .irq_ack = irq_chip_ack_parent,
509 .irq_set_affinity = msi_domain_set_affinity,
510 .irq_retrigger = irq_chip_retrigger_hierarchy,
511 .irq_write_msi_msg = hpet_msi_write_msg,
ff363f48 512 .flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_AFFINITY_PRE_STARTUP,
3d7295eb
DW
513};
514
515static int hpet_msi_init(struct irq_domain *domain,
516 struct msi_domain_info *info, unsigned int virq,
517 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
518{
519 irq_set_status_flags(virq, IRQ_MOVE_PCNTXT);
520 irq_domain_set_info(domain, virq, arg->hwirq, info->chip, NULL,
521 handle_edge_irq, arg->data, "edge");
522
523 return 0;
524}
525
526static void hpet_msi_free(struct irq_domain *domain,
527 struct msi_domain_info *info, unsigned int virq)
528{
529 irq_clear_status_flags(virq, IRQ_MOVE_PCNTXT);
530}
531
532static struct msi_domain_ops hpet_msi_domain_ops = {
533 .msi_init = hpet_msi_init,
534 .msi_free = hpet_msi_free,
535};
536
537static struct msi_domain_info hpet_msi_domain_info = {
538 .ops = &hpet_msi_domain_ops,
539 .chip = &hpet_msi_controller,
540 .flags = MSI_FLAG_USE_DEF_DOM_OPS,
541};
542
543static struct irq_domain *hpet_create_irq_domain(int hpet_id)
544{
545 struct msi_domain_info *domain_info;
546 struct irq_domain *parent, *d;
3d7295eb 547 struct fwnode_handle *fn;
c2a5881c 548 struct irq_fwspec fwspec;
3d7295eb
DW
549
550 if (x86_vector_domain == NULL)
551 return NULL;
552
553 domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL);
554 if (!domain_info)
555 return NULL;
556
557 *domain_info = hpet_msi_domain_info;
558 domain_info->data = (void *)(long)hpet_id;
559
3d7295eb
DW
560 fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name,
561 hpet_id);
562 if (!fn) {
563 kfree(domain_info);
564 return NULL;
565 }
566
c2a5881c
DW
567 fwspec.fwnode = fn;
568 fwspec.param_count = 1;
569 fwspec.param[0] = hpet_id;
570
c147e1ef 571 parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_GENERIC_MSI);
c2a5881c
DW
572 if (!parent) {
573 irq_domain_free_fwnode(fn);
574 kfree(domain_info);
575 return NULL;
576 }
577 if (parent != x86_vector_domain)
578 hpet_msi_controller.name = "IR-HPET-MSI";
579
3d7295eb
DW
580 d = msi_create_irq_domain(fn, domain_info, parent);
581 if (!d) {
582 irq_domain_free_fwnode(fn);
583 kfree(domain_info);
584 }
585 return d;
586}
587
588static inline int hpet_dev_id(struct irq_domain *domain)
589{
590 struct msi_domain_info *info = msi_get_domain_info(domain);
591
592 return (int)(long)info->data;
593}
594
595static int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc,
596 int dev_num)
597{
598 struct irq_alloc_info info;
599
600 init_irq_alloc_info(&info, NULL);
601 info.type = X86_IRQ_ALLOC_TYPE_HPET;
602 info.data = hc;
603 info.devid = hpet_dev_id(domain);
604 info.hwirq = dev_num;
605
606 return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
607}
608
310b5b3e 609static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
c8b5db7d 610{
4d5e6833 611 struct hpet_channel *hc = clockevent_to_channel(evt);
d415c754 612 struct irq_data *data = irq_get_irq_data(hc->irq);
bb68cfe2 613 struct msi_msg msg;
c8b5db7d 614
bb68cfe2
TG
615 /* Restore the MSI msg and unmask the interrupt */
616 irq_chip_compose_msi_msg(data, &msg);
d415c754 617 hpet_msi_write(hc, &msg);
bb68cfe2
TG
618 hpet_msi_unmask(data);
619 return 0;
26afe5f2 620}
621
310b5b3e 622static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
26afe5f2 623{
4d5e6833 624 struct hpet_channel *hc = data;
d415c754 625 struct clock_event_device *evt = &hc->evt;
26afe5f2 626
3fe50c34 627 if (!evt->event_handler) {
d415c754 628 pr_info("Spurious interrupt HPET channel %d\n", hc->num);
26afe5f2 629 return IRQ_HANDLED;
630 }
631
3fe50c34 632 evt->event_handler(evt);
26afe5f2 633 return IRQ_HANDLED;
634}
635
310b5b3e 636static int hpet_setup_msi_irq(struct hpet_channel *hc)
26afe5f2 637{
310b5b3e 638 if (request_irq(hc->irq, hpet_msi_interrupt_handler,
d20d2efb 639 IRQF_TIMER | IRQF_NOBALANCING,
4d5e6833 640 hc->name, hc))
26afe5f2 641 return -1;
642
4d5e6833
TG
643 disable_irq(hc->irq);
644 irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
645 enable_irq(hc->irq);
26afe5f2 646
4d5e6833 647 pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
c81bba49 648
26afe5f2 649 return 0;
650}
651
45e0a415 652/* Invoked from the hotplug callback on @cpu */
4d5e6833 653static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
26afe5f2 654{
d415c754 655 struct clock_event_device *evt = &hc->evt;
26afe5f2 656
d415c754 657 hc->cpu = cpu;
4d5e6833 658 per_cpu(cpu_hpet_channel, cpu) = hc;
310b5b3e 659 hpet_setup_msi_irq(hc);
26afe5f2 660
ea99110d 661 hpet_init_clockevent(hc, 110);
310b5b3e 662 evt->tick_resume = hpet_clkevt_msi_resume;
ab0e08f1
TG
663
664 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
665 0x7FFFFFFF);
26afe5f2 666}
667
4d5e6833 668static struct hpet_channel *hpet_get_unused_clockevent(void)
6bdec41a
TG
669{
670 int i;
671
2460d587 672 for (i = 0; i < hpet_base.nr_channels; i++) {
4d5e6833 673 struct hpet_channel *hc = hpet_base.channels + i;
6bdec41a 674
45e0a415 675 if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
6bdec41a 676 continue;
45e0a415 677 hc->in_use = 1;
d415c754 678 return hc;
6bdec41a
TG
679 }
680 return NULL;
681}
682
683static int hpet_cpuhp_online(unsigned int cpu)
684{
4d5e6833 685 struct hpet_channel *hc = hpet_get_unused_clockevent();
6bdec41a 686
d415c754
IM
687 if (hc)
688 init_one_hpet_msi_clockevent(hc, cpu);
6bdec41a
TG
689 return 0;
690}
691
692static int hpet_cpuhp_dead(unsigned int cpu)
693{
4d5e6833 694 struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
6bdec41a 695
d415c754 696 if (!hc)
6bdec41a 697 return 0;
d415c754 698 free_irq(hc->irq, hc);
45e0a415 699 hc->in_use = 0;
4d5e6833 700 per_cpu(cpu_hpet_channel, cpu) = NULL;
6bdec41a
TG
701 return 0;
702}
703
4d5e6833 704static void __init hpet_select_clockevents(void)
26afe5f2 705{
4d5e6833 706 unsigned int i;
26afe5f2 707
4d5e6833 708 hpet_base.nr_clockevents = 0;
73472a46 709
54aa699e 710 /* No point if MSI is disabled or CPU has an Always Running APIC Timer */
4d5e6833 711 if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
39fe05e5 712 return;
26afe5f2 713
b98103a5 714 hpet_print_config();
26afe5f2 715
3cb96f0c
JL
716 hpet_domain = hpet_create_irq_domain(hpet_blockid);
717 if (!hpet_domain)
718 return;
719
4d5e6833
TG
720 for (i = 0; i < hpet_base.nr_channels; i++) {
721 struct hpet_channel *hc = hpet_base.channels + i;
722 int irq;
26afe5f2 723
4d5e6833
TG
724 if (hc->mode != HPET_MODE_UNUSED)
725 continue;
26afe5f2 726
4d5e6833
TG
727 /* Only consider HPET channel with MSI support */
728 if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
26afe5f2 729 continue;
730
d415c754 731 sprintf(hc->name, "hpet%d", i);
cb17b2a6 732
d415c754 733 irq = hpet_assign_irq(hpet_domain, hc, hc->num);
bafac298 734 if (irq <= 0)
3cb96f0c
JL
735 continue;
736
d415c754 737 hc->irq = irq;
4d5e6833
TG
738 hc->mode = HPET_MODE_CLOCKEVT;
739
740 if (++hpet_base.nr_clockevents == num_possible_cpus())
26afe5f2 741 break;
742 }
743
46e5b64f 744 pr_info("%d channels of %d reserved for per-cpu timers\n",
4d5e6833 745 hpet_base.nr_channels, hpet_base.nr_clockevents);
26afe5f2 746}
747
26afe5f2 748#else
749
4d5e6833 750static inline void hpet_select_clockevents(void) { }
5f79f2f2 751
48d7f6c7
SAS
752#define hpet_cpuhp_online NULL
753#define hpet_cpuhp_dead NULL
26afe5f2 754
755#endif
756
6bb74df4 757/*
758 * Clock source related code
759 */
f99fd22e
WL
760#if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
761/*
762 * Reading the HPET counter is a very slow operation. If a large number of
763 * CPUs are trying to access the HPET counter simultaneously, it can cause
dfe36b57 764 * massive delays and slow down system performance dramatically. This may
f99fd22e
WL
765 * happen when HPET is the default clock source instead of TSC. For a
766 * really large system with hundreds of CPUs, the slowdown may be so
dfe36b57 767 * severe, that it can actually crash the system because of a NMI watchdog
f99fd22e
WL
768 * soft lockup, for example.
769 *
770 * If multiple CPUs are trying to access the HPET counter at the same time,
771 * we don't actually need to read the counter multiple times. Instead, the
772 * other CPUs can use the counter value read by the first CPU in the group.
773 *
774 * This special feature is only enabled on x86-64 systems. It is unlikely
775 * that 32-bit x86 systems will have enough CPUs to require this feature
dfe36b57 776 * with its associated locking overhead. We also need 64-bit atomic read.
f99fd22e 777 *
3fe50c34 778 * The lock and the HPET value are stored together and can be read in a
f99fd22e
WL
779 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
780 * is 32 bits in size.
781 */
782union hpet_lock {
783 struct {
784 arch_spinlock_t lock;
785 u32 value;
786 };
787 u64 lockval;
788};
789
790static union hpet_lock hpet __cacheline_aligned = {
791 { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
792};
793
a5a1d1c2 794static u64 read_hpet(struct clocksource *cs)
f99fd22e
WL
795{
796 unsigned long flags;
797 union hpet_lock old, new;
798
799 BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
800
801 /*
802 * Read HPET directly if in NMI.
803 */
804 if (in_nmi())
a5a1d1c2 805 return (u64)hpet_readl(HPET_COUNTER);
f99fd22e
WL
806
807 /*
808 * Read the current state of the lock and HPET value atomically.
809 */
810 old.lockval = READ_ONCE(hpet.lockval);
811
812 if (arch_spin_is_locked(&old.lock))
813 goto contended;
814
815 local_irq_save(flags);
816 if (arch_spin_trylock(&hpet.lock)) {
817 new.value = hpet_readl(HPET_COUNTER);
818 /*
819 * Use WRITE_ONCE() to prevent store tearing.
820 */
821 WRITE_ONCE(hpet.value, new.value);
822 arch_spin_unlock(&hpet.lock);
823 local_irq_restore(flags);
a5a1d1c2 824 return (u64)new.value;
f99fd22e
WL
825 }
826 local_irq_restore(flags);
827
828contended:
829 /*
830 * Contended case
831 * --------------
832 * Wait until the HPET value change or the lock is free to indicate
833 * its value is up-to-date.
834 *
835 * It is possible that old.value has already contained the latest
836 * HPET value while the lock holder was in the process of releasing
837 * the lock. Checking for lock state change will enable us to return
838 * the value immediately instead of waiting for the next HPET reader
839 * to come along.
840 */
841 do {
842 cpu_relax();
843 new.lockval = READ_ONCE(hpet.lockval);
844 } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
845
a5a1d1c2 846 return (u64)new.value;
f99fd22e
WL
847}
848#else
849/*
850 * For UP or 32-bit.
851 */
a5a1d1c2 852static u64 read_hpet(struct clocksource *cs)
6bb74df4 853{
a5a1d1c2 854 return (u64)hpet_readl(HPET_COUNTER);
6bb74df4 855}
f99fd22e 856#endif
6bb74df4 857
858static struct clocksource clocksource_hpet = {
859 .name = "hpet",
860 .rating = 250,
861 .read = read_hpet,
862 .mask = HPET_MASK,
6bb74df4 863 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
8d6f0c82 864 .resume = hpet_resume_counter,
6bb74df4 865};
866
9b0b28de
TG
867/*
868 * AMD SB700 based systems with spread spectrum enabled use a SMM based
869 * HPET emulation to provide proper frequency setting.
870 *
871 * On such systems the SMM code is initialized with the first HPET register
872 * access and takes some time to complete. During this time the config
873 * register reads 0xffffffff. We check for max 1000 loops whether the
874 * config register reads a non-0xffffffff value to make sure that the
875 * HPET is up and running before we proceed any further.
876 *
877 * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
878 *
879 * On non-SB700 based machines this check is only done once and has no
880 * side effects.
881 */
882static bool __init hpet_cfg_working(void)
883{
884 int i;
885
886 for (i = 0; i < 1000; i++) {
887 if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
888 return true;
889 }
890
891 pr_warn("Config register invalid. Disabling HPET\n");
892 return false;
893}
894
3222daf9
TG
895static bool __init hpet_counting(void)
896{
897 u64 start, now, t1;
898
899 hpet_restart_counter();
900
901 t1 = hpet_readl(HPET_COUNTER);
902 start = rdtsc();
903
904 /*
905 * We don't know the TSC frequency yet, but waiting for
906 * 200000 TSC cycles is safe:
907 * 4 GHz == 50us
908 * 1 GHz == 200us
909 */
910 do {
44b5be57
TG
911 if (t1 != hpet_readl(HPET_COUNTER))
912 return true;
3222daf9
TG
913 now = rdtsc();
914 } while ((now - start) < 200000UL);
915
44b5be57
TG
916 pr_warn("Counter not counting. HPET disabled\n");
917 return false;
3222daf9 918}
396e2c6f 919
6e3cd952
TG
920static bool __init mwait_pc10_supported(void)
921{
922 unsigned int eax, ebx, ecx, mwait_substates;
923
924 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
925 return false;
926
927 if (!cpu_feature_enabled(X86_FEATURE_MWAIT))
928 return false;
929
930 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
931 return false;
932
933 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &mwait_substates);
934
935 return (ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) &&
936 (ecx & CPUID5_ECX_INTERRUPT_BREAK) &&
937 (mwait_substates & (0xF << 28));
938}
939
940/*
941 * Check whether the system supports PC10. If so force disable HPET as that
942 * stops counting in PC10. This check is overbroad as it does not take any
943 * of the following into account:
944 *
945 * - ACPI tables
946 * - Enablement of intel_idle
947 * - Command line arguments which limit intel_idle C-state support
948 *
949 * That's perfectly fine. HPET is a piece of hardware designed by committee
950 * and the only reasons why it is still in use on modern systems is the
951 * fact that it is impossible to reliably query TSC and CPU frequency via
952 * CPUID or firmware.
953 *
954 * If HPET is functional it is useful for calibrating TSC, but this can be
955 * done via PMTIMER as well which seems to be the last remaining timer on
956 * X86/INTEL platforms that has not been completely wreckaged by feature
957 * creep.
958 *
959 * In theory HPET support should be removed altogether, but there are older
960 * systems out there which depend on it because TSC and APIC timer are
961 * dysfunctional in deeper C-states.
962 *
963 * It's only 20 years now that hardware people have been asked to provide
964 * reliable and discoverable facilities which can be used for timekeeping
965 * and per CPU timer interrupts.
966 *
967 * The probability that this problem is going to be solved in the
54aa699e 968 * foreseeable future is close to zero, so the kernel has to be cluttered
6e3cd952
TG
969 * with heuristics to keep up with the ever growing amount of hardware and
970 * firmware trainwrecks. Hopefully some day hardware people will understand
971 * that the approach of "This can be fixed in software" is not sustainable.
972 * Hope dies last...
973 */
974static bool __init hpet_is_pc10_damaged(void)
975{
976 unsigned long long pcfg;
977
978 /* Check whether PC10 substates are supported */
979 if (!mwait_pc10_supported())
980 return false;
981
982 /* Check whether PC10 is enabled in PKG C-state limit */
983 rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, pcfg);
984 if ((pcfg & 0xF) < 8)
985 return false;
986
987 if (hpet_force_user) {
988 pr_warn("HPET force enabled via command line, but dysfunctional in PC10.\n");
989 return false;
990 }
991
992 pr_info("HPET dysfunctional in PC10. Force disabled.\n");
993 boot_hpet_disable = true;
994 return true;
995}
996
b02a7f22
PM
997/**
998 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
610bf2f1
VP
999 */
1000int __init hpet_enable(void)
1001{
2460d587 1002 u32 hpet_period, cfg, id, irq;
9b0b28de 1003 unsigned int i, channels;
e37f0881 1004 struct hpet_channel *hc;
ab0e08f1 1005 u64 freq;
610bf2f1
VP
1006
1007 if (!is_hpet_capable())
1008 return 0;
1009
6e3cd952
TG
1010 if (hpet_is_pc10_damaged())
1011 return 0;
1012
610bf2f1 1013 hpet_set_mapping();
2e84f116
AP
1014 if (!hpet_virt_address)
1015 return 0;
610bf2f1 1016
9b0b28de
TG
1017 /* Validate that the config register is working */
1018 if (!hpet_cfg_working())
1019 goto out_nohpet;
1020
610bf2f1
VP
1021 /*
1022 * Read the period and check for a sane value:
1023 */
1024 hpet_period = hpet_readl(HPET_PERIOD);
1025 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
1026 goto out_nohpet;
1027
9b0b28de 1028 /* The period is a femtoseconds value. Convert it to a frequency. */
ab0e08f1
TG
1029 freq = FSEC_PER_SEC;
1030 do_div(freq, hpet_period);
1031 hpet_freq = freq;
1032
610bf2f1
VP
1033 /*
1034 * Read the HPET ID register to retrieve the IRQ routing
1035 * information and the number of channels
1036 */
1037 id = hpet_readl(HPET_ID);
b98103a5 1038 hpet_print_config();
610bf2f1 1039
9b0b28de
TG
1040 /* This is the HPET channel number which is zero based */
1041 channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
396e2c6f 1042
610bf2f1
VP
1043 /*
1044 * The legacy routing mode needs at least two channels, tick timer
1045 * and the rtc emulation channel.
1046 */
e37f0881 1047 if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
610bf2f1 1048 goto out_nohpet;
610bf2f1 1049
e37f0881
TG
1050 hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
1051 if (!hc) {
1052 pr_warn("Disabling HPET.\n");
1053 goto out_nohpet;
1054 }
1055 hpet_base.channels = hc;
1056 hpet_base.nr_channels = channels;
1057
1058 /* Read, store and sanitize the global configuration */
396e2c6f 1059 cfg = hpet_readl(HPET_CFG);
e37f0881 1060 hpet_base.boot_cfg = cfg;
396e2c6f 1061 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
1b38a3a1 1062 hpet_writel(cfg, HPET_CFG);
396e2c6f 1063 if (cfg)
46e5b64f 1064 pr_warn("Global config: Unknown bits %#x\n", cfg);
396e2c6f 1065
e37f0881
TG
1066 /* Read, store and sanitize the per channel configuration */
1067 for (i = 0; i < channels; i++, hc++) {
1068 hc->num = i;
1069
396e2c6f 1070 cfg = hpet_readl(HPET_Tn_CFG(i));
e37f0881 1071 hc->boot_cfg = cfg;
2460d587
TG
1072 irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
1073 hc->irq = irq;
e37f0881 1074
396e2c6f
JB
1075 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
1076 hpet_writel(cfg, HPET_Tn_CFG(i));
e37f0881 1077
396e2c6f
JB
1078 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
1079 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
1080 | HPET_TN_FSB | HPET_TN_FSB_CAP);
1081 if (cfg)
46e5b64f 1082 pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
396e2c6f
JB
1083 }
1084 hpet_print_config();
1085
643d83f0
TG
1086 /*
1087 * Validate that the counter is counting. This needs to be done
1088 * after sanitizing the config registers to properly deal with
1089 * force enabled HPETs.
1090 */
1091 if (!hpet_counting())
1092 goto out_nohpet;
1093
efc8b329
PM
1094 if (tsc_clocksource_watchdog_disabled())
1095 clocksource_hpet.flags |= CLOCK_SOURCE_MUST_VERIFY;
3222daf9 1096 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
610bf2f1 1097
e9e2cdb4 1098 if (id & HPET_ID_LEGSUP) {
e44252f4 1099 hpet_legacy_clockevent_register(&hpet_base.channels[0]);
9e16e493
TG
1100 hpet_base.channels[0].mode = HPET_MODE_LEGACY;
1101 if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
1102 hpet_base.channels[1].mode = HPET_MODE_LEGACY;
e9e2cdb4
TG
1103 return 1;
1104 }
1105 return 0;
5d0cf410 1106
e9e2cdb4 1107out_nohpet:
e37f0881
TG
1108 kfree(hpet_base.channels);
1109 hpet_base.channels = NULL;
1110 hpet_base.nr_channels = 0;
06a24dec 1111 hpet_clear_mapping();
bacbe999 1112 hpet_address = 0;
e9e2cdb4
TG
1113 return 0;
1114}
1115
28769149 1116/*
9b0b28de
TG
1117 * The late initialization runs after the PCI quirks have been invoked
1118 * which might have detected a system on which the HPET can be enforced.
4d5e6833
TG
1119 *
1120 * Also, the MSI machinery is not working yet when the HPET is initialized
1121 * early.
1122 *
1123 * If the HPET is enabled, then:
1124 *
1125 * 1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
1126 * 2) Reserve up to num_possible_cpus() channels as per CPU clockevents
1127 * 3) Setup /dev/hpet if CONFIG_HPET=y
1128 * 4) Register hotplug callbacks when clockevents are available
28769149
TG
1129 */
1130static __init int hpet_late_init(void)
1131{
48d7f6c7 1132 int ret;
26afe5f2 1133
59c69f2a
VP
1134 if (!hpet_address) {
1135 if (!force_hpet_address)
1136 return -ENODEV;
1137
1138 hpet_address = force_hpet_address;
1139 hpet_enable();
59c69f2a
VP
1140 }
1141
39c04b55
JF
1142 if (!hpet_virt_address)
1143 return -ENODEV;
1144
4d5e6833
TG
1145 hpet_select_device_channel();
1146 hpet_select_clockevents();
2460d587 1147 hpet_reserve_platform_timers();
b98103a5 1148 hpet_print_config();
59c69f2a 1149
4d5e6833 1150 if (!hpet_base.nr_clockevents)
39fe05e5
SL
1151 return 0;
1152
73c1b41e 1153 ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
48d7f6c7
SAS
1154 hpet_cpuhp_online, NULL);
1155 if (ret)
1156 return ret;
73c1b41e 1157 ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
48d7f6c7
SAS
1158 hpet_cpuhp_dead);
1159 if (ret)
1160 goto err_cpuhp;
28769149 1161 return 0;
48d7f6c7
SAS
1162
1163err_cpuhp:
1164 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1165 return ret;
28769149
TG
1166}
1167fs_initcall(hpet_late_init);
1168
c86c7fbc
OH
1169void hpet_disable(void)
1170{
e37f0881
TG
1171 unsigned int i;
1172 u32 cfg;
396e2c6f 1173
e37f0881
TG
1174 if (!is_hpet_capable() || !hpet_virt_address)
1175 return;
396e2c6f 1176
e37f0881
TG
1177 /* Restore boot configuration with the enable bit cleared */
1178 cfg = hpet_base.boot_cfg;
1179 cfg &= ~HPET_CFG_ENABLE;
1180 hpet_writel(cfg, HPET_CFG);
396e2c6f 1181
e37f0881
TG
1182 /* Restore the channel boot configuration */
1183 for (i = 0; i < hpet_base.nr_channels; i++)
1184 hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
396e2c6f 1185
e37f0881
TG
1186 /* If the HPET was enabled at boot time, reenable it */
1187 if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
1188 hpet_writel(hpet_base.boot_cfg, HPET_CFG);
c86c7fbc
OH
1189}
1190
e9e2cdb4
TG
1191#ifdef CONFIG_HPET_EMULATE_RTC
1192
dfe36b57
IM
1193/*
1194 * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
e9e2cdb4 1195 * is enabled, we support RTC interrupt functionality in software.
dfe36b57 1196 *
e9e2cdb4 1197 * RTC has 3 kinds of interrupts:
dfe36b57
IM
1198 *
1199 * 1) Update Interrupt - generate an interrupt, every second, when the
1200 * RTC clock is updated
1201 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1202 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1203 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1204 *
1205 * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1206 * DEFAULT_RTC_INT_FREQ.
1207 *
1208 * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1209 *
1210 * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1211 * if it's higher.
e9e2cdb4
TG
1212 */
1213#include <linux/mc146818rtc.h>
1214#include <linux/rtc.h>
1215
1216#define DEFAULT_RTC_INT_FREQ 64
1217#define DEFAULT_RTC_SHIFT 6
1218#define RTC_NUM_INTS 1
1219
1220static unsigned long hpet_rtc_flags;
7e2a31da 1221static int hpet_prev_update_sec;
e9e2cdb4
TG
1222static struct rtc_time hpet_alarm_time;
1223static unsigned long hpet_pie_count;
ff08f76d 1224static u32 hpet_t1_cmp;
5946fa3d
JB
1225static u32 hpet_default_delta;
1226static u32 hpet_pie_delta;
e9e2cdb4
TG
1227static unsigned long hpet_pie_limit;
1228
1bdbdaac
BW
1229static rtc_irq_handler irq_handler;
1230
ff08f76d 1231/*
dfe36b57 1232 * Check that the HPET counter c1 is ahead of c2
ff08f76d
PE
1233 */
1234static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1235{
1236 return (s32)(c2 - c1) < 0;
1237}
1238
1bdbdaac
BW
1239/*
1240 * Registers a IRQ handler.
1241 */
1242int hpet_register_irq_handler(rtc_irq_handler handler)
1243{
1244 if (!is_hpet_enabled())
1245 return -ENODEV;
1246 if (irq_handler)
1247 return -EBUSY;
1248
1249 irq_handler = handler;
1250
1251 return 0;
1252}
1253EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1254
1255/*
1256 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1257 * and does cleanup.
1258 */
1259void hpet_unregister_irq_handler(rtc_irq_handler handler)
1260{
1261 if (!is_hpet_enabled())
1262 return;
1263
1264 irq_handler = NULL;
1265 hpet_rtc_flags = 0;
1266}
1267EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1268
e9e2cdb4 1269/*
d415c754
IM
1270 * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1271 * is not supported by all HPET implementations for channel 1.
e9e2cdb4
TG
1272 *
1273 * hpet_rtc_timer_init() is called when the rtc is initialized.
1274 */
1275int hpet_rtc_timer_init(void)
1276{
5946fa3d
JB
1277 unsigned int cfg, cnt, delta;
1278 unsigned long flags;
e9e2cdb4
TG
1279
1280 if (!is_hpet_enabled())
1281 return 0;
1282
1283 if (!hpet_default_delta) {
e44252f4 1284 struct clock_event_device *evt = &hpet_base.channels[0].evt;
e9e2cdb4
TG
1285 uint64_t clc;
1286
18e84a2d
TG
1287 clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1288 clc >>= evt->shift + DEFAULT_RTC_SHIFT;
5946fa3d 1289 hpet_default_delta = clc;
e9e2cdb4
TG
1290 }
1291
1292 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1293 delta = hpet_default_delta;
1294 else
1295 delta = hpet_pie_delta;
1296
1297 local_irq_save(flags);
1298
1299 cnt = delta + hpet_readl(HPET_COUNTER);
1300 hpet_writel(cnt, HPET_T1_CMP);
1301 hpet_t1_cmp = cnt;
1302
1303 cfg = hpet_readl(HPET_T1_CFG);
1304 cfg &= ~HPET_TN_PERIODIC;
1305 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1306 hpet_writel(cfg, HPET_T1_CFG);
1307
1308 local_irq_restore(flags);
1309
1310 return 1;
1311}
1bdbdaac 1312EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
e9e2cdb4 1313
2ded6e6a
ML
1314static void hpet_disable_rtc_channel(void)
1315{
3d45ac4b 1316 u32 cfg = hpet_readl(HPET_T1_CFG);
0b5c597d 1317
2ded6e6a
ML
1318 cfg &= ~HPET_TN_ENABLE;
1319 hpet_writel(cfg, HPET_T1_CFG);
1320}
1321
e9e2cdb4
TG
1322/*
1323 * The functions below are called from rtc driver.
1324 * Return 0 if HPET is not being used.
1325 * Otherwise do the necessary changes and return 1.
1326 */
1327int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1328{
1329 if (!is_hpet_enabled())
1330 return 0;
1331
1332 hpet_rtc_flags &= ~bit_mask;
2ded6e6a
ML
1333 if (unlikely(!hpet_rtc_flags))
1334 hpet_disable_rtc_channel();
1335
e9e2cdb4
TG
1336 return 1;
1337}
1bdbdaac 1338EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
e9e2cdb4
TG
1339
1340int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1341{
1342 unsigned long oldbits = hpet_rtc_flags;
1343
1344 if (!is_hpet_enabled())
1345 return 0;
1346
1347 hpet_rtc_flags |= bit_mask;
1348
7e2a31da
DB
1349 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1350 hpet_prev_update_sec = -1;
1351
e9e2cdb4
TG
1352 if (!oldbits)
1353 hpet_rtc_timer_init();
1354
1355 return 1;
1356}
1bdbdaac 1357EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
e9e2cdb4 1358
0b5c597d 1359int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
e9e2cdb4
TG
1360{
1361 if (!is_hpet_enabled())
1362 return 0;
1363
1364 hpet_alarm_time.tm_hour = hrs;
1365 hpet_alarm_time.tm_min = min;
1366 hpet_alarm_time.tm_sec = sec;
1367
1368 return 1;
1369}
1bdbdaac 1370EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
e9e2cdb4
TG
1371
1372int hpet_set_periodic_freq(unsigned long freq)
1373{
1374 uint64_t clc;
1375
1376 if (!is_hpet_enabled())
1377 return 0;
1378
0b5c597d 1379 if (freq <= DEFAULT_RTC_INT_FREQ) {
e9e2cdb4 1380 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
0b5c597d 1381 } else {
e44252f4 1382 struct clock_event_device *evt = &hpet_base.channels[0].evt;
18e84a2d
TG
1383
1384 clc = (uint64_t) evt->mult * NSEC_PER_SEC;
e9e2cdb4 1385 do_div(clc, freq);
18e84a2d 1386 clc >>= evt->shift;
5946fa3d 1387 hpet_pie_delta = clc;
b4a5e8a1 1388 hpet_pie_limit = 0;
e9e2cdb4 1389 }
0b5c597d 1390
e9e2cdb4
TG
1391 return 1;
1392}
1bdbdaac 1393EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
e9e2cdb4
TG
1394
1395int hpet_rtc_dropped_irq(void)
1396{
1397 return is_hpet_enabled();
1398}
1bdbdaac 1399EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
e9e2cdb4
TG
1400
1401static void hpet_rtc_timer_reinit(void)
1402{
2ded6e6a 1403 unsigned int delta;
e9e2cdb4
TG
1404 int lost_ints = -1;
1405
2ded6e6a
ML
1406 if (unlikely(!hpet_rtc_flags))
1407 hpet_disable_rtc_channel();
e9e2cdb4
TG
1408
1409 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1410 delta = hpet_default_delta;
1411 else
1412 delta = hpet_pie_delta;
1413
1414 /*
1415 * Increment the comparator value until we are ahead of the
1416 * current count.
1417 */
1418 do {
1419 hpet_t1_cmp += delta;
1420 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1421 lost_ints++;
ff08f76d 1422 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
e9e2cdb4
TG
1423
1424 if (lost_ints) {
1425 if (hpet_rtc_flags & RTC_PIE)
1426 hpet_pie_count += lost_ints;
1427 if (printk_ratelimit())
46e5b64f 1428 pr_warn("Lost %d RTC interrupts\n", lost_ints);
e9e2cdb4
TG
1429 }
1430}
1431
1432irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1433{
1434 struct rtc_time curr_time;
1435 unsigned long rtc_int_flag = 0;
1436
1437 hpet_rtc_timer_reinit();
1bdbdaac 1438 memset(&curr_time, 0, sizeof(struct rtc_time));
e9e2cdb4 1439
0dd8d6cb 1440 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) {
120931db 1441 if (unlikely(mc146818_get_time(&curr_time, 10) < 0)) {
0dd8d6cb
MJ
1442 pr_err_ratelimited("unable to read current time from RTC\n");
1443 return IRQ_HANDLED;
1444 }
1445 }
e9e2cdb4
TG
1446
1447 if (hpet_rtc_flags & RTC_UIE &&
1448 curr_time.tm_sec != hpet_prev_update_sec) {
7e2a31da
DB
1449 if (hpet_prev_update_sec >= 0)
1450 rtc_int_flag = RTC_UF;
e9e2cdb4
TG
1451 hpet_prev_update_sec = curr_time.tm_sec;
1452 }
1453
0b5c597d 1454 if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
e9e2cdb4
TG
1455 rtc_int_flag |= RTC_PF;
1456 hpet_pie_count = 0;
1457 }
1458
8ee291f8 1459 if (hpet_rtc_flags & RTC_AIE &&
e9e2cdb4
TG
1460 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1461 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1462 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
0b5c597d 1463 rtc_int_flag |= RTC_AF;
e9e2cdb4
TG
1464
1465 if (rtc_int_flag) {
1466 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1bdbdaac
BW
1467 if (irq_handler)
1468 irq_handler(rtc_int_flag, dev_id);
e9e2cdb4
TG
1469 }
1470 return IRQ_HANDLED;
1471}
1bdbdaac 1472EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
e9e2cdb4 1473#endif