clocksource: Use a plain u64 instead of cycle_t
[linux-2.6-block.git] / arch / x86 / kernel / hpet.c
CommitLineData
5d0cf410 1#include <linux/clocksource.h>
e9e2cdb4 2#include <linux/clockchips.h>
4588c1f0 3#include <linux/interrupt.h>
69c60c88 4#include <linux/export.h>
28769149 5#include <linux/delay.h>
5d0cf410 6#include <linux/errno.h>
334955ef 7#include <linux/i8253.h>
5a0e3ad6 8#include <linux/slab.h>
5d0cf410 9#include <linux/hpet.h>
10#include <linux/init.h>
58ac1e76 11#include <linux/cpu.h>
4588c1f0
IM
12#include <linux/pm.h>
13#include <linux/io.h>
5d0cf410 14
cd4d09ec 15#include <asm/cpufeature.h>
d746d1eb 16#include <asm/irqdomain.h>
28769149 17#include <asm/fixmap.h>
4588c1f0 18#include <asm/hpet.h>
16f871bc 19#include <asm/time.h>
5d0cf410 20
4588c1f0 21#define HPET_MASK CLOCKSOURCE_MASK(32)
5d0cf410 22
b10db7f0
PM
23/* FSEC = 10^-15
24 NSEC = 10^-9 */
4588c1f0 25#define FSEC_PER_NSEC 1000000L
5d0cf410 26
26afe5f2 27#define HPET_DEV_USED_BIT 2
28#define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
29#define HPET_DEV_VALID 0x8
30#define HPET_DEV_FSB_CAP 0x1000
31#define HPET_DEV_PERI_CAP 0x2000
32
f1c18071
TG
33#define HPET_MIN_CYCLES 128
34#define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
35
e9e2cdb4
TG
36/*
37 * HPET address is set in acpi/boot.c, when an ACPI entry exists
38 */
4588c1f0 39unsigned long hpet_address;
c8bc6f3c 40u8 hpet_blockid; /* OS timer block num */
3d45ac4b 41bool hpet_msi_disable;
73472a46 42
e951e4af 43#ifdef CONFIG_PCI_MSI
3d45ac4b 44static unsigned int hpet_num_timers;
e951e4af 45#endif
4588c1f0 46static void __iomem *hpet_virt_address;
e9e2cdb4 47
58ac1e76 48struct hpet_dev {
4588c1f0
IM
49 struct clock_event_device evt;
50 unsigned int num;
51 int cpu;
52 unsigned int irq;
53 unsigned int flags;
54 char name[10];
58ac1e76 55};
56
a3819e3e 57static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
3f7787b3
FW
58{
59 return container_of(evtdev, struct hpet_dev, evt);
60}
61
5946fa3d 62inline unsigned int hpet_readl(unsigned int a)
e9e2cdb4
TG
63{
64 return readl(hpet_virt_address + a);
65}
66
5946fa3d 67static inline void hpet_writel(unsigned int d, unsigned int a)
e9e2cdb4
TG
68{
69 writel(d, hpet_virt_address + a);
70}
71
28769149 72#ifdef CONFIG_X86_64
28769149 73#include <asm/pgtable.h>
2387ce57 74#endif
28769149 75
06a24dec
TG
76static inline void hpet_set_mapping(void)
77{
78 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
79}
80
81static inline void hpet_clear_mapping(void)
82{
83 iounmap(hpet_virt_address);
84 hpet_virt_address = NULL;
85}
86
e9e2cdb4
TG
87/*
88 * HPET command line enable / disable
89 */
3d45ac4b
JB
90bool boot_hpet_disable;
91bool hpet_force_user;
92static bool hpet_verbose;
e9e2cdb4 93
4588c1f0 94static int __init hpet_setup(char *str)
e9e2cdb4 95{
b2d6aba9
JB
96 while (str) {
97 char *next = strchr(str, ',');
98
99 if (next)
100 *next++ = 0;
e9e2cdb4 101 if (!strncmp("disable", str, 7))
3d45ac4b 102 boot_hpet_disable = true;
b17530bd 103 if (!strncmp("force", str, 5))
3d45ac4b 104 hpet_force_user = true;
b98103a5 105 if (!strncmp("verbose", str, 7))
3d45ac4b 106 hpet_verbose = true;
b2d6aba9 107 str = next;
e9e2cdb4
TG
108 }
109 return 1;
110}
111__setup("hpet=", hpet_setup);
112
28769149
TG
113static int __init disable_hpet(char *str)
114{
3d45ac4b 115 boot_hpet_disable = true;
28769149
TG
116 return 1;
117}
118__setup("nohpet", disable_hpet);
119
e9e2cdb4
TG
120static inline int is_hpet_capable(void)
121{
4588c1f0 122 return !boot_hpet_disable && hpet_address;
e9e2cdb4
TG
123}
124
125/*
126 * HPET timer interrupt enable / disable
127 */
3d45ac4b 128static bool hpet_legacy_int_enabled;
e9e2cdb4
TG
129
130/**
131 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
132 */
133int is_hpet_enabled(void)
134{
135 return is_hpet_capable() && hpet_legacy_int_enabled;
136}
1bdbdaac 137EXPORT_SYMBOL_GPL(is_hpet_enabled);
e9e2cdb4 138
b98103a5
AH
139static void _hpet_print_config(const char *function, int line)
140{
141 u32 i, timers, l, h;
142 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
143 l = hpet_readl(HPET_ID);
144 h = hpet_readl(HPET_PERIOD);
145 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
146 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
147 l = hpet_readl(HPET_CFG);
148 h = hpet_readl(HPET_STATUS);
149 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
150 l = hpet_readl(HPET_COUNTER);
151 h = hpet_readl(HPET_COUNTER+4);
152 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
153
154 for (i = 0; i < timers; i++) {
155 l = hpet_readl(HPET_Tn_CFG(i));
156 h = hpet_readl(HPET_Tn_CFG(i)+4);
157 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
158 i, l, h);
159 l = hpet_readl(HPET_Tn_CMP(i));
160 h = hpet_readl(HPET_Tn_CMP(i)+4);
161 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
162 i, l, h);
163 l = hpet_readl(HPET_Tn_ROUTE(i));
164 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
165 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
166 i, l, h);
167 }
168}
169
170#define hpet_print_config() \
171do { \
172 if (hpet_verbose) \
02f1f217 173 _hpet_print_config(__func__, __LINE__); \
b98103a5
AH
174} while (0)
175
e9e2cdb4
TG
176/*
177 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
178 * timer 0 and timer 1 in case of RTC emulation.
179 */
180#ifdef CONFIG_HPET
f0ed4e69 181
5f79f2f2 182static void hpet_reserve_msi_timers(struct hpet_data *hd);
f0ed4e69 183
5946fa3d 184static void hpet_reserve_platform_timers(unsigned int id)
e9e2cdb4
TG
185{
186 struct hpet __iomem *hpet = hpet_virt_address;
37a47db8
BR
187 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
188 unsigned int nrtimers, i;
e9e2cdb4
TG
189 struct hpet_data hd;
190
191 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
192
4588c1f0
IM
193 memset(&hd, 0, sizeof(hd));
194 hd.hd_phys_address = hpet_address;
195 hd.hd_address = hpet;
196 hd.hd_nirqs = nrtimers;
e9e2cdb4
TG
197 hpet_reserve_timer(&hd, 0);
198
199#ifdef CONFIG_HPET_EMULATE_RTC
200 hpet_reserve_timer(&hd, 1);
201#endif
5761d64b 202
64a76f66
DB
203 /*
204 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
205 * is wrong for i8259!) not the output IRQ. Many BIOS writers
206 * don't bother configuring *any* comparator interrupts.
207 */
e9e2cdb4
TG
208 hd.hd_irq[0] = HPET_LEGACY_8254;
209 hd.hd_irq[1] = HPET_LEGACY_RTC;
210
fc3fbc45 211 for (i = 2; i < nrtimers; timer++, i++) {
4588c1f0
IM
212 hd.hd_irq[i] = (readl(&timer->hpet_config) &
213 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
fc3fbc45 214 }
5761d64b 215
f0ed4e69 216 hpet_reserve_msi_timers(&hd);
26afe5f2 217
e9e2cdb4 218 hpet_alloc(&hd);
5761d64b 219
e9e2cdb4
TG
220}
221#else
5946fa3d 222static void hpet_reserve_platform_timers(unsigned int id) { }
e9e2cdb4
TG
223#endif
224
225/*
226 * Common hpet info
227 */
ab0e08f1 228static unsigned long hpet_freq;
e9e2cdb4 229
c8b5db7d 230static struct clock_event_device hpet_clockevent;
e9e2cdb4 231
8d6f0c82 232static void hpet_stop_counter(void)
e9e2cdb4 233{
3d45ac4b 234 u32 cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
235 cfg &= ~HPET_CFG_ENABLE;
236 hpet_writel(cfg, HPET_CFG);
7a6f9cbb
AH
237}
238
239static void hpet_reset_counter(void)
240{
e9e2cdb4
TG
241 hpet_writel(0, HPET_COUNTER);
242 hpet_writel(0, HPET_COUNTER + 4);
8d6f0c82
AH
243}
244
245static void hpet_start_counter(void)
246{
5946fa3d 247 unsigned int cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
248 cfg |= HPET_CFG_ENABLE;
249 hpet_writel(cfg, HPET_CFG);
250}
251
8d6f0c82
AH
252static void hpet_restart_counter(void)
253{
254 hpet_stop_counter();
7a6f9cbb 255 hpet_reset_counter();
8d6f0c82
AH
256 hpet_start_counter();
257}
258
59c69f2a
VP
259static void hpet_resume_device(void)
260{
bfe0c1cc 261 force_hpet_resume();
59c69f2a
VP
262}
263
17622339 264static void hpet_resume_counter(struct clocksource *cs)
59c69f2a
VP
265{
266 hpet_resume_device();
8d6f0c82 267 hpet_restart_counter();
59c69f2a
VP
268}
269
610bf2f1 270static void hpet_enable_legacy_int(void)
e9e2cdb4 271{
5946fa3d 272 unsigned int cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
273
274 cfg |= HPET_CFG_LEGACY;
275 hpet_writel(cfg, HPET_CFG);
3d45ac4b 276 hpet_legacy_int_enabled = true;
e9e2cdb4
TG
277}
278
610bf2f1
VP
279static void hpet_legacy_clockevent_register(void)
280{
610bf2f1
VP
281 /* Start HPET legacy interrupts */
282 hpet_enable_legacy_int();
283
610bf2f1
VP
284 /*
285 * Start hpet with the boot cpu mask and make it
286 * global after the IO_APIC has been initialized.
287 */
320ab2b0 288 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
ab0e08f1
TG
289 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
290 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
610bf2f1
VP
291 global_clock_event = &hpet_clockevent;
292 printk(KERN_DEBUG "hpet clockevent registered\n");
293}
294
c8b5db7d 295static int hpet_set_periodic(struct clock_event_device *evt, int timer)
e9e2cdb4 296{
5946fa3d 297 unsigned int cfg, cmp, now;
e9e2cdb4
TG
298 uint64_t delta;
299
c8b5db7d
VK
300 hpet_stop_counter();
301 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
302 delta >>= evt->shift;
303 now = hpet_readl(HPET_COUNTER);
304 cmp = now + (unsigned int)delta;
305 cfg = hpet_readl(HPET_Tn_CFG(timer));
306 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
307 HPET_TN_32BIT;
308 hpet_writel(cfg, HPET_Tn_CFG(timer));
309 hpet_writel(cmp, HPET_Tn_CMP(timer));
310 udelay(1);
311 /*
312 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
313 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
314 * bit is automatically cleared after the first write.
315 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
316 * Publication # 24674)
317 */
318 hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
319 hpet_start_counter();
320 hpet_print_config();
321
322 return 0;
323}
324
325static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
326{
327 unsigned int cfg;
328
329 cfg = hpet_readl(HPET_Tn_CFG(timer));
330 cfg &= ~HPET_TN_PERIODIC;
331 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
332 hpet_writel(cfg, HPET_Tn_CFG(timer));
333
334 return 0;
335}
336
337static int hpet_shutdown(struct clock_event_device *evt, int timer)
338{
339 unsigned int cfg;
340
341 cfg = hpet_readl(HPET_Tn_CFG(timer));
342 cfg &= ~HPET_TN_ENABLE;
343 hpet_writel(cfg, HPET_Tn_CFG(timer));
344
345 return 0;
346}
347
348static int hpet_resume(struct clock_event_device *evt, int timer)
349{
350 if (!timer) {
351 hpet_enable_legacy_int();
352 } else {
353 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
354
355 irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
356 disable_irq(hdev->irq);
357 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
358 enable_irq(hdev->irq);
e9e2cdb4 359 }
c8b5db7d
VK
360 hpet_print_config();
361
362 return 0;
e9e2cdb4
TG
363}
364
b40d575b 365static int hpet_next_event(unsigned long delta,
366 struct clock_event_device *evt, int timer)
e9e2cdb4 367{
f7676254 368 u32 cnt;
995bd3bb 369 s32 res;
e9e2cdb4
TG
370
371 cnt = hpet_readl(HPET_COUNTER);
f7676254 372 cnt += (u32) delta;
b40d575b 373 hpet_writel(cnt, HPET_Tn_CMP(timer));
e9e2cdb4 374
72d43d9b 375 /*
995bd3bb
TG
376 * HPETs are a complete disaster. The compare register is
377 * based on a equal comparison and neither provides a less
378 * than or equal functionality (which would require to take
379 * the wraparound into account) nor a simple count down event
380 * mode. Further the write to the comparator register is
381 * delayed internally up to two HPET clock cycles in certain
f1c18071
TG
382 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
383 * longer delays. We worked around that by reading back the
384 * compare register, but that required another workaround for
385 * ICH9,10 chips where the first readout after write can
386 * return the old stale value. We already had a minimum
387 * programming delta of 5us enforced, but a NMI or SMI hitting
995bd3bb
TG
388 * between the counter readout and the comparator write can
389 * move us behind that point easily. Now instead of reading
390 * the compare register back several times, we make the ETIME
391 * decision based on the following: Return ETIME if the
f1c18071 392 * counter value after the write is less than HPET_MIN_CYCLES
995bd3bb 393 * away from the event or if the counter is already ahead of
f1c18071
TG
394 * the event. The minimum programming delta for the generic
395 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
72d43d9b 396 */
995bd3bb 397 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
72d43d9b 398
f1c18071 399 return res < HPET_MIN_CYCLES ? -ETIME : 0;
e9e2cdb4
TG
400}
401
c8b5db7d 402static int hpet_legacy_shutdown(struct clock_event_device *evt)
b40d575b 403{
c8b5db7d
VK
404 return hpet_shutdown(evt, 0);
405}
406
407static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
408{
409 return hpet_set_oneshot(evt, 0);
410}
411
412static int hpet_legacy_set_periodic(struct clock_event_device *evt)
413{
414 return hpet_set_periodic(evt, 0);
415}
416
417static int hpet_legacy_resume(struct clock_event_device *evt)
418{
419 return hpet_resume(evt, 0);
b40d575b 420}
421
422static int hpet_legacy_next_event(unsigned long delta,
423 struct clock_event_device *evt)
424{
425 return hpet_next_event(delta, evt, 0);
426}
427
c8b5db7d
VK
428/*
429 * The hpet clock event device
430 */
431static struct clock_event_device hpet_clockevent = {
432 .name = "hpet",
433 .features = CLOCK_EVT_FEAT_PERIODIC |
434 CLOCK_EVT_FEAT_ONESHOT,
435 .set_state_periodic = hpet_legacy_set_periodic,
436 .set_state_oneshot = hpet_legacy_set_oneshot,
437 .set_state_shutdown = hpet_legacy_shutdown,
438 .tick_resume = hpet_legacy_resume,
439 .set_next_event = hpet_legacy_next_event,
440 .irq = 0,
441 .rating = 50,
442};
443
58ac1e76 444/*
445 * HPET MSI Support
446 */
26afe5f2 447#ifdef CONFIG_PCI_MSI
5f79f2f2
VP
448
449static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
450static struct hpet_dev *hpet_devs;
3cb96f0c 451static struct irq_domain *hpet_domain;
5f79f2f2 452
d0fbca8f 453void hpet_msi_unmask(struct irq_data *data)
58ac1e76 454{
ff96b4d0 455 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
5946fa3d 456 unsigned int cfg;
58ac1e76 457
458 /* unmask it */
459 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
6acf5a8c 460 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
58ac1e76 461 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
462}
463
d0fbca8f 464void hpet_msi_mask(struct irq_data *data)
58ac1e76 465{
ff96b4d0 466 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
5946fa3d 467 unsigned int cfg;
58ac1e76 468
469 /* mask it */
470 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
6acf5a8c 471 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
58ac1e76 472 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
473}
474
d0fbca8f 475void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
58ac1e76 476{
58ac1e76 477 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
478 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
479}
480
d0fbca8f 481void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
58ac1e76 482{
58ac1e76 483 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
484 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
485 msg->address_hi = 0;
486}
487
c8b5db7d 488static int hpet_msi_shutdown(struct clock_event_device *evt)
26afe5f2 489{
490 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
c8b5db7d
VK
491
492 return hpet_shutdown(evt, hdev->num);
493}
494
495static int hpet_msi_set_oneshot(struct clock_event_device *evt)
496{
497 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
498
499 return hpet_set_oneshot(evt, hdev->num);
500}
501
502static int hpet_msi_set_periodic(struct clock_event_device *evt)
503{
504 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
505
506 return hpet_set_periodic(evt, hdev->num);
507}
508
509static int hpet_msi_resume(struct clock_event_device *evt)
510{
511 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
512
513 return hpet_resume(evt, hdev->num);
26afe5f2 514}
515
516static int hpet_msi_next_event(unsigned long delta,
517 struct clock_event_device *evt)
518{
519 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
520 return hpet_next_event(delta, evt, hdev->num);
521}
522
26afe5f2 523static irqreturn_t hpet_interrupt_handler(int irq, void *data)
524{
525 struct hpet_dev *dev = (struct hpet_dev *)data;
526 struct clock_event_device *hevt = &dev->evt;
527
528 if (!hevt->event_handler) {
529 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
530 dev->num);
531 return IRQ_HANDLED;
532 }
533
534 hevt->event_handler(hevt);
535 return IRQ_HANDLED;
536}
537
538static int hpet_setup_irq(struct hpet_dev *dev)
539{
540
541 if (request_irq(dev->irq, hpet_interrupt_handler,
d20d2efb 542 IRQF_TIMER | IRQF_NOBALANCING,
507fa3a3 543 dev->name, dev))
26afe5f2 544 return -1;
545
546 disable_irq(dev->irq);
0de26520 547 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
26afe5f2 548 enable_irq(dev->irq);
549
c81bba49
YL
550 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
551 dev->name, dev->irq);
552
26afe5f2 553 return 0;
554}
555
556/* This should be called in specific @cpu */
557static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
558{
559 struct clock_event_device *evt = &hdev->evt;
26afe5f2 560
561 WARN_ON(cpu != smp_processor_id());
562 if (!(hdev->flags & HPET_DEV_VALID))
563 return;
564
26afe5f2 565 hdev->cpu = cpu;
566 per_cpu(cpu_hpet_dev, cpu) = hdev;
567 evt->name = hdev->name;
568 hpet_setup_irq(hdev);
569 evt->irq = hdev->irq;
570
571 evt->rating = 110;
572 evt->features = CLOCK_EVT_FEAT_ONESHOT;
c8b5db7d 573 if (hdev->flags & HPET_DEV_PERI_CAP) {
26afe5f2 574 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
c8b5db7d
VK
575 evt->set_state_periodic = hpet_msi_set_periodic;
576 }
26afe5f2 577
c8b5db7d
VK
578 evt->set_state_shutdown = hpet_msi_shutdown;
579 evt->set_state_oneshot = hpet_msi_set_oneshot;
580 evt->tick_resume = hpet_msi_resume;
26afe5f2 581 evt->set_next_event = hpet_msi_next_event;
320ab2b0 582 evt->cpumask = cpumask_of(hdev->cpu);
ab0e08f1
TG
583
584 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
585 0x7FFFFFFF);
26afe5f2 586}
587
588#ifdef CONFIG_HPET
589/* Reserve at least one timer for userspace (/dev/hpet) */
590#define RESERVE_TIMERS 1
591#else
592#define RESERVE_TIMERS 0
593#endif
5f79f2f2
VP
594
595static void hpet_msi_capability_lookup(unsigned int start_timer)
26afe5f2 596{
597 unsigned int id;
598 unsigned int num_timers;
599 unsigned int num_timers_used = 0;
3cb96f0c 600 int i, irq;
26afe5f2 601
73472a46
PV
602 if (hpet_msi_disable)
603 return;
604
39fe05e5
SL
605 if (boot_cpu_has(X86_FEATURE_ARAT))
606 return;
26afe5f2 607 id = hpet_readl(HPET_ID);
608
609 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
610 num_timers++; /* Value read out starts from 0 */
b98103a5 611 hpet_print_config();
26afe5f2 612
3cb96f0c
JL
613 hpet_domain = hpet_create_irq_domain(hpet_blockid);
614 if (!hpet_domain)
615 return;
616
26afe5f2 617 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
618 if (!hpet_devs)
619 return;
620
621 hpet_num_timers = num_timers;
622
623 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
624 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
5946fa3d 625 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
26afe5f2 626
627 /* Only consider HPET timer with MSI support */
628 if (!(cfg & HPET_TN_FSB_CAP))
629 continue;
630
cb17b2a6
TG
631 hdev->flags = 0;
632 if (cfg & HPET_TN_PERIODIC_CAP)
633 hdev->flags |= HPET_DEV_PERI_CAP;
634 sprintf(hdev->name, "hpet%d", i);
635 hdev->num = i;
636
3cb96f0c 637 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
bafac298 638 if (irq <= 0)
3cb96f0c
JL
639 continue;
640
3cb96f0c 641 hdev->irq = irq;
26afe5f2 642 hdev->flags |= HPET_DEV_FSB_CAP;
643 hdev->flags |= HPET_DEV_VALID;
644 num_timers_used++;
645 if (num_timers_used == num_possible_cpus())
646 break;
647 }
648
649 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
650 num_timers, num_timers_used);
651}
652
5f79f2f2
VP
653#ifdef CONFIG_HPET
654static void hpet_reserve_msi_timers(struct hpet_data *hd)
655{
656 int i;
657
658 if (!hpet_devs)
659 return;
660
661 for (i = 0; i < hpet_num_timers; i++) {
662 struct hpet_dev *hdev = &hpet_devs[i];
663
664 if (!(hdev->flags & HPET_DEV_VALID))
665 continue;
666
667 hd->hd_irq[hdev->num] = hdev->irq;
668 hpet_reserve_timer(hd, hdev->num);
669 }
670}
671#endif
672
26afe5f2 673static struct hpet_dev *hpet_get_unused_timer(void)
674{
675 int i;
676
677 if (!hpet_devs)
678 return NULL;
679
680 for (i = 0; i < hpet_num_timers; i++) {
681 struct hpet_dev *hdev = &hpet_devs[i];
682
683 if (!(hdev->flags & HPET_DEV_VALID))
684 continue;
685 if (test_and_set_bit(HPET_DEV_USED_BIT,
686 (unsigned long *)&hdev->flags))
687 continue;
688 return hdev;
689 }
690 return NULL;
691}
692
693struct hpet_work_struct {
694 struct delayed_work work;
695 struct completion complete;
696};
697
698static void hpet_work(struct work_struct *w)
699{
700 struct hpet_dev *hdev;
701 int cpu = smp_processor_id();
702 struct hpet_work_struct *hpet_work;
703
704 hpet_work = container_of(w, struct hpet_work_struct, work.work);
705
706 hdev = hpet_get_unused_timer();
707 if (hdev)
708 init_one_hpet_msi_clockevent(hdev, cpu);
709
710 complete(&hpet_work->complete);
711}
712
48d7f6c7 713static int hpet_cpuhp_online(unsigned int cpu)
26afe5f2 714{
26afe5f2 715 struct hpet_work_struct work;
48d7f6c7
SAS
716
717 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
718 init_completion(&work.complete);
719 /* FIXME: add schedule_work_on() */
720 schedule_delayed_work_on(cpu, &work.work, 0);
721 wait_for_completion(&work.complete);
722 destroy_delayed_work_on_stack(&work.work);
723 return 0;
724}
725
726static int hpet_cpuhp_dead(unsigned int cpu)
727{
26afe5f2 728 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
729
48d7f6c7
SAS
730 if (!hdev)
731 return 0;
732 free_irq(hdev->irq, hdev);
733 hdev->flags &= ~HPET_DEV_USED;
734 per_cpu(cpu_hpet_dev, cpu) = NULL;
735 return 0;
26afe5f2 736}
737#else
738
5f79f2f2
VP
739static void hpet_msi_capability_lookup(unsigned int start_timer)
740{
741 return;
742}
743
744#ifdef CONFIG_HPET
745static void hpet_reserve_msi_timers(struct hpet_data *hd)
26afe5f2 746{
747 return;
748}
5f79f2f2 749#endif
26afe5f2 750
48d7f6c7
SAS
751#define hpet_cpuhp_online NULL
752#define hpet_cpuhp_dead NULL
26afe5f2 753
754#endif
755
6bb74df4 756/*
757 * Clock source related code
758 */
f99fd22e
WL
759#if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
760/*
761 * Reading the HPET counter is a very slow operation. If a large number of
762 * CPUs are trying to access the HPET counter simultaneously, it can cause
763 * massive delay and slow down system performance dramatically. This may
764 * happen when HPET is the default clock source instead of TSC. For a
765 * really large system with hundreds of CPUs, the slowdown may be so
766 * severe that it may actually crash the system because of a NMI watchdog
767 * soft lockup, for example.
768 *
769 * If multiple CPUs are trying to access the HPET counter at the same time,
770 * we don't actually need to read the counter multiple times. Instead, the
771 * other CPUs can use the counter value read by the first CPU in the group.
772 *
773 * This special feature is only enabled on x86-64 systems. It is unlikely
774 * that 32-bit x86 systems will have enough CPUs to require this feature
775 * with its associated locking overhead. And we also need 64-bit atomic
776 * read.
777 *
778 * The lock and the hpet value are stored together and can be read in a
779 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
780 * is 32 bits in size.
781 */
782union hpet_lock {
783 struct {
784 arch_spinlock_t lock;
785 u32 value;
786 };
787 u64 lockval;
788};
789
790static union hpet_lock hpet __cacheline_aligned = {
791 { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
792};
793
a5a1d1c2 794static u64 read_hpet(struct clocksource *cs)
f99fd22e
WL
795{
796 unsigned long flags;
797 union hpet_lock old, new;
798
799 BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
800
801 /*
802 * Read HPET directly if in NMI.
803 */
804 if (in_nmi())
a5a1d1c2 805 return (u64)hpet_readl(HPET_COUNTER);
f99fd22e
WL
806
807 /*
808 * Read the current state of the lock and HPET value atomically.
809 */
810 old.lockval = READ_ONCE(hpet.lockval);
811
812 if (arch_spin_is_locked(&old.lock))
813 goto contended;
814
815 local_irq_save(flags);
816 if (arch_spin_trylock(&hpet.lock)) {
817 new.value = hpet_readl(HPET_COUNTER);
818 /*
819 * Use WRITE_ONCE() to prevent store tearing.
820 */
821 WRITE_ONCE(hpet.value, new.value);
822 arch_spin_unlock(&hpet.lock);
823 local_irq_restore(flags);
a5a1d1c2 824 return (u64)new.value;
f99fd22e
WL
825 }
826 local_irq_restore(flags);
827
828contended:
829 /*
830 * Contended case
831 * --------------
832 * Wait until the HPET value change or the lock is free to indicate
833 * its value is up-to-date.
834 *
835 * It is possible that old.value has already contained the latest
836 * HPET value while the lock holder was in the process of releasing
837 * the lock. Checking for lock state change will enable us to return
838 * the value immediately instead of waiting for the next HPET reader
839 * to come along.
840 */
841 do {
842 cpu_relax();
843 new.lockval = READ_ONCE(hpet.lockval);
844 } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
845
a5a1d1c2 846 return (u64)new.value;
f99fd22e
WL
847}
848#else
849/*
850 * For UP or 32-bit.
851 */
a5a1d1c2 852static u64 read_hpet(struct clocksource *cs)
6bb74df4 853{
a5a1d1c2 854 return (u64)hpet_readl(HPET_COUNTER);
6bb74df4 855}
f99fd22e 856#endif
6bb74df4 857
858static struct clocksource clocksource_hpet = {
859 .name = "hpet",
860 .rating = 250,
861 .read = read_hpet,
862 .mask = HPET_MASK,
6bb74df4 863 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
8d6f0c82 864 .resume = hpet_resume_counter,
6bb74df4 865};
866
610bf2f1 867static int hpet_clocksource_register(void)
e9e2cdb4 868{
6fd592da 869 u64 start, now;
a5a1d1c2 870 u64 t1;
e9e2cdb4 871
e9e2cdb4 872 /* Start the counter */
8d6f0c82 873 hpet_restart_counter();
e9e2cdb4 874
075bcd1f 875 /* Verify whether hpet counter works */
8e19608e 876 t1 = hpet_readl(HPET_COUNTER);
4ea1636b 877 start = rdtsc();
075bcd1f
TG
878
879 /*
880 * We don't know the TSC frequency yet, but waiting for
881 * 200000 TSC cycles is safe:
882 * 4 GHz == 50us
883 * 1 GHz == 200us
884 */
885 do {
886 rep_nop();
4ea1636b 887 now = rdtsc();
075bcd1f
TG
888 } while ((now - start) < 200000UL);
889
8e19608e 890 if (t1 == hpet_readl(HPET_COUNTER)) {
075bcd1f
TG
891 printk(KERN_WARNING
892 "HPET counter not counting. HPET disabled\n");
610bf2f1 893 return -ENODEV;
075bcd1f
TG
894 }
895
f12a15be 896 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
610bf2f1
VP
897 return 0;
898}
899
396e2c6f
JB
900static u32 *hpet_boot_cfg;
901
b02a7f22
PM
902/**
903 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
610bf2f1
VP
904 */
905int __init hpet_enable(void)
906{
396e2c6f 907 u32 hpet_period, cfg, id;
ab0e08f1 908 u64 freq;
396e2c6f 909 unsigned int i, last;
610bf2f1
VP
910
911 if (!is_hpet_capable())
912 return 0;
913
914 hpet_set_mapping();
915
916 /*
917 * Read the period and check for a sane value:
918 */
919 hpet_period = hpet_readl(HPET_PERIOD);
a6825f1c
TG
920
921 /*
922 * AMD SB700 based systems with spread spectrum enabled use a
923 * SMM based HPET emulation to provide proper frequency
924 * setting. The SMM code is initialized with the first HPET
925 * register access and takes some time to complete. During
926 * this time the config register reads 0xffffffff. We check
927 * for max. 1000 loops whether the config register reads a non
928 * 0xffffffff value to make sure that HPET is up and running
929 * before we go further. A counting loop is safe, as the HPET
930 * access takes thousands of CPU cycles. On non SB700 based
931 * machines this check is only done once and has no side
932 * effects.
933 */
934 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
935 if (i == 1000) {
936 printk(KERN_WARNING
937 "HPET config register value = 0xFFFFFFFF. "
938 "Disabling HPET\n");
939 goto out_nohpet;
940 }
941 }
942
610bf2f1
VP
943 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
944 goto out_nohpet;
945
ab0e08f1
TG
946 /*
947 * The period is a femto seconds value. Convert it to a
948 * frequency.
949 */
950 freq = FSEC_PER_SEC;
951 do_div(freq, hpet_period);
952 hpet_freq = freq;
953
610bf2f1
VP
954 /*
955 * Read the HPET ID register to retrieve the IRQ routing
956 * information and the number of channels
957 */
958 id = hpet_readl(HPET_ID);
b98103a5 959 hpet_print_config();
610bf2f1 960
396e2c6f
JB
961 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
962
610bf2f1
VP
963#ifdef CONFIG_HPET_EMULATE_RTC
964 /*
965 * The legacy routing mode needs at least two channels, tick timer
966 * and the rtc emulation channel.
967 */
396e2c6f 968 if (!last)
610bf2f1
VP
969 goto out_nohpet;
970#endif
971
396e2c6f
JB
972 cfg = hpet_readl(HPET_CFG);
973 hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
974 GFP_KERNEL);
975 if (hpet_boot_cfg)
976 *hpet_boot_cfg = cfg;
977 else
978 pr_warn("HPET initial state will not be saved\n");
979 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
1b38a3a1 980 hpet_writel(cfg, HPET_CFG);
396e2c6f
JB
981 if (cfg)
982 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
983 cfg);
984
985 for (i = 0; i <= last; ++i) {
986 cfg = hpet_readl(HPET_Tn_CFG(i));
987 if (hpet_boot_cfg)
988 hpet_boot_cfg[i + 1] = cfg;
989 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
990 hpet_writel(cfg, HPET_Tn_CFG(i));
991 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
992 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
993 | HPET_TN_FSB | HPET_TN_FSB_CAP);
994 if (cfg)
995 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
996 cfg, i);
997 }
998 hpet_print_config();
999
610bf2f1
VP
1000 if (hpet_clocksource_register())
1001 goto out_nohpet;
1002
e9e2cdb4 1003 if (id & HPET_ID_LEGSUP) {
610bf2f1 1004 hpet_legacy_clockevent_register();
e9e2cdb4
TG
1005 return 1;
1006 }
1007 return 0;
5d0cf410 1008
e9e2cdb4 1009out_nohpet:
06a24dec 1010 hpet_clear_mapping();
bacbe999 1011 hpet_address = 0;
e9e2cdb4
TG
1012 return 0;
1013}
1014
28769149
TG
1015/*
1016 * Needs to be late, as the reserve_timer code calls kalloc !
1017 *
1018 * Not a problem on i386 as hpet_enable is called from late_time_init,
1019 * but on x86_64 it is necessary !
1020 */
1021static __init int hpet_late_init(void)
1022{
48d7f6c7 1023 int ret;
26afe5f2 1024
59c69f2a 1025 if (boot_hpet_disable)
28769149
TG
1026 return -ENODEV;
1027
59c69f2a
VP
1028 if (!hpet_address) {
1029 if (!force_hpet_address)
1030 return -ENODEV;
1031
1032 hpet_address = force_hpet_address;
1033 hpet_enable();
59c69f2a
VP
1034 }
1035
39c04b55
JF
1036 if (!hpet_virt_address)
1037 return -ENODEV;
1038
39fe05e5
SL
1039 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
1040 hpet_msi_capability_lookup(2);
1041 else
1042 hpet_msi_capability_lookup(0);
1043
28769149 1044 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
b98103a5 1045 hpet_print_config();
59c69f2a 1046
73472a46
PV
1047 if (hpet_msi_disable)
1048 return 0;
1049
39fe05e5
SL
1050 if (boot_cpu_has(X86_FEATURE_ARAT))
1051 return 0;
1052
26afe5f2 1053 /* This notifier should be called after workqueue is ready */
48d7f6c7
SAS
1054 ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "AP_X86_HPET_ONLINE",
1055 hpet_cpuhp_online, NULL);
1056 if (ret)
1057 return ret;
1058 ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "X86_HPET_DEAD", NULL,
1059 hpet_cpuhp_dead);
1060 if (ret)
1061 goto err_cpuhp;
28769149 1062 return 0;
48d7f6c7
SAS
1063
1064err_cpuhp:
1065 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1066 return ret;
28769149
TG
1067}
1068fs_initcall(hpet_late_init);
1069
c86c7fbc
OH
1070void hpet_disable(void)
1071{
ff487808 1072 if (is_hpet_capable() && hpet_virt_address) {
396e2c6f 1073 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
c86c7fbc 1074
396e2c6f
JB
1075 if (hpet_boot_cfg)
1076 cfg = *hpet_boot_cfg;
1077 else if (hpet_legacy_int_enabled) {
c86c7fbc 1078 cfg &= ~HPET_CFG_LEGACY;
3d45ac4b 1079 hpet_legacy_int_enabled = false;
c86c7fbc
OH
1080 }
1081 cfg &= ~HPET_CFG_ENABLE;
1082 hpet_writel(cfg, HPET_CFG);
396e2c6f
JB
1083
1084 if (!hpet_boot_cfg)
1085 return;
1086
1087 id = hpet_readl(HPET_ID);
1088 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
1089
1090 for (id = 0; id <= last; ++id)
1091 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1092
1093 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1094 hpet_writel(*hpet_boot_cfg, HPET_CFG);
c86c7fbc
OH
1095 }
1096}
1097
e9e2cdb4
TG
1098#ifdef CONFIG_HPET_EMULATE_RTC
1099
1100/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1101 * is enabled, we support RTC interrupt functionality in software.
1102 * RTC has 3 kinds of interrupts:
1103 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1104 * is updated
1105 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1106 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1107 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1108 * (1) and (2) above are implemented using polling at a frequency of
1109 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1110 * overhead. (DEFAULT_RTC_INT_FREQ)
1111 * For (3), we use interrupts at 64Hz or user specified periodic
1112 * frequency, whichever is higher.
1113 */
1114#include <linux/mc146818rtc.h>
1115#include <linux/rtc.h>
1116
1117#define DEFAULT_RTC_INT_FREQ 64
1118#define DEFAULT_RTC_SHIFT 6
1119#define RTC_NUM_INTS 1
1120
1121static unsigned long hpet_rtc_flags;
7e2a31da 1122static int hpet_prev_update_sec;
e9e2cdb4
TG
1123static struct rtc_time hpet_alarm_time;
1124static unsigned long hpet_pie_count;
ff08f76d 1125static u32 hpet_t1_cmp;
5946fa3d
JB
1126static u32 hpet_default_delta;
1127static u32 hpet_pie_delta;
e9e2cdb4
TG
1128static unsigned long hpet_pie_limit;
1129
1bdbdaac
BW
1130static rtc_irq_handler irq_handler;
1131
ff08f76d
PE
1132/*
1133 * Check that the hpet counter c1 is ahead of the c2
1134 */
1135static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1136{
1137 return (s32)(c2 - c1) < 0;
1138}
1139
1bdbdaac
BW
1140/*
1141 * Registers a IRQ handler.
1142 */
1143int hpet_register_irq_handler(rtc_irq_handler handler)
1144{
1145 if (!is_hpet_enabled())
1146 return -ENODEV;
1147 if (irq_handler)
1148 return -EBUSY;
1149
1150 irq_handler = handler;
1151
1152 return 0;
1153}
1154EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1155
1156/*
1157 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1158 * and does cleanup.
1159 */
1160void hpet_unregister_irq_handler(rtc_irq_handler handler)
1161{
1162 if (!is_hpet_enabled())
1163 return;
1164
1165 irq_handler = NULL;
1166 hpet_rtc_flags = 0;
1167}
1168EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1169
e9e2cdb4
TG
1170/*
1171 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1172 * is not supported by all HPET implementations for timer 1.
1173 *
1174 * hpet_rtc_timer_init() is called when the rtc is initialized.
1175 */
1176int hpet_rtc_timer_init(void)
1177{
5946fa3d
JB
1178 unsigned int cfg, cnt, delta;
1179 unsigned long flags;
e9e2cdb4
TG
1180
1181 if (!is_hpet_enabled())
1182 return 0;
1183
1184 if (!hpet_default_delta) {
1185 uint64_t clc;
1186
1187 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1188 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
5946fa3d 1189 hpet_default_delta = clc;
e9e2cdb4
TG
1190 }
1191
1192 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1193 delta = hpet_default_delta;
1194 else
1195 delta = hpet_pie_delta;
1196
1197 local_irq_save(flags);
1198
1199 cnt = delta + hpet_readl(HPET_COUNTER);
1200 hpet_writel(cnt, HPET_T1_CMP);
1201 hpet_t1_cmp = cnt;
1202
1203 cfg = hpet_readl(HPET_T1_CFG);
1204 cfg &= ~HPET_TN_PERIODIC;
1205 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1206 hpet_writel(cfg, HPET_T1_CFG);
1207
1208 local_irq_restore(flags);
1209
1210 return 1;
1211}
1bdbdaac 1212EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
e9e2cdb4 1213
2ded6e6a
ML
1214static void hpet_disable_rtc_channel(void)
1215{
3d45ac4b 1216 u32 cfg = hpet_readl(HPET_T1_CFG);
2ded6e6a
ML
1217 cfg &= ~HPET_TN_ENABLE;
1218 hpet_writel(cfg, HPET_T1_CFG);
1219}
1220
e9e2cdb4
TG
1221/*
1222 * The functions below are called from rtc driver.
1223 * Return 0 if HPET is not being used.
1224 * Otherwise do the necessary changes and return 1.
1225 */
1226int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1227{
1228 if (!is_hpet_enabled())
1229 return 0;
1230
1231 hpet_rtc_flags &= ~bit_mask;
2ded6e6a
ML
1232 if (unlikely(!hpet_rtc_flags))
1233 hpet_disable_rtc_channel();
1234
e9e2cdb4
TG
1235 return 1;
1236}
1bdbdaac 1237EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
e9e2cdb4
TG
1238
1239int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1240{
1241 unsigned long oldbits = hpet_rtc_flags;
1242
1243 if (!is_hpet_enabled())
1244 return 0;
1245
1246 hpet_rtc_flags |= bit_mask;
1247
7e2a31da
DB
1248 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1249 hpet_prev_update_sec = -1;
1250
e9e2cdb4
TG
1251 if (!oldbits)
1252 hpet_rtc_timer_init();
1253
1254 return 1;
1255}
1bdbdaac 1256EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
e9e2cdb4
TG
1257
1258int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1259 unsigned char sec)
1260{
1261 if (!is_hpet_enabled())
1262 return 0;
1263
1264 hpet_alarm_time.tm_hour = hrs;
1265 hpet_alarm_time.tm_min = min;
1266 hpet_alarm_time.tm_sec = sec;
1267
1268 return 1;
1269}
1bdbdaac 1270EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
e9e2cdb4
TG
1271
1272int hpet_set_periodic_freq(unsigned long freq)
1273{
1274 uint64_t clc;
1275
1276 if (!is_hpet_enabled())
1277 return 0;
1278
1279 if (freq <= DEFAULT_RTC_INT_FREQ)
1280 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1281 else {
1282 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1283 do_div(clc, freq);
1284 clc >>= hpet_clockevent.shift;
5946fa3d 1285 hpet_pie_delta = clc;
b4a5e8a1 1286 hpet_pie_limit = 0;
e9e2cdb4
TG
1287 }
1288 return 1;
1289}
1bdbdaac 1290EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
e9e2cdb4
TG
1291
1292int hpet_rtc_dropped_irq(void)
1293{
1294 return is_hpet_enabled();
1295}
1bdbdaac 1296EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
e9e2cdb4
TG
1297
1298static void hpet_rtc_timer_reinit(void)
1299{
2ded6e6a 1300 unsigned int delta;
e9e2cdb4
TG
1301 int lost_ints = -1;
1302
2ded6e6a
ML
1303 if (unlikely(!hpet_rtc_flags))
1304 hpet_disable_rtc_channel();
e9e2cdb4
TG
1305
1306 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1307 delta = hpet_default_delta;
1308 else
1309 delta = hpet_pie_delta;
1310
1311 /*
1312 * Increment the comparator value until we are ahead of the
1313 * current count.
1314 */
1315 do {
1316 hpet_t1_cmp += delta;
1317 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1318 lost_ints++;
ff08f76d 1319 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
e9e2cdb4
TG
1320
1321 if (lost_ints) {
1322 if (hpet_rtc_flags & RTC_PIE)
1323 hpet_pie_count += lost_ints;
1324 if (printk_ratelimit())
7e2a31da 1325 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
e9e2cdb4
TG
1326 lost_ints);
1327 }
1328}
1329
1330irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1331{
1332 struct rtc_time curr_time;
1333 unsigned long rtc_int_flag = 0;
1334
1335 hpet_rtc_timer_reinit();
1bdbdaac 1336 memset(&curr_time, 0, sizeof(struct rtc_time));
e9e2cdb4
TG
1337
1338 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
22cc1ca3 1339 mc146818_get_time(&curr_time);
e9e2cdb4
TG
1340
1341 if (hpet_rtc_flags & RTC_UIE &&
1342 curr_time.tm_sec != hpet_prev_update_sec) {
7e2a31da
DB
1343 if (hpet_prev_update_sec >= 0)
1344 rtc_int_flag = RTC_UF;
e9e2cdb4
TG
1345 hpet_prev_update_sec = curr_time.tm_sec;
1346 }
1347
1348 if (hpet_rtc_flags & RTC_PIE &&
1349 ++hpet_pie_count >= hpet_pie_limit) {
1350 rtc_int_flag |= RTC_PF;
1351 hpet_pie_count = 0;
1352 }
1353
8ee291f8 1354 if (hpet_rtc_flags & RTC_AIE &&
e9e2cdb4
TG
1355 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1356 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1357 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1358 rtc_int_flag |= RTC_AF;
1359
1360 if (rtc_int_flag) {
1361 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1bdbdaac
BW
1362 if (irq_handler)
1363 irq_handler(rtc_int_flag, dev_id);
e9e2cdb4
TG
1364 }
1365 return IRQ_HANDLED;
1366}
1bdbdaac 1367EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
e9e2cdb4 1368#endif