x86: hpet: print HPET registers during setup (if hpet=verbose is used)
[linux-2.6-block.git] / arch / x86 / kernel / hpet.c
CommitLineData
5d0cf410 1#include <linux/clocksource.h>
e9e2cdb4 2#include <linux/clockchips.h>
4588c1f0
IM
3#include <linux/interrupt.h>
4#include <linux/sysdev.h>
28769149 5#include <linux/delay.h>
5d0cf410 6#include <linux/errno.h>
7#include <linux/hpet.h>
8#include <linux/init.h>
58ac1e76 9#include <linux/cpu.h>
4588c1f0
IM
10#include <linux/pm.h>
11#include <linux/io.h>
5d0cf410 12
28769149 13#include <asm/fixmap.h>
06a24dec 14#include <asm/i8253.h>
4588c1f0 15#include <asm/hpet.h>
5d0cf410 16
4588c1f0
IM
17#define HPET_MASK CLOCKSOURCE_MASK(32)
18#define HPET_SHIFT 22
5d0cf410 19
b10db7f0
PM
20/* FSEC = 10^-15
21 NSEC = 10^-9 */
4588c1f0 22#define FSEC_PER_NSEC 1000000L
5d0cf410 23
26afe5f2 24#define HPET_DEV_USED_BIT 2
25#define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26#define HPET_DEV_VALID 0x8
27#define HPET_DEV_FSB_CAP 0x1000
28#define HPET_DEV_PERI_CAP 0x2000
29
30#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
e9e2cdb4
TG
32/*
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
34 */
4588c1f0 35unsigned long hpet_address;
e951e4af 36#ifdef CONFIG_PCI_MSI
3b71e9e3 37static unsigned long hpet_num_timers;
e951e4af 38#endif
4588c1f0 39static void __iomem *hpet_virt_address;
e9e2cdb4 40
58ac1e76 41struct hpet_dev {
4588c1f0
IM
42 struct clock_event_device evt;
43 unsigned int num;
44 int cpu;
45 unsigned int irq;
46 unsigned int flags;
47 char name[10];
58ac1e76 48};
49
31c435d7 50unsigned long hpet_readl(unsigned long a)
e9e2cdb4
TG
51{
52 return readl(hpet_virt_address + a);
53}
54
55static inline void hpet_writel(unsigned long d, unsigned long a)
56{
57 writel(d, hpet_virt_address + a);
58}
59
28769149 60#ifdef CONFIG_X86_64
28769149 61#include <asm/pgtable.h>
2387ce57 62#endif
28769149 63
06a24dec
TG
64static inline void hpet_set_mapping(void)
65{
66 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
2387ce57
YL
67#ifdef CONFIG_X86_64
68 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
69#endif
06a24dec
TG
70}
71
72static inline void hpet_clear_mapping(void)
73{
74 iounmap(hpet_virt_address);
75 hpet_virt_address = NULL;
76}
77
e9e2cdb4
TG
78/*
79 * HPET command line enable / disable
80 */
81static int boot_hpet_disable;
b17530bd 82int hpet_force_user;
b98103a5 83static int hpet_verbose;
e9e2cdb4 84
4588c1f0 85static int __init hpet_setup(char *str)
e9e2cdb4
TG
86{
87 if (str) {
88 if (!strncmp("disable", str, 7))
89 boot_hpet_disable = 1;
b17530bd
TG
90 if (!strncmp("force", str, 5))
91 hpet_force_user = 1;
b98103a5
AH
92 if (!strncmp("verbose", str, 7))
93 hpet_verbose = 1;
e9e2cdb4
TG
94 }
95 return 1;
96}
97__setup("hpet=", hpet_setup);
98
28769149
TG
99static int __init disable_hpet(char *str)
100{
101 boot_hpet_disable = 1;
102 return 1;
103}
104__setup("nohpet", disable_hpet);
105
e9e2cdb4
TG
106static inline int is_hpet_capable(void)
107{
4588c1f0 108 return !boot_hpet_disable && hpet_address;
e9e2cdb4
TG
109}
110
111/*
112 * HPET timer interrupt enable / disable
113 */
114static int hpet_legacy_int_enabled;
115
116/**
117 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
118 */
119int is_hpet_enabled(void)
120{
121 return is_hpet_capable() && hpet_legacy_int_enabled;
122}
1bdbdaac 123EXPORT_SYMBOL_GPL(is_hpet_enabled);
e9e2cdb4 124
b98103a5
AH
125static void _hpet_print_config(const char *function, int line)
126{
127 u32 i, timers, l, h;
128 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
129 l = hpet_readl(HPET_ID);
130 h = hpet_readl(HPET_PERIOD);
131 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
132 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
133 l = hpet_readl(HPET_CFG);
134 h = hpet_readl(HPET_STATUS);
135 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
136 l = hpet_readl(HPET_COUNTER);
137 h = hpet_readl(HPET_COUNTER+4);
138 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
139
140 for (i = 0; i < timers; i++) {
141 l = hpet_readl(HPET_Tn_CFG(i));
142 h = hpet_readl(HPET_Tn_CFG(i)+4);
143 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
144 i, l, h);
145 l = hpet_readl(HPET_Tn_CMP(i));
146 h = hpet_readl(HPET_Tn_CMP(i)+4);
147 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
148 i, l, h);
149 l = hpet_readl(HPET_Tn_ROUTE(i));
150 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
151 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
152 i, l, h);
153 }
154}
155
156#define hpet_print_config() \
157do { \
158 if (hpet_verbose) \
159 _hpet_print_config(__FUNCTION__, __LINE__); \
160} while (0)
161
e9e2cdb4
TG
162/*
163 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
164 * timer 0 and timer 1 in case of RTC emulation.
165 */
166#ifdef CONFIG_HPET
f0ed4e69 167
5f79f2f2 168static void hpet_reserve_msi_timers(struct hpet_data *hd);
f0ed4e69 169
e9e2cdb4
TG
170static void hpet_reserve_platform_timers(unsigned long id)
171{
172 struct hpet __iomem *hpet = hpet_virt_address;
37a47db8
BR
173 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
174 unsigned int nrtimers, i;
e9e2cdb4
TG
175 struct hpet_data hd;
176
177 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
178
4588c1f0
IM
179 memset(&hd, 0, sizeof(hd));
180 hd.hd_phys_address = hpet_address;
181 hd.hd_address = hpet;
182 hd.hd_nirqs = nrtimers;
e9e2cdb4
TG
183 hpet_reserve_timer(&hd, 0);
184
185#ifdef CONFIG_HPET_EMULATE_RTC
186 hpet_reserve_timer(&hd, 1);
187#endif
5761d64b 188
64a76f66
DB
189 /*
190 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
191 * is wrong for i8259!) not the output IRQ. Many BIOS writers
192 * don't bother configuring *any* comparator interrupts.
193 */
e9e2cdb4
TG
194 hd.hd_irq[0] = HPET_LEGACY_8254;
195 hd.hd_irq[1] = HPET_LEGACY_RTC;
196
fc3fbc45 197 for (i = 2; i < nrtimers; timer++, i++) {
4588c1f0
IM
198 hd.hd_irq[i] = (readl(&timer->hpet_config) &
199 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
fc3fbc45 200 }
5761d64b 201
f0ed4e69 202 hpet_reserve_msi_timers(&hd);
26afe5f2 203
e9e2cdb4 204 hpet_alloc(&hd);
5761d64b 205
e9e2cdb4
TG
206}
207#else
208static void hpet_reserve_platform_timers(unsigned long id) { }
209#endif
210
211/*
212 * Common hpet info
213 */
214static unsigned long hpet_period;
215
610bf2f1 216static void hpet_legacy_set_mode(enum clock_event_mode mode,
e9e2cdb4 217 struct clock_event_device *evt);
610bf2f1 218static int hpet_legacy_next_event(unsigned long delta,
e9e2cdb4
TG
219 struct clock_event_device *evt);
220
221/*
222 * The hpet clock event device
223 */
224static struct clock_event_device hpet_clockevent = {
225 .name = "hpet",
226 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
610bf2f1
VP
227 .set_mode = hpet_legacy_set_mode,
228 .set_next_event = hpet_legacy_next_event,
e9e2cdb4
TG
229 .shift = 32,
230 .irq = 0,
59c69f2a 231 .rating = 50,
e9e2cdb4
TG
232};
233
234static void hpet_start_counter(void)
235{
236 unsigned long cfg = hpet_readl(HPET_CFG);
237
238 cfg &= ~HPET_CFG_ENABLE;
239 hpet_writel(cfg, HPET_CFG);
240 hpet_writel(0, HPET_COUNTER);
241 hpet_writel(0, HPET_COUNTER + 4);
242 cfg |= HPET_CFG_ENABLE;
243 hpet_writel(cfg, HPET_CFG);
244}
245
59c69f2a
VP
246static void hpet_resume_device(void)
247{
bfe0c1cc 248 force_hpet_resume();
59c69f2a
VP
249}
250
251static void hpet_restart_counter(void)
252{
253 hpet_resume_device();
254 hpet_start_counter();
255}
256
610bf2f1 257static void hpet_enable_legacy_int(void)
e9e2cdb4
TG
258{
259 unsigned long cfg = hpet_readl(HPET_CFG);
260
261 cfg |= HPET_CFG_LEGACY;
262 hpet_writel(cfg, HPET_CFG);
263 hpet_legacy_int_enabled = 1;
264}
265
610bf2f1
VP
266static void hpet_legacy_clockevent_register(void)
267{
610bf2f1
VP
268 /* Start HPET legacy interrupts */
269 hpet_enable_legacy_int();
270
271 /*
6fd592da
CM
272 * The mult factor is defined as (include/linux/clockchips.h)
273 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
274 * hpet_period is in units of femtoseconds (per cycle), so
275 * mult/2^shift = cyc/ns = 10^6/hpet_period
276 * mult = (10^6 * 2^shift)/hpet_period
277 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
610bf2f1 278 */
6fd592da
CM
279 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
280 hpet_period, hpet_clockevent.shift);
610bf2f1
VP
281 /* Calculate the min / max delta */
282 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
283 &hpet_clockevent);
7cfb0435
TG
284 /* 5 usec minimum reprogramming delta. */
285 hpet_clockevent.min_delta_ns = 5000;
610bf2f1
VP
286
287 /*
288 * Start hpet with the boot cpu mask and make it
289 * global after the IO_APIC has been initialized.
290 */
320ab2b0 291 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
610bf2f1
VP
292 clockevents_register_device(&hpet_clockevent);
293 global_clock_event = &hpet_clockevent;
294 printk(KERN_DEBUG "hpet clockevent registered\n");
295}
296
26afe5f2 297static int hpet_setup_msi_irq(unsigned int irq);
298
b40d575b 299static void hpet_set_mode(enum clock_event_mode mode,
300 struct clock_event_device *evt, int timer)
e9e2cdb4
TG
301{
302 unsigned long cfg, cmp, now;
303 uint64_t delta;
304
4588c1f0 305 switch (mode) {
e9e2cdb4 306 case CLOCK_EVT_MODE_PERIODIC:
b40d575b 307 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
308 delta >>= evt->shift;
e9e2cdb4
TG
309 now = hpet_readl(HPET_COUNTER);
310 cmp = now + (unsigned long) delta;
b40d575b 311 cfg = hpet_readl(HPET_Tn_CFG(timer));
b13e2464 312 /* Make sure we use edge triggered interrupts */
313 cfg &= ~HPET_TN_LEVEL;
e9e2cdb4
TG
314 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
315 HPET_TN_SETVAL | HPET_TN_32BIT;
b40d575b 316 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4
TG
317 /*
318 * The first write after writing TN_SETVAL to the
319 * config register sets the counter value, the second
320 * write sets the period.
321 */
b40d575b 322 hpet_writel(cmp, HPET_Tn_CMP(timer));
e9e2cdb4 323 udelay(1);
b40d575b 324 hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
b98103a5 325 hpet_print_config();
e9e2cdb4
TG
326 break;
327
328 case CLOCK_EVT_MODE_ONESHOT:
b40d575b 329 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4
TG
330 cfg &= ~HPET_TN_PERIODIC;
331 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
b40d575b 332 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4
TG
333 break;
334
335 case CLOCK_EVT_MODE_UNUSED:
336 case CLOCK_EVT_MODE_SHUTDOWN:
b40d575b 337 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4 338 cfg &= ~HPET_TN_ENABLE;
b40d575b 339 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4 340 break;
18de5bc4
TG
341
342 case CLOCK_EVT_MODE_RESUME:
26afe5f2 343 if (timer == 0) {
344 hpet_enable_legacy_int();
345 } else {
346 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
347 hpet_setup_msi_irq(hdev->irq);
348 disable_irq(hdev->irq);
0de26520 349 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
26afe5f2 350 enable_irq(hdev->irq);
351 }
b98103a5 352 hpet_print_config();
18de5bc4 353 break;
e9e2cdb4
TG
354 }
355}
356
b40d575b 357static int hpet_next_event(unsigned long delta,
358 struct clock_event_device *evt, int timer)
e9e2cdb4 359{
f7676254 360 u32 cnt;
e9e2cdb4
TG
361
362 cnt = hpet_readl(HPET_COUNTER);
f7676254 363 cnt += (u32) delta;
b40d575b 364 hpet_writel(cnt, HPET_Tn_CMP(timer));
e9e2cdb4 365
72d43d9b
TG
366 /*
367 * We need to read back the CMP register to make sure that
368 * what we wrote hit the chip before we compare it to the
369 * counter.
370 */
89d77a1e 371 WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
72d43d9b 372
f7676254 373 return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
e9e2cdb4
TG
374}
375
b40d575b 376static void hpet_legacy_set_mode(enum clock_event_mode mode,
377 struct clock_event_device *evt)
378{
379 hpet_set_mode(mode, evt, 0);
380}
381
382static int hpet_legacy_next_event(unsigned long delta,
383 struct clock_event_device *evt)
384{
385 return hpet_next_event(delta, evt, 0);
386}
387
58ac1e76 388/*
389 * HPET MSI Support
390 */
26afe5f2 391#ifdef CONFIG_PCI_MSI
5f79f2f2
VP
392
393static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
394static struct hpet_dev *hpet_devs;
395
58ac1e76 396void hpet_msi_unmask(unsigned int irq)
397{
398 struct hpet_dev *hdev = get_irq_data(irq);
399 unsigned long cfg;
400
401 /* unmask it */
402 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
403 cfg |= HPET_TN_FSB;
404 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
405}
406
407void hpet_msi_mask(unsigned int irq)
408{
409 unsigned long cfg;
410 struct hpet_dev *hdev = get_irq_data(irq);
411
412 /* mask it */
413 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
414 cfg &= ~HPET_TN_FSB;
415 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
416}
417
418void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
419{
420 struct hpet_dev *hdev = get_irq_data(irq);
421
422 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
423 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
424}
425
426void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
427{
428 struct hpet_dev *hdev = get_irq_data(irq);
429
430 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
431 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
432 msg->address_hi = 0;
433}
434
26afe5f2 435static void hpet_msi_set_mode(enum clock_event_mode mode,
436 struct clock_event_device *evt)
437{
438 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
439 hpet_set_mode(mode, evt, hdev->num);
440}
441
442static int hpet_msi_next_event(unsigned long delta,
443 struct clock_event_device *evt)
444{
445 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
446 return hpet_next_event(delta, evt, hdev->num);
447}
448
449static int hpet_setup_msi_irq(unsigned int irq)
450{
451 if (arch_setup_hpet_msi(irq)) {
452 destroy_irq(irq);
453 return -EINVAL;
454 }
455 return 0;
456}
457
458static int hpet_assign_irq(struct hpet_dev *dev)
459{
460 unsigned int irq;
461
462 irq = create_irq();
463 if (!irq)
464 return -EINVAL;
465
466 set_irq_data(irq, dev);
467
468 if (hpet_setup_msi_irq(irq))
469 return -EINVAL;
470
471 dev->irq = irq;
472 return 0;
473}
474
475static irqreturn_t hpet_interrupt_handler(int irq, void *data)
476{
477 struct hpet_dev *dev = (struct hpet_dev *)data;
478 struct clock_event_device *hevt = &dev->evt;
479
480 if (!hevt->event_handler) {
481 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
482 dev->num);
483 return IRQ_HANDLED;
484 }
485
486 hevt->event_handler(hevt);
487 return IRQ_HANDLED;
488}
489
490static int hpet_setup_irq(struct hpet_dev *dev)
491{
492
493 if (request_irq(dev->irq, hpet_interrupt_handler,
5ceb1a04 494 IRQF_DISABLED|IRQF_NOBALANCING, dev->name, dev))
26afe5f2 495 return -1;
496
497 disable_irq(dev->irq);
0de26520 498 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
26afe5f2 499 enable_irq(dev->irq);
500
c81bba49
YL
501 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
502 dev->name, dev->irq);
503
26afe5f2 504 return 0;
505}
506
507/* This should be called in specific @cpu */
508static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
509{
510 struct clock_event_device *evt = &hdev->evt;
511 uint64_t hpet_freq;
512
513 WARN_ON(cpu != smp_processor_id());
514 if (!(hdev->flags & HPET_DEV_VALID))
515 return;
516
517 if (hpet_setup_msi_irq(hdev->irq))
518 return;
519
520 hdev->cpu = cpu;
521 per_cpu(cpu_hpet_dev, cpu) = hdev;
522 evt->name = hdev->name;
523 hpet_setup_irq(hdev);
524 evt->irq = hdev->irq;
525
526 evt->rating = 110;
527 evt->features = CLOCK_EVT_FEAT_ONESHOT;
528 if (hdev->flags & HPET_DEV_PERI_CAP)
529 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
530
531 evt->set_mode = hpet_msi_set_mode;
532 evt->set_next_event = hpet_msi_next_event;
533 evt->shift = 32;
534
535 /*
536 * The period is a femto seconds value. We need to calculate the
537 * scaled math multiplication factor for nanosecond to hpet tick
538 * conversion.
539 */
540 hpet_freq = 1000000000000000ULL;
541 do_div(hpet_freq, hpet_period);
542 evt->mult = div_sc((unsigned long) hpet_freq,
543 NSEC_PER_SEC, evt->shift);
544 /* Calculate the max delta */
545 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
546 /* 5 usec minimum reprogramming delta. */
547 evt->min_delta_ns = 5000;
548
320ab2b0 549 evt->cpumask = cpumask_of(hdev->cpu);
26afe5f2 550 clockevents_register_device(evt);
551}
552
553#ifdef CONFIG_HPET
554/* Reserve at least one timer for userspace (/dev/hpet) */
555#define RESERVE_TIMERS 1
556#else
557#define RESERVE_TIMERS 0
558#endif
5f79f2f2
VP
559
560static void hpet_msi_capability_lookup(unsigned int start_timer)
26afe5f2 561{
562 unsigned int id;
563 unsigned int num_timers;
564 unsigned int num_timers_used = 0;
565 int i;
566
567 id = hpet_readl(HPET_ID);
568
569 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
570 num_timers++; /* Value read out starts from 0 */
b98103a5 571 hpet_print_config();
26afe5f2 572
573 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
574 if (!hpet_devs)
575 return;
576
577 hpet_num_timers = num_timers;
578
579 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
580 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
581 unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
582
583 /* Only consider HPET timer with MSI support */
584 if (!(cfg & HPET_TN_FSB_CAP))
585 continue;
586
587 hdev->flags = 0;
588 if (cfg & HPET_TN_PERIODIC_CAP)
589 hdev->flags |= HPET_DEV_PERI_CAP;
590 hdev->num = i;
591
592 sprintf(hdev->name, "hpet%d", i);
593 if (hpet_assign_irq(hdev))
594 continue;
595
596 hdev->flags |= HPET_DEV_FSB_CAP;
597 hdev->flags |= HPET_DEV_VALID;
598 num_timers_used++;
599 if (num_timers_used == num_possible_cpus())
600 break;
601 }
602
603 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
604 num_timers, num_timers_used);
605}
606
5f79f2f2
VP
607#ifdef CONFIG_HPET
608static void hpet_reserve_msi_timers(struct hpet_data *hd)
609{
610 int i;
611
612 if (!hpet_devs)
613 return;
614
615 for (i = 0; i < hpet_num_timers; i++) {
616 struct hpet_dev *hdev = &hpet_devs[i];
617
618 if (!(hdev->flags & HPET_DEV_VALID))
619 continue;
620
621 hd->hd_irq[hdev->num] = hdev->irq;
622 hpet_reserve_timer(hd, hdev->num);
623 }
624}
625#endif
626
26afe5f2 627static struct hpet_dev *hpet_get_unused_timer(void)
628{
629 int i;
630
631 if (!hpet_devs)
632 return NULL;
633
634 for (i = 0; i < hpet_num_timers; i++) {
635 struct hpet_dev *hdev = &hpet_devs[i];
636
637 if (!(hdev->flags & HPET_DEV_VALID))
638 continue;
639 if (test_and_set_bit(HPET_DEV_USED_BIT,
640 (unsigned long *)&hdev->flags))
641 continue;
642 return hdev;
643 }
644 return NULL;
645}
646
647struct hpet_work_struct {
648 struct delayed_work work;
649 struct completion complete;
650};
651
652static void hpet_work(struct work_struct *w)
653{
654 struct hpet_dev *hdev;
655 int cpu = smp_processor_id();
656 struct hpet_work_struct *hpet_work;
657
658 hpet_work = container_of(w, struct hpet_work_struct, work.work);
659
660 hdev = hpet_get_unused_timer();
661 if (hdev)
662 init_one_hpet_msi_clockevent(hdev, cpu);
663
664 complete(&hpet_work->complete);
665}
666
667static int hpet_cpuhp_notify(struct notifier_block *n,
668 unsigned long action, void *hcpu)
669{
670 unsigned long cpu = (unsigned long)hcpu;
671 struct hpet_work_struct work;
672 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
673
674 switch (action & 0xf) {
675 case CPU_ONLINE:
336f6c32 676 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
26afe5f2 677 init_completion(&work.complete);
678 /* FIXME: add schedule_work_on() */
679 schedule_delayed_work_on(cpu, &work.work, 0);
680 wait_for_completion(&work.complete);
336f6c32 681 destroy_timer_on_stack(&work.work.timer);
26afe5f2 682 break;
683 case CPU_DEAD:
684 if (hdev) {
685 free_irq(hdev->irq, hdev);
686 hdev->flags &= ~HPET_DEV_USED;
687 per_cpu(cpu_hpet_dev, cpu) = NULL;
688 }
689 break;
690 }
691 return NOTIFY_OK;
692}
693#else
694
ba374c9b
SN
695static int hpet_setup_msi_irq(unsigned int irq)
696{
697 return 0;
698}
5f79f2f2
VP
699static void hpet_msi_capability_lookup(unsigned int start_timer)
700{
701 return;
702}
703
704#ifdef CONFIG_HPET
705static void hpet_reserve_msi_timers(struct hpet_data *hd)
26afe5f2 706{
707 return;
708}
5f79f2f2 709#endif
26afe5f2 710
711static int hpet_cpuhp_notify(struct notifier_block *n,
712 unsigned long action, void *hcpu)
713{
714 return NOTIFY_OK;
715}
716
717#endif
718
6bb74df4 719/*
720 * Clock source related code
721 */
722static cycle_t read_hpet(void)
723{
724 return (cycle_t)hpet_readl(HPET_COUNTER);
725}
726
28769149
TG
727#ifdef CONFIG_X86_64
728static cycle_t __vsyscall_fn vread_hpet(void)
729{
730 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
731}
732#endif
733
6bb74df4 734static struct clocksource clocksource_hpet = {
735 .name = "hpet",
736 .rating = 250,
737 .read = read_hpet,
738 .mask = HPET_MASK,
739 .shift = HPET_SHIFT,
740 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
59c69f2a 741 .resume = hpet_restart_counter,
28769149
TG
742#ifdef CONFIG_X86_64
743 .vread = vread_hpet,
744#endif
6bb74df4 745};
746
610bf2f1 747static int hpet_clocksource_register(void)
e9e2cdb4 748{
6fd592da 749 u64 start, now;
075bcd1f 750 cycle_t t1;
e9e2cdb4 751
e9e2cdb4
TG
752 /* Start the counter */
753 hpet_start_counter();
754
075bcd1f
TG
755 /* Verify whether hpet counter works */
756 t1 = read_hpet();
757 rdtscll(start);
758
759 /*
760 * We don't know the TSC frequency yet, but waiting for
761 * 200000 TSC cycles is safe:
762 * 4 GHz == 50us
763 * 1 GHz == 200us
764 */
765 do {
766 rep_nop();
767 rdtscll(now);
768 } while ((now - start) < 200000UL);
769
770 if (t1 == read_hpet()) {
771 printk(KERN_WARNING
772 "HPET counter not counting. HPET disabled\n");
610bf2f1 773 return -ENODEV;
075bcd1f
TG
774 }
775
6fd592da
CM
776 /*
777 * The definition of mult is (include/linux/clocksource.h)
778 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
779 * so we first need to convert hpet_period to ns/cyc units:
780 * mult/2^shift = ns/cyc = hpet_period/10^6
781 * mult = (hpet_period * 2^shift)/10^6
782 * mult = (hpet_period << shift)/FSEC_PER_NSEC
6bb74df4 783 */
6fd592da 784 clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
6bb74df4 785
786 clocksource_register(&clocksource_hpet);
787
610bf2f1
VP
788 return 0;
789}
790
b02a7f22
PM
791/**
792 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
610bf2f1
VP
793 */
794int __init hpet_enable(void)
795{
796 unsigned long id;
a6825f1c 797 int i;
610bf2f1
VP
798
799 if (!is_hpet_capable())
800 return 0;
801
802 hpet_set_mapping();
803
804 /*
805 * Read the period and check for a sane value:
806 */
807 hpet_period = hpet_readl(HPET_PERIOD);
a6825f1c
TG
808
809 /*
810 * AMD SB700 based systems with spread spectrum enabled use a
811 * SMM based HPET emulation to provide proper frequency
812 * setting. The SMM code is initialized with the first HPET
813 * register access and takes some time to complete. During
814 * this time the config register reads 0xffffffff. We check
815 * for max. 1000 loops whether the config register reads a non
816 * 0xffffffff value to make sure that HPET is up and running
817 * before we go further. A counting loop is safe, as the HPET
818 * access takes thousands of CPU cycles. On non SB700 based
819 * machines this check is only done once and has no side
820 * effects.
821 */
822 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
823 if (i == 1000) {
824 printk(KERN_WARNING
825 "HPET config register value = 0xFFFFFFFF. "
826 "Disabling HPET\n");
827 goto out_nohpet;
828 }
829 }
830
610bf2f1
VP
831 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
832 goto out_nohpet;
833
834 /*
835 * Read the HPET ID register to retrieve the IRQ routing
836 * information and the number of channels
837 */
838 id = hpet_readl(HPET_ID);
b98103a5 839 hpet_print_config();
610bf2f1
VP
840
841#ifdef CONFIG_HPET_EMULATE_RTC
842 /*
843 * The legacy routing mode needs at least two channels, tick timer
844 * and the rtc emulation channel.
845 */
846 if (!(id & HPET_ID_NUMBER))
847 goto out_nohpet;
848#endif
849
850 if (hpet_clocksource_register())
851 goto out_nohpet;
852
e9e2cdb4 853 if (id & HPET_ID_LEGSUP) {
610bf2f1 854 hpet_legacy_clockevent_register();
26afe5f2 855 hpet_msi_capability_lookup(2);
e9e2cdb4
TG
856 return 1;
857 }
26afe5f2 858 hpet_msi_capability_lookup(0);
e9e2cdb4 859 return 0;
5d0cf410 860
e9e2cdb4 861out_nohpet:
06a24dec 862 hpet_clear_mapping();
bacbe999 863 hpet_address = 0;
e9e2cdb4
TG
864 return 0;
865}
866
28769149
TG
867/*
868 * Needs to be late, as the reserve_timer code calls kalloc !
869 *
870 * Not a problem on i386 as hpet_enable is called from late_time_init,
871 * but on x86_64 it is necessary !
872 */
873static __init int hpet_late_init(void)
874{
26afe5f2 875 int cpu;
876
59c69f2a 877 if (boot_hpet_disable)
28769149
TG
878 return -ENODEV;
879
59c69f2a
VP
880 if (!hpet_address) {
881 if (!force_hpet_address)
882 return -ENODEV;
883
884 hpet_address = force_hpet_address;
885 hpet_enable();
59c69f2a
VP
886 }
887
39c04b55
JF
888 if (!hpet_virt_address)
889 return -ENODEV;
890
28769149 891 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
b98103a5 892 hpet_print_config();
59c69f2a 893
26afe5f2 894 for_each_online_cpu(cpu) {
895 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
896 }
897
898 /* This notifier should be called after workqueue is ready */
899 hotcpu_notifier(hpet_cpuhp_notify, -20);
900
28769149
TG
901 return 0;
902}
903fs_initcall(hpet_late_init);
904
c86c7fbc
OH
905void hpet_disable(void)
906{
907 if (is_hpet_capable()) {
908 unsigned long cfg = hpet_readl(HPET_CFG);
909
910 if (hpet_legacy_int_enabled) {
911 cfg &= ~HPET_CFG_LEGACY;
912 hpet_legacy_int_enabled = 0;
913 }
914 cfg &= ~HPET_CFG_ENABLE;
915 hpet_writel(cfg, HPET_CFG);
916 }
917}
918
e9e2cdb4
TG
919#ifdef CONFIG_HPET_EMULATE_RTC
920
921/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
922 * is enabled, we support RTC interrupt functionality in software.
923 * RTC has 3 kinds of interrupts:
924 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
925 * is updated
926 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
927 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
928 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
929 * (1) and (2) above are implemented using polling at a frequency of
930 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
931 * overhead. (DEFAULT_RTC_INT_FREQ)
932 * For (3), we use interrupts at 64Hz or user specified periodic
933 * frequency, whichever is higher.
934 */
935#include <linux/mc146818rtc.h>
936#include <linux/rtc.h>
1bdbdaac 937#include <asm/rtc.h>
e9e2cdb4
TG
938
939#define DEFAULT_RTC_INT_FREQ 64
940#define DEFAULT_RTC_SHIFT 6
941#define RTC_NUM_INTS 1
942
943static unsigned long hpet_rtc_flags;
7e2a31da 944static int hpet_prev_update_sec;
e9e2cdb4
TG
945static struct rtc_time hpet_alarm_time;
946static unsigned long hpet_pie_count;
ff08f76d 947static u32 hpet_t1_cmp;
e9e2cdb4
TG
948static unsigned long hpet_default_delta;
949static unsigned long hpet_pie_delta;
950static unsigned long hpet_pie_limit;
951
1bdbdaac
BW
952static rtc_irq_handler irq_handler;
953
ff08f76d
PE
954/*
955 * Check that the hpet counter c1 is ahead of the c2
956 */
957static inline int hpet_cnt_ahead(u32 c1, u32 c2)
958{
959 return (s32)(c2 - c1) < 0;
960}
961
1bdbdaac
BW
962/*
963 * Registers a IRQ handler.
964 */
965int hpet_register_irq_handler(rtc_irq_handler handler)
966{
967 if (!is_hpet_enabled())
968 return -ENODEV;
969 if (irq_handler)
970 return -EBUSY;
971
972 irq_handler = handler;
973
974 return 0;
975}
976EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
977
978/*
979 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
980 * and does cleanup.
981 */
982void hpet_unregister_irq_handler(rtc_irq_handler handler)
983{
984 if (!is_hpet_enabled())
985 return;
986
987 irq_handler = NULL;
988 hpet_rtc_flags = 0;
989}
990EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
991
e9e2cdb4
TG
992/*
993 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
994 * is not supported by all HPET implementations for timer 1.
995 *
996 * hpet_rtc_timer_init() is called when the rtc is initialized.
997 */
998int hpet_rtc_timer_init(void)
999{
1000 unsigned long cfg, cnt, delta, flags;
1001
1002 if (!is_hpet_enabled())
1003 return 0;
1004
1005 if (!hpet_default_delta) {
1006 uint64_t clc;
1007
1008 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1009 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1010 hpet_default_delta = (unsigned long) clc;
1011 }
1012
1013 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1014 delta = hpet_default_delta;
1015 else
1016 delta = hpet_pie_delta;
1017
1018 local_irq_save(flags);
1019
1020 cnt = delta + hpet_readl(HPET_COUNTER);
1021 hpet_writel(cnt, HPET_T1_CMP);
1022 hpet_t1_cmp = cnt;
1023
1024 cfg = hpet_readl(HPET_T1_CFG);
1025 cfg &= ~HPET_TN_PERIODIC;
1026 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1027 hpet_writel(cfg, HPET_T1_CFG);
1028
1029 local_irq_restore(flags);
1030
1031 return 1;
1032}
1bdbdaac 1033EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
e9e2cdb4
TG
1034
1035/*
1036 * The functions below are called from rtc driver.
1037 * Return 0 if HPET is not being used.
1038 * Otherwise do the necessary changes and return 1.
1039 */
1040int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1041{
1042 if (!is_hpet_enabled())
1043 return 0;
1044
1045 hpet_rtc_flags &= ~bit_mask;
1046 return 1;
1047}
1bdbdaac 1048EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
e9e2cdb4
TG
1049
1050int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1051{
1052 unsigned long oldbits = hpet_rtc_flags;
1053
1054 if (!is_hpet_enabled())
1055 return 0;
1056
1057 hpet_rtc_flags |= bit_mask;
1058
7e2a31da
DB
1059 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1060 hpet_prev_update_sec = -1;
1061
e9e2cdb4
TG
1062 if (!oldbits)
1063 hpet_rtc_timer_init();
1064
1065 return 1;
1066}
1bdbdaac 1067EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
e9e2cdb4
TG
1068
1069int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1070 unsigned char sec)
1071{
1072 if (!is_hpet_enabled())
1073 return 0;
1074
1075 hpet_alarm_time.tm_hour = hrs;
1076 hpet_alarm_time.tm_min = min;
1077 hpet_alarm_time.tm_sec = sec;
1078
1079 return 1;
1080}
1bdbdaac 1081EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
e9e2cdb4
TG
1082
1083int hpet_set_periodic_freq(unsigned long freq)
1084{
1085 uint64_t clc;
1086
1087 if (!is_hpet_enabled())
1088 return 0;
1089
1090 if (freq <= DEFAULT_RTC_INT_FREQ)
1091 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1092 else {
1093 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1094 do_div(clc, freq);
1095 clc >>= hpet_clockevent.shift;
1096 hpet_pie_delta = (unsigned long) clc;
1097 }
1098 return 1;
1099}
1bdbdaac 1100EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
e9e2cdb4
TG
1101
1102int hpet_rtc_dropped_irq(void)
1103{
1104 return is_hpet_enabled();
1105}
1bdbdaac 1106EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
e9e2cdb4
TG
1107
1108static void hpet_rtc_timer_reinit(void)
1109{
1110 unsigned long cfg, delta;
1111 int lost_ints = -1;
1112
1113 if (unlikely(!hpet_rtc_flags)) {
1114 cfg = hpet_readl(HPET_T1_CFG);
1115 cfg &= ~HPET_TN_ENABLE;
1116 hpet_writel(cfg, HPET_T1_CFG);
1117 return;
1118 }
1119
1120 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1121 delta = hpet_default_delta;
1122 else
1123 delta = hpet_pie_delta;
1124
1125 /*
1126 * Increment the comparator value until we are ahead of the
1127 * current count.
1128 */
1129 do {
1130 hpet_t1_cmp += delta;
1131 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1132 lost_ints++;
ff08f76d 1133 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
e9e2cdb4
TG
1134
1135 if (lost_ints) {
1136 if (hpet_rtc_flags & RTC_PIE)
1137 hpet_pie_count += lost_ints;
1138 if (printk_ratelimit())
7e2a31da 1139 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
e9e2cdb4
TG
1140 lost_ints);
1141 }
1142}
1143
1144irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1145{
1146 struct rtc_time curr_time;
1147 unsigned long rtc_int_flag = 0;
1148
1149 hpet_rtc_timer_reinit();
1bdbdaac 1150 memset(&curr_time, 0, sizeof(struct rtc_time));
e9e2cdb4
TG
1151
1152 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1bdbdaac 1153 get_rtc_time(&curr_time);
e9e2cdb4
TG
1154
1155 if (hpet_rtc_flags & RTC_UIE &&
1156 curr_time.tm_sec != hpet_prev_update_sec) {
7e2a31da
DB
1157 if (hpet_prev_update_sec >= 0)
1158 rtc_int_flag = RTC_UF;
e9e2cdb4
TG
1159 hpet_prev_update_sec = curr_time.tm_sec;
1160 }
1161
1162 if (hpet_rtc_flags & RTC_PIE &&
1163 ++hpet_pie_count >= hpet_pie_limit) {
1164 rtc_int_flag |= RTC_PF;
1165 hpet_pie_count = 0;
1166 }
1167
8ee291f8 1168 if (hpet_rtc_flags & RTC_AIE &&
e9e2cdb4
TG
1169 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1170 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1171 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1172 rtc_int_flag |= RTC_AF;
1173
1174 if (rtc_int_flag) {
1175 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1bdbdaac
BW
1176 if (irq_handler)
1177 irq_handler(rtc_int_flag, dev_id);
e9e2cdb4
TG
1178 }
1179 return IRQ_HANDLED;
1180}
1bdbdaac 1181EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
e9e2cdb4 1182#endif