x86: HPET: fix sparse warning
[linux-2.6-block.git] / arch / x86 / kernel / hpet.c
CommitLineData
5d0cf410 1#include <linux/clocksource.h>
e9e2cdb4 2#include <linux/clockchips.h>
4588c1f0
IM
3#include <linux/interrupt.h>
4#include <linux/sysdev.h>
28769149 5#include <linux/delay.h>
5d0cf410 6#include <linux/errno.h>
7#include <linux/hpet.h>
8#include <linux/init.h>
58ac1e76 9#include <linux/cpu.h>
4588c1f0
IM
10#include <linux/pm.h>
11#include <linux/io.h>
5d0cf410 12
28769149 13#include <asm/fixmap.h>
06a24dec 14#include <asm/i8253.h>
4588c1f0 15#include <asm/hpet.h>
5d0cf410 16
4588c1f0
IM
17#define HPET_MASK CLOCKSOURCE_MASK(32)
18#define HPET_SHIFT 22
5d0cf410 19
b10db7f0
PM
20/* FSEC = 10^-15
21 NSEC = 10^-9 */
4588c1f0 22#define FSEC_PER_NSEC 1000000L
5d0cf410 23
26afe5f2 24#define HPET_DEV_USED_BIT 2
25#define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26#define HPET_DEV_VALID 0x8
27#define HPET_DEV_FSB_CAP 0x1000
28#define HPET_DEV_PERI_CAP 0x2000
29
30#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
e9e2cdb4
TG
32/*
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
34 */
4588c1f0 35unsigned long hpet_address;
3b71e9e3 36static unsigned long hpet_num_timers;
4588c1f0 37static void __iomem *hpet_virt_address;
e9e2cdb4 38
58ac1e76 39struct hpet_dev {
4588c1f0
IM
40 struct clock_event_device evt;
41 unsigned int num;
42 int cpu;
43 unsigned int irq;
44 unsigned int flags;
45 char name[10];
58ac1e76 46};
47
31c435d7 48unsigned long hpet_readl(unsigned long a)
e9e2cdb4
TG
49{
50 return readl(hpet_virt_address + a);
51}
52
53static inline void hpet_writel(unsigned long d, unsigned long a)
54{
55 writel(d, hpet_virt_address + a);
56}
57
28769149 58#ifdef CONFIG_X86_64
28769149 59#include <asm/pgtable.h>
2387ce57 60#endif
28769149 61
06a24dec
TG
62static inline void hpet_set_mapping(void)
63{
64 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
2387ce57
YL
65#ifdef CONFIG_X86_64
66 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
67#endif
06a24dec
TG
68}
69
70static inline void hpet_clear_mapping(void)
71{
72 iounmap(hpet_virt_address);
73 hpet_virt_address = NULL;
74}
75
e9e2cdb4
TG
76/*
77 * HPET command line enable / disable
78 */
79static int boot_hpet_disable;
b17530bd 80int hpet_force_user;
e9e2cdb4 81
4588c1f0 82static int __init hpet_setup(char *str)
e9e2cdb4
TG
83{
84 if (str) {
85 if (!strncmp("disable", str, 7))
86 boot_hpet_disable = 1;
b17530bd
TG
87 if (!strncmp("force", str, 5))
88 hpet_force_user = 1;
e9e2cdb4
TG
89 }
90 return 1;
91}
92__setup("hpet=", hpet_setup);
93
28769149
TG
94static int __init disable_hpet(char *str)
95{
96 boot_hpet_disable = 1;
97 return 1;
98}
99__setup("nohpet", disable_hpet);
100
e9e2cdb4
TG
101static inline int is_hpet_capable(void)
102{
4588c1f0 103 return !boot_hpet_disable && hpet_address;
e9e2cdb4
TG
104}
105
106/*
107 * HPET timer interrupt enable / disable
108 */
109static int hpet_legacy_int_enabled;
110
111/**
112 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
113 */
114int is_hpet_enabled(void)
115{
116 return is_hpet_capable() && hpet_legacy_int_enabled;
117}
1bdbdaac 118EXPORT_SYMBOL_GPL(is_hpet_enabled);
e9e2cdb4
TG
119
120/*
121 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
122 * timer 0 and timer 1 in case of RTC emulation.
123 */
124#ifdef CONFIG_HPET
f0ed4e69 125
5f79f2f2 126static void hpet_reserve_msi_timers(struct hpet_data *hd);
f0ed4e69 127
e9e2cdb4
TG
128static void hpet_reserve_platform_timers(unsigned long id)
129{
130 struct hpet __iomem *hpet = hpet_virt_address;
37a47db8
BR
131 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
132 unsigned int nrtimers, i;
e9e2cdb4
TG
133 struct hpet_data hd;
134
135 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
136
4588c1f0
IM
137 memset(&hd, 0, sizeof(hd));
138 hd.hd_phys_address = hpet_address;
139 hd.hd_address = hpet;
140 hd.hd_nirqs = nrtimers;
e9e2cdb4
TG
141 hpet_reserve_timer(&hd, 0);
142
143#ifdef CONFIG_HPET_EMULATE_RTC
144 hpet_reserve_timer(&hd, 1);
145#endif
5761d64b 146
64a76f66
DB
147 /*
148 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
149 * is wrong for i8259!) not the output IRQ. Many BIOS writers
150 * don't bother configuring *any* comparator interrupts.
151 */
e9e2cdb4
TG
152 hd.hd_irq[0] = HPET_LEGACY_8254;
153 hd.hd_irq[1] = HPET_LEGACY_RTC;
154
fc3fbc45 155 for (i = 2; i < nrtimers; timer++, i++) {
4588c1f0
IM
156 hd.hd_irq[i] = (readl(&timer->hpet_config) &
157 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
fc3fbc45 158 }
5761d64b 159
f0ed4e69 160 hpet_reserve_msi_timers(&hd);
26afe5f2 161
e9e2cdb4 162 hpet_alloc(&hd);
5761d64b 163
e9e2cdb4
TG
164}
165#else
166static void hpet_reserve_platform_timers(unsigned long id) { }
167#endif
168
169/*
170 * Common hpet info
171 */
172static unsigned long hpet_period;
173
610bf2f1 174static void hpet_legacy_set_mode(enum clock_event_mode mode,
e9e2cdb4 175 struct clock_event_device *evt);
610bf2f1 176static int hpet_legacy_next_event(unsigned long delta,
e9e2cdb4
TG
177 struct clock_event_device *evt);
178
179/*
180 * The hpet clock event device
181 */
182static struct clock_event_device hpet_clockevent = {
183 .name = "hpet",
184 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
610bf2f1
VP
185 .set_mode = hpet_legacy_set_mode,
186 .set_next_event = hpet_legacy_next_event,
e9e2cdb4
TG
187 .shift = 32,
188 .irq = 0,
59c69f2a 189 .rating = 50,
e9e2cdb4
TG
190};
191
192static void hpet_start_counter(void)
193{
194 unsigned long cfg = hpet_readl(HPET_CFG);
195
196 cfg &= ~HPET_CFG_ENABLE;
197 hpet_writel(cfg, HPET_CFG);
198 hpet_writel(0, HPET_COUNTER);
199 hpet_writel(0, HPET_COUNTER + 4);
200 cfg |= HPET_CFG_ENABLE;
201 hpet_writel(cfg, HPET_CFG);
202}
203
59c69f2a
VP
204static void hpet_resume_device(void)
205{
bfe0c1cc 206 force_hpet_resume();
59c69f2a
VP
207}
208
209static void hpet_restart_counter(void)
210{
211 hpet_resume_device();
212 hpet_start_counter();
213}
214
610bf2f1 215static void hpet_enable_legacy_int(void)
e9e2cdb4
TG
216{
217 unsigned long cfg = hpet_readl(HPET_CFG);
218
219 cfg |= HPET_CFG_LEGACY;
220 hpet_writel(cfg, HPET_CFG);
221 hpet_legacy_int_enabled = 1;
222}
223
610bf2f1
VP
224static void hpet_legacy_clockevent_register(void)
225{
610bf2f1
VP
226 /* Start HPET legacy interrupts */
227 hpet_enable_legacy_int();
228
229 /*
6fd592da
CM
230 * The mult factor is defined as (include/linux/clockchips.h)
231 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
232 * hpet_period is in units of femtoseconds (per cycle), so
233 * mult/2^shift = cyc/ns = 10^6/hpet_period
234 * mult = (10^6 * 2^shift)/hpet_period
235 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
610bf2f1 236 */
6fd592da
CM
237 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
238 hpet_period, hpet_clockevent.shift);
610bf2f1
VP
239 /* Calculate the min / max delta */
240 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
241 &hpet_clockevent);
7cfb0435
TG
242 /* 5 usec minimum reprogramming delta. */
243 hpet_clockevent.min_delta_ns = 5000;
610bf2f1
VP
244
245 /*
246 * Start hpet with the boot cpu mask and make it
247 * global after the IO_APIC has been initialized.
248 */
249 hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
250 clockevents_register_device(&hpet_clockevent);
251 global_clock_event = &hpet_clockevent;
252 printk(KERN_DEBUG "hpet clockevent registered\n");
253}
254
26afe5f2 255static int hpet_setup_msi_irq(unsigned int irq);
256
b40d575b 257static void hpet_set_mode(enum clock_event_mode mode,
258 struct clock_event_device *evt, int timer)
e9e2cdb4
TG
259{
260 unsigned long cfg, cmp, now;
261 uint64_t delta;
262
4588c1f0 263 switch (mode) {
e9e2cdb4 264 case CLOCK_EVT_MODE_PERIODIC:
b40d575b 265 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
266 delta >>= evt->shift;
e9e2cdb4
TG
267 now = hpet_readl(HPET_COUNTER);
268 cmp = now + (unsigned long) delta;
b40d575b 269 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4
TG
270 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
271 HPET_TN_SETVAL | HPET_TN_32BIT;
b40d575b 272 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4
TG
273 /*
274 * The first write after writing TN_SETVAL to the
275 * config register sets the counter value, the second
276 * write sets the period.
277 */
b40d575b 278 hpet_writel(cmp, HPET_Tn_CMP(timer));
e9e2cdb4 279 udelay(1);
b40d575b 280 hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
e9e2cdb4
TG
281 break;
282
283 case CLOCK_EVT_MODE_ONESHOT:
b40d575b 284 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4
TG
285 cfg &= ~HPET_TN_PERIODIC;
286 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
b40d575b 287 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4
TG
288 break;
289
290 case CLOCK_EVT_MODE_UNUSED:
291 case CLOCK_EVT_MODE_SHUTDOWN:
b40d575b 292 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4 293 cfg &= ~HPET_TN_ENABLE;
b40d575b 294 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4 295 break;
18de5bc4
TG
296
297 case CLOCK_EVT_MODE_RESUME:
26afe5f2 298 if (timer == 0) {
299 hpet_enable_legacy_int();
300 } else {
301 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
302 hpet_setup_msi_irq(hdev->irq);
303 disable_irq(hdev->irq);
304 irq_set_affinity(hdev->irq, cpumask_of_cpu(hdev->cpu));
305 enable_irq(hdev->irq);
306 }
18de5bc4 307 break;
e9e2cdb4
TG
308 }
309}
310
b40d575b 311static int hpet_next_event(unsigned long delta,
312 struct clock_event_device *evt, int timer)
e9e2cdb4 313{
f7676254 314 u32 cnt;
e9e2cdb4
TG
315
316 cnt = hpet_readl(HPET_COUNTER);
f7676254 317 cnt += (u32) delta;
b40d575b 318 hpet_writel(cnt, HPET_Tn_CMP(timer));
e9e2cdb4 319
72d43d9b
TG
320 /*
321 * We need to read back the CMP register to make sure that
322 * what we wrote hit the chip before we compare it to the
323 * counter.
324 */
89d77a1e 325 WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
72d43d9b 326
f7676254 327 return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
e9e2cdb4
TG
328}
329
b40d575b 330static void hpet_legacy_set_mode(enum clock_event_mode mode,
331 struct clock_event_device *evt)
332{
333 hpet_set_mode(mode, evt, 0);
334}
335
336static int hpet_legacy_next_event(unsigned long delta,
337 struct clock_event_device *evt)
338{
339 return hpet_next_event(delta, evt, 0);
340}
341
58ac1e76 342/*
343 * HPET MSI Support
344 */
26afe5f2 345#ifdef CONFIG_PCI_MSI
5f79f2f2
VP
346
347static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
348static struct hpet_dev *hpet_devs;
349
58ac1e76 350void hpet_msi_unmask(unsigned int irq)
351{
352 struct hpet_dev *hdev = get_irq_data(irq);
353 unsigned long cfg;
354
355 /* unmask it */
356 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
357 cfg |= HPET_TN_FSB;
358 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
359}
360
361void hpet_msi_mask(unsigned int irq)
362{
363 unsigned long cfg;
364 struct hpet_dev *hdev = get_irq_data(irq);
365
366 /* mask it */
367 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
368 cfg &= ~HPET_TN_FSB;
369 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
370}
371
372void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
373{
374 struct hpet_dev *hdev = get_irq_data(irq);
375
376 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
377 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
378}
379
380void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
381{
382 struct hpet_dev *hdev = get_irq_data(irq);
383
384 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
385 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
386 msg->address_hi = 0;
387}
388
26afe5f2 389static void hpet_msi_set_mode(enum clock_event_mode mode,
390 struct clock_event_device *evt)
391{
392 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
393 hpet_set_mode(mode, evt, hdev->num);
394}
395
396static int hpet_msi_next_event(unsigned long delta,
397 struct clock_event_device *evt)
398{
399 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
400 return hpet_next_event(delta, evt, hdev->num);
401}
402
403static int hpet_setup_msi_irq(unsigned int irq)
404{
405 if (arch_setup_hpet_msi(irq)) {
406 destroy_irq(irq);
407 return -EINVAL;
408 }
409 return 0;
410}
411
412static int hpet_assign_irq(struct hpet_dev *dev)
413{
414 unsigned int irq;
415
416 irq = create_irq();
417 if (!irq)
418 return -EINVAL;
419
420 set_irq_data(irq, dev);
421
422 if (hpet_setup_msi_irq(irq))
423 return -EINVAL;
424
425 dev->irq = irq;
426 return 0;
427}
428
429static irqreturn_t hpet_interrupt_handler(int irq, void *data)
430{
431 struct hpet_dev *dev = (struct hpet_dev *)data;
432 struct clock_event_device *hevt = &dev->evt;
433
434 if (!hevt->event_handler) {
435 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
436 dev->num);
437 return IRQ_HANDLED;
438 }
439
440 hevt->event_handler(hevt);
441 return IRQ_HANDLED;
442}
443
444static int hpet_setup_irq(struct hpet_dev *dev)
445{
446
447 if (request_irq(dev->irq, hpet_interrupt_handler,
5ceb1a04 448 IRQF_DISABLED|IRQF_NOBALANCING, dev->name, dev))
26afe5f2 449 return -1;
450
451 disable_irq(dev->irq);
452 irq_set_affinity(dev->irq, cpumask_of_cpu(dev->cpu));
453 enable_irq(dev->irq);
454
c81bba49
YL
455 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
456 dev->name, dev->irq);
457
26afe5f2 458 return 0;
459}
460
461/* This should be called in specific @cpu */
462static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
463{
464 struct clock_event_device *evt = &hdev->evt;
465 uint64_t hpet_freq;
466
467 WARN_ON(cpu != smp_processor_id());
468 if (!(hdev->flags & HPET_DEV_VALID))
469 return;
470
471 if (hpet_setup_msi_irq(hdev->irq))
472 return;
473
474 hdev->cpu = cpu;
475 per_cpu(cpu_hpet_dev, cpu) = hdev;
476 evt->name = hdev->name;
477 hpet_setup_irq(hdev);
478 evt->irq = hdev->irq;
479
480 evt->rating = 110;
481 evt->features = CLOCK_EVT_FEAT_ONESHOT;
482 if (hdev->flags & HPET_DEV_PERI_CAP)
483 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
484
485 evt->set_mode = hpet_msi_set_mode;
486 evt->set_next_event = hpet_msi_next_event;
487 evt->shift = 32;
488
489 /*
490 * The period is a femto seconds value. We need to calculate the
491 * scaled math multiplication factor for nanosecond to hpet tick
492 * conversion.
493 */
494 hpet_freq = 1000000000000000ULL;
495 do_div(hpet_freq, hpet_period);
496 evt->mult = div_sc((unsigned long) hpet_freq,
497 NSEC_PER_SEC, evt->shift);
498 /* Calculate the max delta */
499 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
500 /* 5 usec minimum reprogramming delta. */
501 evt->min_delta_ns = 5000;
502
503 evt->cpumask = cpumask_of_cpu(hdev->cpu);
504 clockevents_register_device(evt);
505}
506
507#ifdef CONFIG_HPET
508/* Reserve at least one timer for userspace (/dev/hpet) */
509#define RESERVE_TIMERS 1
510#else
511#define RESERVE_TIMERS 0
512#endif
5f79f2f2
VP
513
514static void hpet_msi_capability_lookup(unsigned int start_timer)
26afe5f2 515{
516 unsigned int id;
517 unsigned int num_timers;
518 unsigned int num_timers_used = 0;
519 int i;
520
521 id = hpet_readl(HPET_ID);
522
523 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
524 num_timers++; /* Value read out starts from 0 */
525
526 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
527 if (!hpet_devs)
528 return;
529
530 hpet_num_timers = num_timers;
531
532 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
533 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
534 unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
535
536 /* Only consider HPET timer with MSI support */
537 if (!(cfg & HPET_TN_FSB_CAP))
538 continue;
539
540 hdev->flags = 0;
541 if (cfg & HPET_TN_PERIODIC_CAP)
542 hdev->flags |= HPET_DEV_PERI_CAP;
543 hdev->num = i;
544
545 sprintf(hdev->name, "hpet%d", i);
546 if (hpet_assign_irq(hdev))
547 continue;
548
549 hdev->flags |= HPET_DEV_FSB_CAP;
550 hdev->flags |= HPET_DEV_VALID;
551 num_timers_used++;
552 if (num_timers_used == num_possible_cpus())
553 break;
554 }
555
556 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
557 num_timers, num_timers_used);
558}
559
5f79f2f2
VP
560#ifdef CONFIG_HPET
561static void hpet_reserve_msi_timers(struct hpet_data *hd)
562{
563 int i;
564
565 if (!hpet_devs)
566 return;
567
568 for (i = 0; i < hpet_num_timers; i++) {
569 struct hpet_dev *hdev = &hpet_devs[i];
570
571 if (!(hdev->flags & HPET_DEV_VALID))
572 continue;
573
574 hd->hd_irq[hdev->num] = hdev->irq;
575 hpet_reserve_timer(hd, hdev->num);
576 }
577}
578#endif
579
26afe5f2 580static struct hpet_dev *hpet_get_unused_timer(void)
581{
582 int i;
583
584 if (!hpet_devs)
585 return NULL;
586
587 for (i = 0; i < hpet_num_timers; i++) {
588 struct hpet_dev *hdev = &hpet_devs[i];
589
590 if (!(hdev->flags & HPET_DEV_VALID))
591 continue;
592 if (test_and_set_bit(HPET_DEV_USED_BIT,
593 (unsigned long *)&hdev->flags))
594 continue;
595 return hdev;
596 }
597 return NULL;
598}
599
600struct hpet_work_struct {
601 struct delayed_work work;
602 struct completion complete;
603};
604
605static void hpet_work(struct work_struct *w)
606{
607 struct hpet_dev *hdev;
608 int cpu = smp_processor_id();
609 struct hpet_work_struct *hpet_work;
610
611 hpet_work = container_of(w, struct hpet_work_struct, work.work);
612
613 hdev = hpet_get_unused_timer();
614 if (hdev)
615 init_one_hpet_msi_clockevent(hdev, cpu);
616
617 complete(&hpet_work->complete);
618}
619
620static int hpet_cpuhp_notify(struct notifier_block *n,
621 unsigned long action, void *hcpu)
622{
623 unsigned long cpu = (unsigned long)hcpu;
624 struct hpet_work_struct work;
625 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
626
627 switch (action & 0xf) {
628 case CPU_ONLINE:
629 INIT_DELAYED_WORK(&work.work, hpet_work);
630 init_completion(&work.complete);
631 /* FIXME: add schedule_work_on() */
632 schedule_delayed_work_on(cpu, &work.work, 0);
633 wait_for_completion(&work.complete);
634 break;
635 case CPU_DEAD:
636 if (hdev) {
637 free_irq(hdev->irq, hdev);
638 hdev->flags &= ~HPET_DEV_USED;
639 per_cpu(cpu_hpet_dev, cpu) = NULL;
640 }
641 break;
642 }
643 return NOTIFY_OK;
644}
645#else
646
ba374c9b
SN
647static int hpet_setup_msi_irq(unsigned int irq)
648{
649 return 0;
650}
5f79f2f2
VP
651static void hpet_msi_capability_lookup(unsigned int start_timer)
652{
653 return;
654}
655
656#ifdef CONFIG_HPET
657static void hpet_reserve_msi_timers(struct hpet_data *hd)
26afe5f2 658{
659 return;
660}
5f79f2f2 661#endif
26afe5f2 662
663static int hpet_cpuhp_notify(struct notifier_block *n,
664 unsigned long action, void *hcpu)
665{
666 return NOTIFY_OK;
667}
668
669#endif
670
6bb74df4 671/*
672 * Clock source related code
673 */
674static cycle_t read_hpet(void)
675{
676 return (cycle_t)hpet_readl(HPET_COUNTER);
677}
678
28769149
TG
679#ifdef CONFIG_X86_64
680static cycle_t __vsyscall_fn vread_hpet(void)
681{
682 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
683}
684#endif
685
6bb74df4 686static struct clocksource clocksource_hpet = {
687 .name = "hpet",
688 .rating = 250,
689 .read = read_hpet,
690 .mask = HPET_MASK,
691 .shift = HPET_SHIFT,
692 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
59c69f2a 693 .resume = hpet_restart_counter,
28769149
TG
694#ifdef CONFIG_X86_64
695 .vread = vread_hpet,
696#endif
6bb74df4 697};
698
610bf2f1 699static int hpet_clocksource_register(void)
e9e2cdb4 700{
6fd592da 701 u64 start, now;
075bcd1f 702 cycle_t t1;
e9e2cdb4 703
e9e2cdb4
TG
704 /* Start the counter */
705 hpet_start_counter();
706
075bcd1f
TG
707 /* Verify whether hpet counter works */
708 t1 = read_hpet();
709 rdtscll(start);
710
711 /*
712 * We don't know the TSC frequency yet, but waiting for
713 * 200000 TSC cycles is safe:
714 * 4 GHz == 50us
715 * 1 GHz == 200us
716 */
717 do {
718 rep_nop();
719 rdtscll(now);
720 } while ((now - start) < 200000UL);
721
722 if (t1 == read_hpet()) {
723 printk(KERN_WARNING
724 "HPET counter not counting. HPET disabled\n");
610bf2f1 725 return -ENODEV;
075bcd1f
TG
726 }
727
6fd592da
CM
728 /*
729 * The definition of mult is (include/linux/clocksource.h)
730 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
731 * so we first need to convert hpet_period to ns/cyc units:
732 * mult/2^shift = ns/cyc = hpet_period/10^6
733 * mult = (hpet_period * 2^shift)/10^6
734 * mult = (hpet_period << shift)/FSEC_PER_NSEC
6bb74df4 735 */
6fd592da 736 clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
6bb74df4 737
738 clocksource_register(&clocksource_hpet);
739
610bf2f1
VP
740 return 0;
741}
742
b02a7f22
PM
743/**
744 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
610bf2f1
VP
745 */
746int __init hpet_enable(void)
747{
748 unsigned long id;
a6825f1c 749 int i;
610bf2f1
VP
750
751 if (!is_hpet_capable())
752 return 0;
753
754 hpet_set_mapping();
755
756 /*
757 * Read the period and check for a sane value:
758 */
759 hpet_period = hpet_readl(HPET_PERIOD);
a6825f1c
TG
760
761 /*
762 * AMD SB700 based systems with spread spectrum enabled use a
763 * SMM based HPET emulation to provide proper frequency
764 * setting. The SMM code is initialized with the first HPET
765 * register access and takes some time to complete. During
766 * this time the config register reads 0xffffffff. We check
767 * for max. 1000 loops whether the config register reads a non
768 * 0xffffffff value to make sure that HPET is up and running
769 * before we go further. A counting loop is safe, as the HPET
770 * access takes thousands of CPU cycles. On non SB700 based
771 * machines this check is only done once and has no side
772 * effects.
773 */
774 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
775 if (i == 1000) {
776 printk(KERN_WARNING
777 "HPET config register value = 0xFFFFFFFF. "
778 "Disabling HPET\n");
779 goto out_nohpet;
780 }
781 }
782
610bf2f1
VP
783 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
784 goto out_nohpet;
785
786 /*
787 * Read the HPET ID register to retrieve the IRQ routing
788 * information and the number of channels
789 */
790 id = hpet_readl(HPET_ID);
791
792#ifdef CONFIG_HPET_EMULATE_RTC
793 /*
794 * The legacy routing mode needs at least two channels, tick timer
795 * and the rtc emulation channel.
796 */
797 if (!(id & HPET_ID_NUMBER))
798 goto out_nohpet;
799#endif
800
801 if (hpet_clocksource_register())
802 goto out_nohpet;
803
e9e2cdb4 804 if (id & HPET_ID_LEGSUP) {
610bf2f1 805 hpet_legacy_clockevent_register();
26afe5f2 806 hpet_msi_capability_lookup(2);
e9e2cdb4
TG
807 return 1;
808 }
26afe5f2 809 hpet_msi_capability_lookup(0);
e9e2cdb4 810 return 0;
5d0cf410 811
e9e2cdb4 812out_nohpet:
06a24dec 813 hpet_clear_mapping();
399afa4f 814 boot_hpet_disable = 1;
e9e2cdb4
TG
815 return 0;
816}
817
28769149
TG
818/*
819 * Needs to be late, as the reserve_timer code calls kalloc !
820 *
821 * Not a problem on i386 as hpet_enable is called from late_time_init,
822 * but on x86_64 it is necessary !
823 */
824static __init int hpet_late_init(void)
825{
26afe5f2 826 int cpu;
827
59c69f2a 828 if (boot_hpet_disable)
28769149
TG
829 return -ENODEV;
830
59c69f2a
VP
831 if (!hpet_address) {
832 if (!force_hpet_address)
833 return -ENODEV;
834
835 hpet_address = force_hpet_address;
836 hpet_enable();
837 if (!hpet_virt_address)
838 return -ENODEV;
839 }
840
28769149 841 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
59c69f2a 842
26afe5f2 843 for_each_online_cpu(cpu) {
844 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
845 }
846
847 /* This notifier should be called after workqueue is ready */
848 hotcpu_notifier(hpet_cpuhp_notify, -20);
849
28769149
TG
850 return 0;
851}
852fs_initcall(hpet_late_init);
853
c86c7fbc
OH
854void hpet_disable(void)
855{
856 if (is_hpet_capable()) {
857 unsigned long cfg = hpet_readl(HPET_CFG);
858
859 if (hpet_legacy_int_enabled) {
860 cfg &= ~HPET_CFG_LEGACY;
861 hpet_legacy_int_enabled = 0;
862 }
863 cfg &= ~HPET_CFG_ENABLE;
864 hpet_writel(cfg, HPET_CFG);
865 }
866}
867
e9e2cdb4
TG
868#ifdef CONFIG_HPET_EMULATE_RTC
869
870/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
871 * is enabled, we support RTC interrupt functionality in software.
872 * RTC has 3 kinds of interrupts:
873 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
874 * is updated
875 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
876 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
877 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
878 * (1) and (2) above are implemented using polling at a frequency of
879 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
880 * overhead. (DEFAULT_RTC_INT_FREQ)
881 * For (3), we use interrupts at 64Hz or user specified periodic
882 * frequency, whichever is higher.
883 */
884#include <linux/mc146818rtc.h>
885#include <linux/rtc.h>
1bdbdaac 886#include <asm/rtc.h>
e9e2cdb4
TG
887
888#define DEFAULT_RTC_INT_FREQ 64
889#define DEFAULT_RTC_SHIFT 6
890#define RTC_NUM_INTS 1
891
892static unsigned long hpet_rtc_flags;
7e2a31da 893static int hpet_prev_update_sec;
e9e2cdb4
TG
894static struct rtc_time hpet_alarm_time;
895static unsigned long hpet_pie_count;
896static unsigned long hpet_t1_cmp;
897static unsigned long hpet_default_delta;
898static unsigned long hpet_pie_delta;
899static unsigned long hpet_pie_limit;
900
1bdbdaac
BW
901static rtc_irq_handler irq_handler;
902
903/*
904 * Registers a IRQ handler.
905 */
906int hpet_register_irq_handler(rtc_irq_handler handler)
907{
908 if (!is_hpet_enabled())
909 return -ENODEV;
910 if (irq_handler)
911 return -EBUSY;
912
913 irq_handler = handler;
914
915 return 0;
916}
917EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
918
919/*
920 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
921 * and does cleanup.
922 */
923void hpet_unregister_irq_handler(rtc_irq_handler handler)
924{
925 if (!is_hpet_enabled())
926 return;
927
928 irq_handler = NULL;
929 hpet_rtc_flags = 0;
930}
931EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
932
e9e2cdb4
TG
933/*
934 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
935 * is not supported by all HPET implementations for timer 1.
936 *
937 * hpet_rtc_timer_init() is called when the rtc is initialized.
938 */
939int hpet_rtc_timer_init(void)
940{
941 unsigned long cfg, cnt, delta, flags;
942
943 if (!is_hpet_enabled())
944 return 0;
945
946 if (!hpet_default_delta) {
947 uint64_t clc;
948
949 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
950 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
951 hpet_default_delta = (unsigned long) clc;
952 }
953
954 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
955 delta = hpet_default_delta;
956 else
957 delta = hpet_pie_delta;
958
959 local_irq_save(flags);
960
961 cnt = delta + hpet_readl(HPET_COUNTER);
962 hpet_writel(cnt, HPET_T1_CMP);
963 hpet_t1_cmp = cnt;
964
965 cfg = hpet_readl(HPET_T1_CFG);
966 cfg &= ~HPET_TN_PERIODIC;
967 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
968 hpet_writel(cfg, HPET_T1_CFG);
969
970 local_irq_restore(flags);
971
972 return 1;
973}
1bdbdaac 974EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
e9e2cdb4
TG
975
976/*
977 * The functions below are called from rtc driver.
978 * Return 0 if HPET is not being used.
979 * Otherwise do the necessary changes and return 1.
980 */
981int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
982{
983 if (!is_hpet_enabled())
984 return 0;
985
986 hpet_rtc_flags &= ~bit_mask;
987 return 1;
988}
1bdbdaac 989EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
e9e2cdb4
TG
990
991int hpet_set_rtc_irq_bit(unsigned long bit_mask)
992{
993 unsigned long oldbits = hpet_rtc_flags;
994
995 if (!is_hpet_enabled())
996 return 0;
997
998 hpet_rtc_flags |= bit_mask;
999
7e2a31da
DB
1000 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1001 hpet_prev_update_sec = -1;
1002
e9e2cdb4
TG
1003 if (!oldbits)
1004 hpet_rtc_timer_init();
1005
1006 return 1;
1007}
1bdbdaac 1008EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
e9e2cdb4
TG
1009
1010int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1011 unsigned char sec)
1012{
1013 if (!is_hpet_enabled())
1014 return 0;
1015
1016 hpet_alarm_time.tm_hour = hrs;
1017 hpet_alarm_time.tm_min = min;
1018 hpet_alarm_time.tm_sec = sec;
1019
1020 return 1;
1021}
1bdbdaac 1022EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
e9e2cdb4
TG
1023
1024int hpet_set_periodic_freq(unsigned long freq)
1025{
1026 uint64_t clc;
1027
1028 if (!is_hpet_enabled())
1029 return 0;
1030
1031 if (freq <= DEFAULT_RTC_INT_FREQ)
1032 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1033 else {
1034 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1035 do_div(clc, freq);
1036 clc >>= hpet_clockevent.shift;
1037 hpet_pie_delta = (unsigned long) clc;
1038 }
1039 return 1;
1040}
1bdbdaac 1041EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
e9e2cdb4
TG
1042
1043int hpet_rtc_dropped_irq(void)
1044{
1045 return is_hpet_enabled();
1046}
1bdbdaac 1047EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
e9e2cdb4
TG
1048
1049static void hpet_rtc_timer_reinit(void)
1050{
1051 unsigned long cfg, delta;
1052 int lost_ints = -1;
1053
1054 if (unlikely(!hpet_rtc_flags)) {
1055 cfg = hpet_readl(HPET_T1_CFG);
1056 cfg &= ~HPET_TN_ENABLE;
1057 hpet_writel(cfg, HPET_T1_CFG);
1058 return;
1059 }
1060
1061 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1062 delta = hpet_default_delta;
1063 else
1064 delta = hpet_pie_delta;
1065
1066 /*
1067 * Increment the comparator value until we are ahead of the
1068 * current count.
1069 */
1070 do {
1071 hpet_t1_cmp += delta;
1072 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1073 lost_ints++;
1074 } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
1075
1076 if (lost_ints) {
1077 if (hpet_rtc_flags & RTC_PIE)
1078 hpet_pie_count += lost_ints;
1079 if (printk_ratelimit())
7e2a31da 1080 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
e9e2cdb4
TG
1081 lost_ints);
1082 }
1083}
1084
1085irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1086{
1087 struct rtc_time curr_time;
1088 unsigned long rtc_int_flag = 0;
1089
1090 hpet_rtc_timer_reinit();
1bdbdaac 1091 memset(&curr_time, 0, sizeof(struct rtc_time));
e9e2cdb4
TG
1092
1093 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1bdbdaac 1094 get_rtc_time(&curr_time);
e9e2cdb4
TG
1095
1096 if (hpet_rtc_flags & RTC_UIE &&
1097 curr_time.tm_sec != hpet_prev_update_sec) {
7e2a31da
DB
1098 if (hpet_prev_update_sec >= 0)
1099 rtc_int_flag = RTC_UF;
e9e2cdb4
TG
1100 hpet_prev_update_sec = curr_time.tm_sec;
1101 }
1102
1103 if (hpet_rtc_flags & RTC_PIE &&
1104 ++hpet_pie_count >= hpet_pie_limit) {
1105 rtc_int_flag |= RTC_PF;
1106 hpet_pie_count = 0;
1107 }
1108
8ee291f8 1109 if (hpet_rtc_flags & RTC_AIE &&
e9e2cdb4
TG
1110 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1111 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1112 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1113 rtc_int_flag |= RTC_AF;
1114
1115 if (rtc_int_flag) {
1116 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1bdbdaac
BW
1117 if (irq_handler)
1118 irq_handler(rtc_int_flag, dev_id);
e9e2cdb4
TG
1119 }
1120 return IRQ_HANDLED;
1121}
1bdbdaac 1122EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
e9e2cdb4 1123#endif