x86: HPET_MSI Refactor code in preparation for HPET_MSI
[linux-2.6-block.git] / arch / x86 / kernel / hpet.c
CommitLineData
5d0cf410 1#include <linux/clocksource.h>
e9e2cdb4 2#include <linux/clockchips.h>
28769149 3#include <linux/delay.h>
5d0cf410 4#include <linux/errno.h>
5#include <linux/hpet.h>
6#include <linux/init.h>
399afa4f
ML
7#include <linux/sysdev.h>
8#include <linux/pm.h>
5d0cf410 9
28769149 10#include <asm/fixmap.h>
5d0cf410 11#include <asm/hpet.h>
06a24dec 12#include <asm/i8253.h>
5d0cf410 13#include <asm/io.h>
14
7f9f303a 15#define HPET_MASK CLOCKSOURCE_MASK(32)
5d0cf410 16#define HPET_SHIFT 22
17
b10db7f0
PM
18/* FSEC = 10^-15
19 NSEC = 10^-9 */
6fd592da 20#define FSEC_PER_NSEC 1000000L
5d0cf410 21
e9e2cdb4
TG
22/*
23 * HPET address is set in acpi/boot.c, when an ACPI entry exists
24 */
25unsigned long hpet_address;
06a24dec 26static void __iomem *hpet_virt_address;
e9e2cdb4 27
31c435d7 28unsigned long hpet_readl(unsigned long a)
e9e2cdb4
TG
29{
30 return readl(hpet_virt_address + a);
31}
32
33static inline void hpet_writel(unsigned long d, unsigned long a)
34{
35 writel(d, hpet_virt_address + a);
36}
37
28769149 38#ifdef CONFIG_X86_64
28769149 39#include <asm/pgtable.h>
2387ce57 40#endif
28769149 41
06a24dec
TG
42static inline void hpet_set_mapping(void)
43{
44 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
2387ce57
YL
45#ifdef CONFIG_X86_64
46 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
47#endif
06a24dec
TG
48}
49
50static inline void hpet_clear_mapping(void)
51{
52 iounmap(hpet_virt_address);
53 hpet_virt_address = NULL;
54}
55
e9e2cdb4
TG
56/*
57 * HPET command line enable / disable
58 */
59static int boot_hpet_disable;
b17530bd 60int hpet_force_user;
e9e2cdb4
TG
61
62static int __init hpet_setup(char* str)
63{
64 if (str) {
65 if (!strncmp("disable", str, 7))
66 boot_hpet_disable = 1;
b17530bd
TG
67 if (!strncmp("force", str, 5))
68 hpet_force_user = 1;
e9e2cdb4
TG
69 }
70 return 1;
71}
72__setup("hpet=", hpet_setup);
73
28769149
TG
74static int __init disable_hpet(char *str)
75{
76 boot_hpet_disable = 1;
77 return 1;
78}
79__setup("nohpet", disable_hpet);
80
e9e2cdb4
TG
81static inline int is_hpet_capable(void)
82{
83 return (!boot_hpet_disable && hpet_address);
84}
85
86/*
87 * HPET timer interrupt enable / disable
88 */
89static int hpet_legacy_int_enabled;
90
91/**
92 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
93 */
94int is_hpet_enabled(void)
95{
96 return is_hpet_capable() && hpet_legacy_int_enabled;
97}
1bdbdaac 98EXPORT_SYMBOL_GPL(is_hpet_enabled);
e9e2cdb4
TG
99
100/*
101 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
102 * timer 0 and timer 1 in case of RTC emulation.
103 */
104#ifdef CONFIG_HPET
105static void hpet_reserve_platform_timers(unsigned long id)
106{
107 struct hpet __iomem *hpet = hpet_virt_address;
37a47db8
BR
108 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
109 unsigned int nrtimers, i;
e9e2cdb4
TG
110 struct hpet_data hd;
111
112 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
113
114 memset(&hd, 0, sizeof (hd));
115 hd.hd_phys_address = hpet_address;
06a24dec 116 hd.hd_address = hpet;
e9e2cdb4 117 hd.hd_nirqs = nrtimers;
e9e2cdb4
TG
118 hpet_reserve_timer(&hd, 0);
119
120#ifdef CONFIG_HPET_EMULATE_RTC
121 hpet_reserve_timer(&hd, 1);
122#endif
5761d64b 123
64a76f66
DB
124 /*
125 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
126 * is wrong for i8259!) not the output IRQ. Many BIOS writers
127 * don't bother configuring *any* comparator interrupts.
128 */
e9e2cdb4
TG
129 hd.hd_irq[0] = HPET_LEGACY_8254;
130 hd.hd_irq[1] = HPET_LEGACY_RTC;
131
fc3fbc45
IM
132 for (i = 2; i < nrtimers; timer++, i++) {
133 hd.hd_irq[i] = (readl(&timer->hpet_config) & Tn_INT_ROUTE_CNF_MASK) >>
5761d64b 134 Tn_INT_ROUTE_CNF_SHIFT;
fc3fbc45 135 }
5761d64b 136
e9e2cdb4 137 hpet_alloc(&hd);
5761d64b 138
e9e2cdb4
TG
139}
140#else
141static void hpet_reserve_platform_timers(unsigned long id) { }
142#endif
143
144/*
145 * Common hpet info
146 */
147static unsigned long hpet_period;
148
610bf2f1 149static void hpet_legacy_set_mode(enum clock_event_mode mode,
e9e2cdb4 150 struct clock_event_device *evt);
610bf2f1 151static int hpet_legacy_next_event(unsigned long delta,
e9e2cdb4
TG
152 struct clock_event_device *evt);
153
154/*
155 * The hpet clock event device
156 */
157static struct clock_event_device hpet_clockevent = {
158 .name = "hpet",
159 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
610bf2f1
VP
160 .set_mode = hpet_legacy_set_mode,
161 .set_next_event = hpet_legacy_next_event,
e9e2cdb4
TG
162 .shift = 32,
163 .irq = 0,
59c69f2a 164 .rating = 50,
e9e2cdb4
TG
165};
166
167static void hpet_start_counter(void)
168{
169 unsigned long cfg = hpet_readl(HPET_CFG);
170
171 cfg &= ~HPET_CFG_ENABLE;
172 hpet_writel(cfg, HPET_CFG);
173 hpet_writel(0, HPET_COUNTER);
174 hpet_writel(0, HPET_COUNTER + 4);
175 cfg |= HPET_CFG_ENABLE;
176 hpet_writel(cfg, HPET_CFG);
177}
178
59c69f2a
VP
179static void hpet_resume_device(void)
180{
bfe0c1cc 181 force_hpet_resume();
59c69f2a
VP
182}
183
184static void hpet_restart_counter(void)
185{
186 hpet_resume_device();
187 hpet_start_counter();
188}
189
610bf2f1 190static void hpet_enable_legacy_int(void)
e9e2cdb4
TG
191{
192 unsigned long cfg = hpet_readl(HPET_CFG);
193
194 cfg |= HPET_CFG_LEGACY;
195 hpet_writel(cfg, HPET_CFG);
196 hpet_legacy_int_enabled = 1;
197}
198
610bf2f1
VP
199static void hpet_legacy_clockevent_register(void)
200{
610bf2f1
VP
201 /* Start HPET legacy interrupts */
202 hpet_enable_legacy_int();
203
204 /*
6fd592da
CM
205 * The mult factor is defined as (include/linux/clockchips.h)
206 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
207 * hpet_period is in units of femtoseconds (per cycle), so
208 * mult/2^shift = cyc/ns = 10^6/hpet_period
209 * mult = (10^6 * 2^shift)/hpet_period
210 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
610bf2f1 211 */
6fd592da
CM
212 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
213 hpet_period, hpet_clockevent.shift);
610bf2f1
VP
214 /* Calculate the min / max delta */
215 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
216 &hpet_clockevent);
7cfb0435
TG
217 /* 5 usec minimum reprogramming delta. */
218 hpet_clockevent.min_delta_ns = 5000;
610bf2f1
VP
219
220 /*
221 * Start hpet with the boot cpu mask and make it
222 * global after the IO_APIC has been initialized.
223 */
224 hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
225 clockevents_register_device(&hpet_clockevent);
226 global_clock_event = &hpet_clockevent;
227 printk(KERN_DEBUG "hpet clockevent registered\n");
228}
229
b40d575b 230static void hpet_set_mode(enum clock_event_mode mode,
231 struct clock_event_device *evt, int timer)
e9e2cdb4
TG
232{
233 unsigned long cfg, cmp, now;
234 uint64_t delta;
235
236 switch(mode) {
237 case CLOCK_EVT_MODE_PERIODIC:
b40d575b 238 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
239 delta >>= evt->shift;
e9e2cdb4
TG
240 now = hpet_readl(HPET_COUNTER);
241 cmp = now + (unsigned long) delta;
b40d575b 242 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4
TG
243 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
244 HPET_TN_SETVAL | HPET_TN_32BIT;
b40d575b 245 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4
TG
246 /*
247 * The first write after writing TN_SETVAL to the
248 * config register sets the counter value, the second
249 * write sets the period.
250 */
b40d575b 251 hpet_writel(cmp, HPET_Tn_CMP(timer));
e9e2cdb4 252 udelay(1);
b40d575b 253 hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
e9e2cdb4
TG
254 break;
255
256 case CLOCK_EVT_MODE_ONESHOT:
b40d575b 257 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4
TG
258 cfg &= ~HPET_TN_PERIODIC;
259 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
b40d575b 260 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4
TG
261 break;
262
263 case CLOCK_EVT_MODE_UNUSED:
264 case CLOCK_EVT_MODE_SHUTDOWN:
b40d575b 265 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4 266 cfg &= ~HPET_TN_ENABLE;
b40d575b 267 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4 268 break;
18de5bc4
TG
269
270 case CLOCK_EVT_MODE_RESUME:
610bf2f1 271 hpet_enable_legacy_int();
18de5bc4 272 break;
e9e2cdb4
TG
273 }
274}
275
b40d575b 276static int hpet_next_event(unsigned long delta,
277 struct clock_event_device *evt, int timer)
e9e2cdb4 278{
f7676254 279 u32 cnt;
e9e2cdb4
TG
280
281 cnt = hpet_readl(HPET_COUNTER);
f7676254 282 cnt += (u32) delta;
b40d575b 283 hpet_writel(cnt, HPET_Tn_CMP(timer));
e9e2cdb4 284
72d43d9b
TG
285 /*
286 * We need to read back the CMP register to make sure that
287 * what we wrote hit the chip before we compare it to the
288 * counter.
289 */
290 WARN_ON((u32)hpet_readl(HPET_T0_CMP) != cnt);
291
f7676254 292 return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
e9e2cdb4
TG
293}
294
b40d575b 295static void hpet_legacy_set_mode(enum clock_event_mode mode,
296 struct clock_event_device *evt)
297{
298 hpet_set_mode(mode, evt, 0);
299}
300
301static int hpet_legacy_next_event(unsigned long delta,
302 struct clock_event_device *evt)
303{
304 return hpet_next_event(delta, evt, 0);
305}
306
6bb74df4 307/*
308 * Clock source related code
309 */
310static cycle_t read_hpet(void)
311{
312 return (cycle_t)hpet_readl(HPET_COUNTER);
313}
314
28769149
TG
315#ifdef CONFIG_X86_64
316static cycle_t __vsyscall_fn vread_hpet(void)
317{
318 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
319}
320#endif
321
6bb74df4 322static struct clocksource clocksource_hpet = {
323 .name = "hpet",
324 .rating = 250,
325 .read = read_hpet,
326 .mask = HPET_MASK,
327 .shift = HPET_SHIFT,
328 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
59c69f2a 329 .resume = hpet_restart_counter,
28769149
TG
330#ifdef CONFIG_X86_64
331 .vread = vread_hpet,
332#endif
6bb74df4 333};
334
610bf2f1 335static int hpet_clocksource_register(void)
e9e2cdb4 336{
6fd592da 337 u64 start, now;
075bcd1f 338 cycle_t t1;
e9e2cdb4 339
e9e2cdb4
TG
340 /* Start the counter */
341 hpet_start_counter();
342
075bcd1f
TG
343 /* Verify whether hpet counter works */
344 t1 = read_hpet();
345 rdtscll(start);
346
347 /*
348 * We don't know the TSC frequency yet, but waiting for
349 * 200000 TSC cycles is safe:
350 * 4 GHz == 50us
351 * 1 GHz == 200us
352 */
353 do {
354 rep_nop();
355 rdtscll(now);
356 } while ((now - start) < 200000UL);
357
358 if (t1 == read_hpet()) {
359 printk(KERN_WARNING
360 "HPET counter not counting. HPET disabled\n");
610bf2f1 361 return -ENODEV;
075bcd1f
TG
362 }
363
6fd592da
CM
364 /*
365 * The definition of mult is (include/linux/clocksource.h)
366 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
367 * so we first need to convert hpet_period to ns/cyc units:
368 * mult/2^shift = ns/cyc = hpet_period/10^6
369 * mult = (hpet_period * 2^shift)/10^6
370 * mult = (hpet_period << shift)/FSEC_PER_NSEC
6bb74df4 371 */
6fd592da 372 clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
6bb74df4 373
374 clocksource_register(&clocksource_hpet);
375
610bf2f1
VP
376 return 0;
377}
378
b02a7f22
PM
379/**
380 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
610bf2f1
VP
381 */
382int __init hpet_enable(void)
383{
384 unsigned long id;
a6825f1c 385 int i;
610bf2f1
VP
386
387 if (!is_hpet_capable())
388 return 0;
389
390 hpet_set_mapping();
391
392 /*
393 * Read the period and check for a sane value:
394 */
395 hpet_period = hpet_readl(HPET_PERIOD);
a6825f1c
TG
396
397 /*
398 * AMD SB700 based systems with spread spectrum enabled use a
399 * SMM based HPET emulation to provide proper frequency
400 * setting. The SMM code is initialized with the first HPET
401 * register access and takes some time to complete. During
402 * this time the config register reads 0xffffffff. We check
403 * for max. 1000 loops whether the config register reads a non
404 * 0xffffffff value to make sure that HPET is up and running
405 * before we go further. A counting loop is safe, as the HPET
406 * access takes thousands of CPU cycles. On non SB700 based
407 * machines this check is only done once and has no side
408 * effects.
409 */
410 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
411 if (i == 1000) {
412 printk(KERN_WARNING
413 "HPET config register value = 0xFFFFFFFF. "
414 "Disabling HPET\n");
415 goto out_nohpet;
416 }
417 }
418
610bf2f1
VP
419 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
420 goto out_nohpet;
421
422 /*
423 * Read the HPET ID register to retrieve the IRQ routing
424 * information and the number of channels
425 */
426 id = hpet_readl(HPET_ID);
427
428#ifdef CONFIG_HPET_EMULATE_RTC
429 /*
430 * The legacy routing mode needs at least two channels, tick timer
431 * and the rtc emulation channel.
432 */
433 if (!(id & HPET_ID_NUMBER))
434 goto out_nohpet;
435#endif
436
437 if (hpet_clocksource_register())
438 goto out_nohpet;
439
e9e2cdb4 440 if (id & HPET_ID_LEGSUP) {
610bf2f1 441 hpet_legacy_clockevent_register();
e9e2cdb4
TG
442 return 1;
443 }
444 return 0;
5d0cf410 445
e9e2cdb4 446out_nohpet:
06a24dec 447 hpet_clear_mapping();
399afa4f 448 boot_hpet_disable = 1;
e9e2cdb4
TG
449 return 0;
450}
451
28769149
TG
452/*
453 * Needs to be late, as the reserve_timer code calls kalloc !
454 *
455 * Not a problem on i386 as hpet_enable is called from late_time_init,
456 * but on x86_64 it is necessary !
457 */
458static __init int hpet_late_init(void)
459{
59c69f2a 460 if (boot_hpet_disable)
28769149
TG
461 return -ENODEV;
462
59c69f2a
VP
463 if (!hpet_address) {
464 if (!force_hpet_address)
465 return -ENODEV;
466
467 hpet_address = force_hpet_address;
468 hpet_enable();
469 if (!hpet_virt_address)
470 return -ENODEV;
471 }
472
28769149 473 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
59c69f2a 474
28769149
TG
475 return 0;
476}
477fs_initcall(hpet_late_init);
478
c86c7fbc
OH
479void hpet_disable(void)
480{
481 if (is_hpet_capable()) {
482 unsigned long cfg = hpet_readl(HPET_CFG);
483
484 if (hpet_legacy_int_enabled) {
485 cfg &= ~HPET_CFG_LEGACY;
486 hpet_legacy_int_enabled = 0;
487 }
488 cfg &= ~HPET_CFG_ENABLE;
489 hpet_writel(cfg, HPET_CFG);
490 }
491}
492
e9e2cdb4
TG
493#ifdef CONFIG_HPET_EMULATE_RTC
494
495/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
496 * is enabled, we support RTC interrupt functionality in software.
497 * RTC has 3 kinds of interrupts:
498 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
499 * is updated
500 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
501 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
502 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
503 * (1) and (2) above are implemented using polling at a frequency of
504 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
505 * overhead. (DEFAULT_RTC_INT_FREQ)
506 * For (3), we use interrupts at 64Hz or user specified periodic
507 * frequency, whichever is higher.
508 */
509#include <linux/mc146818rtc.h>
510#include <linux/rtc.h>
1bdbdaac 511#include <asm/rtc.h>
e9e2cdb4
TG
512
513#define DEFAULT_RTC_INT_FREQ 64
514#define DEFAULT_RTC_SHIFT 6
515#define RTC_NUM_INTS 1
516
517static unsigned long hpet_rtc_flags;
7e2a31da 518static int hpet_prev_update_sec;
e9e2cdb4
TG
519static struct rtc_time hpet_alarm_time;
520static unsigned long hpet_pie_count;
521static unsigned long hpet_t1_cmp;
522static unsigned long hpet_default_delta;
523static unsigned long hpet_pie_delta;
524static unsigned long hpet_pie_limit;
525
1bdbdaac
BW
526static rtc_irq_handler irq_handler;
527
528/*
529 * Registers a IRQ handler.
530 */
531int hpet_register_irq_handler(rtc_irq_handler handler)
532{
533 if (!is_hpet_enabled())
534 return -ENODEV;
535 if (irq_handler)
536 return -EBUSY;
537
538 irq_handler = handler;
539
540 return 0;
541}
542EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
543
544/*
545 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
546 * and does cleanup.
547 */
548void hpet_unregister_irq_handler(rtc_irq_handler handler)
549{
550 if (!is_hpet_enabled())
551 return;
552
553 irq_handler = NULL;
554 hpet_rtc_flags = 0;
555}
556EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
557
e9e2cdb4
TG
558/*
559 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
560 * is not supported by all HPET implementations for timer 1.
561 *
562 * hpet_rtc_timer_init() is called when the rtc is initialized.
563 */
564int hpet_rtc_timer_init(void)
565{
566 unsigned long cfg, cnt, delta, flags;
567
568 if (!is_hpet_enabled())
569 return 0;
570
571 if (!hpet_default_delta) {
572 uint64_t clc;
573
574 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
575 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
576 hpet_default_delta = (unsigned long) clc;
577 }
578
579 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
580 delta = hpet_default_delta;
581 else
582 delta = hpet_pie_delta;
583
584 local_irq_save(flags);
585
586 cnt = delta + hpet_readl(HPET_COUNTER);
587 hpet_writel(cnt, HPET_T1_CMP);
588 hpet_t1_cmp = cnt;
589
590 cfg = hpet_readl(HPET_T1_CFG);
591 cfg &= ~HPET_TN_PERIODIC;
592 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
593 hpet_writel(cfg, HPET_T1_CFG);
594
595 local_irq_restore(flags);
596
597 return 1;
598}
1bdbdaac 599EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
e9e2cdb4
TG
600
601/*
602 * The functions below are called from rtc driver.
603 * Return 0 if HPET is not being used.
604 * Otherwise do the necessary changes and return 1.
605 */
606int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
607{
608 if (!is_hpet_enabled())
609 return 0;
610
611 hpet_rtc_flags &= ~bit_mask;
612 return 1;
613}
1bdbdaac 614EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
e9e2cdb4
TG
615
616int hpet_set_rtc_irq_bit(unsigned long bit_mask)
617{
618 unsigned long oldbits = hpet_rtc_flags;
619
620 if (!is_hpet_enabled())
621 return 0;
622
623 hpet_rtc_flags |= bit_mask;
624
7e2a31da
DB
625 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
626 hpet_prev_update_sec = -1;
627
e9e2cdb4
TG
628 if (!oldbits)
629 hpet_rtc_timer_init();
630
631 return 1;
632}
1bdbdaac 633EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
e9e2cdb4
TG
634
635int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
636 unsigned char sec)
637{
638 if (!is_hpet_enabled())
639 return 0;
640
641 hpet_alarm_time.tm_hour = hrs;
642 hpet_alarm_time.tm_min = min;
643 hpet_alarm_time.tm_sec = sec;
644
645 return 1;
646}
1bdbdaac 647EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
e9e2cdb4
TG
648
649int hpet_set_periodic_freq(unsigned long freq)
650{
651 uint64_t clc;
652
653 if (!is_hpet_enabled())
654 return 0;
655
656 if (freq <= DEFAULT_RTC_INT_FREQ)
657 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
658 else {
659 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
660 do_div(clc, freq);
661 clc >>= hpet_clockevent.shift;
662 hpet_pie_delta = (unsigned long) clc;
663 }
664 return 1;
665}
1bdbdaac 666EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
e9e2cdb4
TG
667
668int hpet_rtc_dropped_irq(void)
669{
670 return is_hpet_enabled();
671}
1bdbdaac 672EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
e9e2cdb4
TG
673
674static void hpet_rtc_timer_reinit(void)
675{
676 unsigned long cfg, delta;
677 int lost_ints = -1;
678
679 if (unlikely(!hpet_rtc_flags)) {
680 cfg = hpet_readl(HPET_T1_CFG);
681 cfg &= ~HPET_TN_ENABLE;
682 hpet_writel(cfg, HPET_T1_CFG);
683 return;
684 }
685
686 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
687 delta = hpet_default_delta;
688 else
689 delta = hpet_pie_delta;
690
691 /*
692 * Increment the comparator value until we are ahead of the
693 * current count.
694 */
695 do {
696 hpet_t1_cmp += delta;
697 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
698 lost_ints++;
699 } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
700
701 if (lost_ints) {
702 if (hpet_rtc_flags & RTC_PIE)
703 hpet_pie_count += lost_ints;
704 if (printk_ratelimit())
7e2a31da 705 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
e9e2cdb4
TG
706 lost_ints);
707 }
708}
709
710irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
711{
712 struct rtc_time curr_time;
713 unsigned long rtc_int_flag = 0;
714
715 hpet_rtc_timer_reinit();
1bdbdaac 716 memset(&curr_time, 0, sizeof(struct rtc_time));
e9e2cdb4
TG
717
718 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1bdbdaac 719 get_rtc_time(&curr_time);
e9e2cdb4
TG
720
721 if (hpet_rtc_flags & RTC_UIE &&
722 curr_time.tm_sec != hpet_prev_update_sec) {
7e2a31da
DB
723 if (hpet_prev_update_sec >= 0)
724 rtc_int_flag = RTC_UF;
e9e2cdb4
TG
725 hpet_prev_update_sec = curr_time.tm_sec;
726 }
727
728 if (hpet_rtc_flags & RTC_PIE &&
729 ++hpet_pie_count >= hpet_pie_limit) {
730 rtc_int_flag |= RTC_PF;
731 hpet_pie_count = 0;
732 }
733
8ee291f8 734 if (hpet_rtc_flags & RTC_AIE &&
e9e2cdb4
TG
735 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
736 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
737 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
738 rtc_int_flag |= RTC_AF;
739
740 if (rtc_int_flag) {
741 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1bdbdaac
BW
742 if (irq_handler)
743 irq_handler(rtc_int_flag, dev_id);
e9e2cdb4
TG
744 }
745 return IRQ_HANDLED;
746}
1bdbdaac 747EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
e9e2cdb4 748#endif