perf: Treat attr.config as u64 in perf_swevent_init()
[linux-2.6-block.git] / arch / x86 / kernel / cpu / perf_event_intel.c
CommitLineData
a7e3ed1e 1/*
efc9f05d
SE
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
a7e3ed1e 6 */
de0428a7 7
c767a54b
JP
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
de0428a7
KW
10#include <linux/stddef.h>
11#include <linux/types.h>
12#include <linux/init.h>
13#include <linux/slab.h>
69c60c88 14#include <linux/export.h>
de0428a7
KW
15
16#include <asm/hardirq.h>
17#include <asm/apic.h>
18
19#include "perf_event.h"
a7e3ed1e 20
f22f54f4 21/*
b622d644 22 * Intel PerfMon, used on Core and later.
f22f54f4 23 */
ec75a716 24static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
f22f54f4 25{
c3b7cdf1
PE
26 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
27 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
28 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
29 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
30 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
31 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
32 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
33 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
f22f54f4
PZ
34};
35
5c543e3c 36static struct event_constraint intel_core_event_constraints[] __read_mostly =
f22f54f4
PZ
37{
38 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
39 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
40 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
41 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
42 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
43 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
44 EVENT_CONSTRAINT_END
45};
46
5c543e3c 47static struct event_constraint intel_core2_event_constraints[] __read_mostly =
f22f54f4 48{
b622d644
PZ
49 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
50 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 51 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
52 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
53 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
54 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
55 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
56 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
57 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
58 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
59 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
b622d644 60 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
f22f54f4
PZ
61 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
62 EVENT_CONSTRAINT_END
63};
64
5c543e3c 65static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
f22f54f4 66{
b622d644
PZ
67 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
68 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 69 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
70 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
71 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
72 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
73 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
74 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
75 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
76 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
77 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
78 EVENT_CONSTRAINT_END
79};
80
5c543e3c 81static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
a7e3ed1e 82{
efc9f05d 83 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
a7e3ed1e
AK
84 EVENT_EXTRA_END
85};
86
5c543e3c 87static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
f22f54f4 88{
b622d644
PZ
89 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
90 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 91 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
92 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
93 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
94 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
d1100770 95 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
f22f54f4
PZ
96 EVENT_CONSTRAINT_END
97};
98
5c543e3c 99static struct event_constraint intel_snb_event_constraints[] __read_mostly =
b06b3d49
LM
100{
101 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
102 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 103 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
fd4a5aef
SE
104 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
105 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
106 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
107 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
b06b3d49 108 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
b06b3d49
LM
109 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
110 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
111 EVENT_CONSTRAINT_END
112};
113
69943182
SE
114static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
115{
116 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
117 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
118 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
119 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
120 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
121 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
122 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
123 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
124 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
125 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
126 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
127 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
128 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
129 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
130 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
131 INTEL_EVENT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
132 EVENT_CONSTRAINT_END
133};
134
5c543e3c 135static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
a7e3ed1e 136{
efc9f05d
SE
137 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
138 INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
a7e3ed1e
AK
139 EVENT_EXTRA_END
140};
141
0af3ac1f
AK
142static struct event_constraint intel_v1_event_constraints[] __read_mostly =
143{
144 EVENT_CONSTRAINT_END
145};
146
5c543e3c 147static struct event_constraint intel_gen_event_constraints[] __read_mostly =
f22f54f4 148{
b622d644
PZ
149 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
150 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 151 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
152 EVENT_CONSTRAINT_END
153};
154
ee89cbc2
SE
155static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
156 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
157 INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
158 EVENT_EXTRA_END
159};
160
f22f54f4
PZ
161static u64 intel_pmu_event_map(int hw_event)
162{
163 return intel_perfmon_event_map[hw_event];
164}
165
74e6543f
YZ
166#define SNB_DMND_DATA_RD (1ULL << 0)
167#define SNB_DMND_RFO (1ULL << 1)
168#define SNB_DMND_IFETCH (1ULL << 2)
169#define SNB_DMND_WB (1ULL << 3)
170#define SNB_PF_DATA_RD (1ULL << 4)
171#define SNB_PF_RFO (1ULL << 5)
172#define SNB_PF_IFETCH (1ULL << 6)
173#define SNB_LLC_DATA_RD (1ULL << 7)
174#define SNB_LLC_RFO (1ULL << 8)
175#define SNB_LLC_IFETCH (1ULL << 9)
176#define SNB_BUS_LOCKS (1ULL << 10)
177#define SNB_STRM_ST (1ULL << 11)
178#define SNB_OTHER (1ULL << 15)
179#define SNB_RESP_ANY (1ULL << 16)
180#define SNB_NO_SUPP (1ULL << 17)
181#define SNB_LLC_HITM (1ULL << 18)
182#define SNB_LLC_HITE (1ULL << 19)
183#define SNB_LLC_HITS (1ULL << 20)
184#define SNB_LLC_HITF (1ULL << 21)
185#define SNB_LOCAL (1ULL << 22)
186#define SNB_REMOTE (0xffULL << 23)
187#define SNB_SNP_NONE (1ULL << 31)
188#define SNB_SNP_NOT_NEEDED (1ULL << 32)
189#define SNB_SNP_MISS (1ULL << 33)
190#define SNB_NO_FWD (1ULL << 34)
191#define SNB_SNP_FWD (1ULL << 35)
192#define SNB_HITM (1ULL << 36)
193#define SNB_NON_DRAM (1ULL << 37)
194
195#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
196#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
197#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
198
199#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
200 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
201 SNB_HITM)
202
203#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
204#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
205
206#define SNB_L3_ACCESS SNB_RESP_ANY
207#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
208
209static __initconst const u64 snb_hw_cache_extra_regs
210 [PERF_COUNT_HW_CACHE_MAX]
211 [PERF_COUNT_HW_CACHE_OP_MAX]
212 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
213{
214 [ C(LL ) ] = {
215 [ C(OP_READ) ] = {
216 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
217 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
218 },
219 [ C(OP_WRITE) ] = {
220 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
221 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
222 },
223 [ C(OP_PREFETCH) ] = {
224 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
225 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
226 },
227 },
228 [ C(NODE) ] = {
229 [ C(OP_READ) ] = {
230 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
231 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
232 },
233 [ C(OP_WRITE) ] = {
234 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
235 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
236 },
237 [ C(OP_PREFETCH) ] = {
238 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
239 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
240 },
241 },
242};
243
b06b3d49
LM
244static __initconst const u64 snb_hw_cache_event_ids
245 [PERF_COUNT_HW_CACHE_MAX]
246 [PERF_COUNT_HW_CACHE_OP_MAX]
247 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
248{
249 [ C(L1D) ] = {
250 [ C(OP_READ) ] = {
251 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
252 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
253 },
254 [ C(OP_WRITE) ] = {
255 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
256 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
257 },
258 [ C(OP_PREFETCH) ] = {
259 [ C(RESULT_ACCESS) ] = 0x0,
260 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
261 },
262 },
263 [ C(L1I ) ] = {
264 [ C(OP_READ) ] = {
265 [ C(RESULT_ACCESS) ] = 0x0,
266 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
267 },
268 [ C(OP_WRITE) ] = {
269 [ C(RESULT_ACCESS) ] = -1,
270 [ C(RESULT_MISS) ] = -1,
271 },
272 [ C(OP_PREFETCH) ] = {
273 [ C(RESULT_ACCESS) ] = 0x0,
274 [ C(RESULT_MISS) ] = 0x0,
275 },
276 },
277 [ C(LL ) ] = {
b06b3d49 278 [ C(OP_READ) ] = {
63b6a675 279 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
b06b3d49 280 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
281 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
282 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
283 },
284 [ C(OP_WRITE) ] = {
63b6a675 285 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
b06b3d49 286 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
287 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
288 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
289 },
290 [ C(OP_PREFETCH) ] = {
63b6a675 291 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
b06b3d49 292 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
293 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
294 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
295 },
296 },
297 [ C(DTLB) ] = {
298 [ C(OP_READ) ] = {
299 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
300 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
301 },
302 [ C(OP_WRITE) ] = {
303 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
304 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
305 },
306 [ C(OP_PREFETCH) ] = {
307 [ C(RESULT_ACCESS) ] = 0x0,
308 [ C(RESULT_MISS) ] = 0x0,
309 },
310 },
311 [ C(ITLB) ] = {
312 [ C(OP_READ) ] = {
313 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
314 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
315 },
316 [ C(OP_WRITE) ] = {
317 [ C(RESULT_ACCESS) ] = -1,
318 [ C(RESULT_MISS) ] = -1,
319 },
320 [ C(OP_PREFETCH) ] = {
321 [ C(RESULT_ACCESS) ] = -1,
322 [ C(RESULT_MISS) ] = -1,
323 },
324 },
325 [ C(BPU ) ] = {
326 [ C(OP_READ) ] = {
327 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
328 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
329 },
330 [ C(OP_WRITE) ] = {
331 [ C(RESULT_ACCESS) ] = -1,
332 [ C(RESULT_MISS) ] = -1,
333 },
334 [ C(OP_PREFETCH) ] = {
335 [ C(RESULT_ACCESS) ] = -1,
336 [ C(RESULT_MISS) ] = -1,
337 },
338 },
89d6c0b5
PZ
339 [ C(NODE) ] = {
340 [ C(OP_READ) ] = {
74e6543f
YZ
341 [ C(RESULT_ACCESS) ] = 0x01b7,
342 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
343 },
344 [ C(OP_WRITE) ] = {
74e6543f
YZ
345 [ C(RESULT_ACCESS) ] = 0x01b7,
346 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
347 },
348 [ C(OP_PREFETCH) ] = {
74e6543f
YZ
349 [ C(RESULT_ACCESS) ] = 0x01b7,
350 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
351 },
352 },
353
b06b3d49
LM
354};
355
caaa8be3 356static __initconst const u64 westmere_hw_cache_event_ids
f22f54f4
PZ
357 [PERF_COUNT_HW_CACHE_MAX]
358 [PERF_COUNT_HW_CACHE_OP_MAX]
359 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
360{
361 [ C(L1D) ] = {
362 [ C(OP_READ) ] = {
363 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
364 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
365 },
366 [ C(OP_WRITE) ] = {
367 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
368 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
369 },
370 [ C(OP_PREFETCH) ] = {
371 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
372 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
373 },
374 },
375 [ C(L1I ) ] = {
376 [ C(OP_READ) ] = {
377 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
378 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
379 },
380 [ C(OP_WRITE) ] = {
381 [ C(RESULT_ACCESS) ] = -1,
382 [ C(RESULT_MISS) ] = -1,
383 },
384 [ C(OP_PREFETCH) ] = {
385 [ C(RESULT_ACCESS) ] = 0x0,
386 [ C(RESULT_MISS) ] = 0x0,
387 },
388 },
389 [ C(LL ) ] = {
390 [ C(OP_READ) ] = {
63b6a675 391 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
e994d7d2 392 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
393 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
394 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4 395 },
e994d7d2
AK
396 /*
397 * Use RFO, not WRITEBACK, because a write miss would typically occur
398 * on RFO.
399 */
f22f54f4 400 [ C(OP_WRITE) ] = {
63b6a675
PZ
401 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
402 [ C(RESULT_ACCESS) ] = 0x01b7,
403 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
e994d7d2 404 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
405 },
406 [ C(OP_PREFETCH) ] = {
63b6a675 407 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
e994d7d2 408 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
409 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
410 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
411 },
412 },
413 [ C(DTLB) ] = {
414 [ C(OP_READ) ] = {
415 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
416 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
417 },
418 [ C(OP_WRITE) ] = {
419 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
420 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
421 },
422 [ C(OP_PREFETCH) ] = {
423 [ C(RESULT_ACCESS) ] = 0x0,
424 [ C(RESULT_MISS) ] = 0x0,
425 },
426 },
427 [ C(ITLB) ] = {
428 [ C(OP_READ) ] = {
429 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
430 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
431 },
432 [ C(OP_WRITE) ] = {
433 [ C(RESULT_ACCESS) ] = -1,
434 [ C(RESULT_MISS) ] = -1,
435 },
436 [ C(OP_PREFETCH) ] = {
437 [ C(RESULT_ACCESS) ] = -1,
438 [ C(RESULT_MISS) ] = -1,
439 },
440 },
441 [ C(BPU ) ] = {
442 [ C(OP_READ) ] = {
443 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
444 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
445 },
446 [ C(OP_WRITE) ] = {
447 [ C(RESULT_ACCESS) ] = -1,
448 [ C(RESULT_MISS) ] = -1,
449 },
450 [ C(OP_PREFETCH) ] = {
451 [ C(RESULT_ACCESS) ] = -1,
452 [ C(RESULT_MISS) ] = -1,
453 },
454 },
89d6c0b5
PZ
455 [ C(NODE) ] = {
456 [ C(OP_READ) ] = {
457 [ C(RESULT_ACCESS) ] = 0x01b7,
458 [ C(RESULT_MISS) ] = 0x01b7,
459 },
460 [ C(OP_WRITE) ] = {
461 [ C(RESULT_ACCESS) ] = 0x01b7,
462 [ C(RESULT_MISS) ] = 0x01b7,
463 },
464 [ C(OP_PREFETCH) ] = {
465 [ C(RESULT_ACCESS) ] = 0x01b7,
466 [ C(RESULT_MISS) ] = 0x01b7,
467 },
468 },
f22f54f4
PZ
469};
470
e994d7d2 471/*
63b6a675
PZ
472 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
473 * See IA32 SDM Vol 3B 30.6.1.3
e994d7d2
AK
474 */
475
63b6a675
PZ
476#define NHM_DMND_DATA_RD (1 << 0)
477#define NHM_DMND_RFO (1 << 1)
478#define NHM_DMND_IFETCH (1 << 2)
479#define NHM_DMND_WB (1 << 3)
480#define NHM_PF_DATA_RD (1 << 4)
481#define NHM_PF_DATA_RFO (1 << 5)
482#define NHM_PF_IFETCH (1 << 6)
483#define NHM_OFFCORE_OTHER (1 << 7)
484#define NHM_UNCORE_HIT (1 << 8)
485#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
486#define NHM_OTHER_CORE_HITM (1 << 10)
487 /* reserved */
488#define NHM_REMOTE_CACHE_FWD (1 << 12)
489#define NHM_REMOTE_DRAM (1 << 13)
490#define NHM_LOCAL_DRAM (1 << 14)
491#define NHM_NON_DRAM (1 << 15)
492
87e24f4b
PZ
493#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
494#define NHM_REMOTE (NHM_REMOTE_DRAM)
63b6a675
PZ
495
496#define NHM_DMND_READ (NHM_DMND_DATA_RD)
497#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
498#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
499
500#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
87e24f4b 501#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
63b6a675 502#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
e994d7d2
AK
503
504static __initconst const u64 nehalem_hw_cache_extra_regs
505 [PERF_COUNT_HW_CACHE_MAX]
506 [PERF_COUNT_HW_CACHE_OP_MAX]
507 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
508{
509 [ C(LL ) ] = {
510 [ C(OP_READ) ] = {
63b6a675
PZ
511 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
512 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
e994d7d2
AK
513 },
514 [ C(OP_WRITE) ] = {
63b6a675
PZ
515 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
516 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
e994d7d2
AK
517 },
518 [ C(OP_PREFETCH) ] = {
63b6a675
PZ
519 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
520 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
e994d7d2 521 },
89d6c0b5
PZ
522 },
523 [ C(NODE) ] = {
524 [ C(OP_READ) ] = {
87e24f4b
PZ
525 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
526 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
89d6c0b5
PZ
527 },
528 [ C(OP_WRITE) ] = {
87e24f4b
PZ
529 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
530 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
89d6c0b5
PZ
531 },
532 [ C(OP_PREFETCH) ] = {
87e24f4b
PZ
533 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
534 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
89d6c0b5
PZ
535 },
536 },
e994d7d2
AK
537};
538
caaa8be3 539static __initconst const u64 nehalem_hw_cache_event_ids
f22f54f4
PZ
540 [PERF_COUNT_HW_CACHE_MAX]
541 [PERF_COUNT_HW_CACHE_OP_MAX]
542 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
543{
544 [ C(L1D) ] = {
545 [ C(OP_READ) ] = {
f4929bd3
PZ
546 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
547 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
f22f54f4
PZ
548 },
549 [ C(OP_WRITE) ] = {
f4929bd3
PZ
550 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
551 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
f22f54f4
PZ
552 },
553 [ C(OP_PREFETCH) ] = {
554 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
555 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
556 },
557 },
558 [ C(L1I ) ] = {
559 [ C(OP_READ) ] = {
560 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
561 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
562 },
563 [ C(OP_WRITE) ] = {
564 [ C(RESULT_ACCESS) ] = -1,
565 [ C(RESULT_MISS) ] = -1,
566 },
567 [ C(OP_PREFETCH) ] = {
568 [ C(RESULT_ACCESS) ] = 0x0,
569 [ C(RESULT_MISS) ] = 0x0,
570 },
571 },
572 [ C(LL ) ] = {
573 [ C(OP_READ) ] = {
e994d7d2
AK
574 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
575 [ C(RESULT_ACCESS) ] = 0x01b7,
576 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
577 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4 578 },
e994d7d2
AK
579 /*
580 * Use RFO, not WRITEBACK, because a write miss would typically occur
581 * on RFO.
582 */
f22f54f4 583 [ C(OP_WRITE) ] = {
e994d7d2
AK
584 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
585 [ C(RESULT_ACCESS) ] = 0x01b7,
586 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
587 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
588 },
589 [ C(OP_PREFETCH) ] = {
e994d7d2
AK
590 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
591 [ C(RESULT_ACCESS) ] = 0x01b7,
592 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
593 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
594 },
595 },
596 [ C(DTLB) ] = {
597 [ C(OP_READ) ] = {
598 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
599 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
600 },
601 [ C(OP_WRITE) ] = {
602 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
603 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
604 },
605 [ C(OP_PREFETCH) ] = {
606 [ C(RESULT_ACCESS) ] = 0x0,
607 [ C(RESULT_MISS) ] = 0x0,
608 },
609 },
610 [ C(ITLB) ] = {
611 [ C(OP_READ) ] = {
612 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
613 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
614 },
615 [ C(OP_WRITE) ] = {
616 [ C(RESULT_ACCESS) ] = -1,
617 [ C(RESULT_MISS) ] = -1,
618 },
619 [ C(OP_PREFETCH) ] = {
620 [ C(RESULT_ACCESS) ] = -1,
621 [ C(RESULT_MISS) ] = -1,
622 },
623 },
624 [ C(BPU ) ] = {
625 [ C(OP_READ) ] = {
626 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
627 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
628 },
629 [ C(OP_WRITE) ] = {
630 [ C(RESULT_ACCESS) ] = -1,
631 [ C(RESULT_MISS) ] = -1,
632 },
633 [ C(OP_PREFETCH) ] = {
634 [ C(RESULT_ACCESS) ] = -1,
635 [ C(RESULT_MISS) ] = -1,
636 },
637 },
89d6c0b5
PZ
638 [ C(NODE) ] = {
639 [ C(OP_READ) ] = {
640 [ C(RESULT_ACCESS) ] = 0x01b7,
641 [ C(RESULT_MISS) ] = 0x01b7,
642 },
643 [ C(OP_WRITE) ] = {
644 [ C(RESULT_ACCESS) ] = 0x01b7,
645 [ C(RESULT_MISS) ] = 0x01b7,
646 },
647 [ C(OP_PREFETCH) ] = {
648 [ C(RESULT_ACCESS) ] = 0x01b7,
649 [ C(RESULT_MISS) ] = 0x01b7,
650 },
651 },
f22f54f4
PZ
652};
653
caaa8be3 654static __initconst const u64 core2_hw_cache_event_ids
f22f54f4
PZ
655 [PERF_COUNT_HW_CACHE_MAX]
656 [PERF_COUNT_HW_CACHE_OP_MAX]
657 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
658{
659 [ C(L1D) ] = {
660 [ C(OP_READ) ] = {
661 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
662 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
663 },
664 [ C(OP_WRITE) ] = {
665 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
666 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
667 },
668 [ C(OP_PREFETCH) ] = {
669 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
670 [ C(RESULT_MISS) ] = 0,
671 },
672 },
673 [ C(L1I ) ] = {
674 [ C(OP_READ) ] = {
675 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
676 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
677 },
678 [ C(OP_WRITE) ] = {
679 [ C(RESULT_ACCESS) ] = -1,
680 [ C(RESULT_MISS) ] = -1,
681 },
682 [ C(OP_PREFETCH) ] = {
683 [ C(RESULT_ACCESS) ] = 0,
684 [ C(RESULT_MISS) ] = 0,
685 },
686 },
687 [ C(LL ) ] = {
688 [ C(OP_READ) ] = {
689 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
690 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
691 },
692 [ C(OP_WRITE) ] = {
693 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
694 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
695 },
696 [ C(OP_PREFETCH) ] = {
697 [ C(RESULT_ACCESS) ] = 0,
698 [ C(RESULT_MISS) ] = 0,
699 },
700 },
701 [ C(DTLB) ] = {
702 [ C(OP_READ) ] = {
703 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
704 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
705 },
706 [ C(OP_WRITE) ] = {
707 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
708 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
709 },
710 [ C(OP_PREFETCH) ] = {
711 [ C(RESULT_ACCESS) ] = 0,
712 [ C(RESULT_MISS) ] = 0,
713 },
714 },
715 [ C(ITLB) ] = {
716 [ C(OP_READ) ] = {
717 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
718 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
719 },
720 [ C(OP_WRITE) ] = {
721 [ C(RESULT_ACCESS) ] = -1,
722 [ C(RESULT_MISS) ] = -1,
723 },
724 [ C(OP_PREFETCH) ] = {
725 [ C(RESULT_ACCESS) ] = -1,
726 [ C(RESULT_MISS) ] = -1,
727 },
728 },
729 [ C(BPU ) ] = {
730 [ C(OP_READ) ] = {
731 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
732 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
733 },
734 [ C(OP_WRITE) ] = {
735 [ C(RESULT_ACCESS) ] = -1,
736 [ C(RESULT_MISS) ] = -1,
737 },
738 [ C(OP_PREFETCH) ] = {
739 [ C(RESULT_ACCESS) ] = -1,
740 [ C(RESULT_MISS) ] = -1,
741 },
742 },
743};
744
caaa8be3 745static __initconst const u64 atom_hw_cache_event_ids
f22f54f4
PZ
746 [PERF_COUNT_HW_CACHE_MAX]
747 [PERF_COUNT_HW_CACHE_OP_MAX]
748 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
749{
750 [ C(L1D) ] = {
751 [ C(OP_READ) ] = {
752 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
753 [ C(RESULT_MISS) ] = 0,
754 },
755 [ C(OP_WRITE) ] = {
756 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
757 [ C(RESULT_MISS) ] = 0,
758 },
759 [ C(OP_PREFETCH) ] = {
760 [ C(RESULT_ACCESS) ] = 0x0,
761 [ C(RESULT_MISS) ] = 0,
762 },
763 },
764 [ C(L1I ) ] = {
765 [ C(OP_READ) ] = {
766 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
767 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
768 },
769 [ C(OP_WRITE) ] = {
770 [ C(RESULT_ACCESS) ] = -1,
771 [ C(RESULT_MISS) ] = -1,
772 },
773 [ C(OP_PREFETCH) ] = {
774 [ C(RESULT_ACCESS) ] = 0,
775 [ C(RESULT_MISS) ] = 0,
776 },
777 },
778 [ C(LL ) ] = {
779 [ C(OP_READ) ] = {
780 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
781 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
782 },
783 [ C(OP_WRITE) ] = {
784 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
785 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
786 },
787 [ C(OP_PREFETCH) ] = {
788 [ C(RESULT_ACCESS) ] = 0,
789 [ C(RESULT_MISS) ] = 0,
790 },
791 },
792 [ C(DTLB) ] = {
793 [ C(OP_READ) ] = {
794 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
795 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
796 },
797 [ C(OP_WRITE) ] = {
798 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
799 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
800 },
801 [ C(OP_PREFETCH) ] = {
802 [ C(RESULT_ACCESS) ] = 0,
803 [ C(RESULT_MISS) ] = 0,
804 },
805 },
806 [ C(ITLB) ] = {
807 [ C(OP_READ) ] = {
808 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
809 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
810 },
811 [ C(OP_WRITE) ] = {
812 [ C(RESULT_ACCESS) ] = -1,
813 [ C(RESULT_MISS) ] = -1,
814 },
815 [ C(OP_PREFETCH) ] = {
816 [ C(RESULT_ACCESS) ] = -1,
817 [ C(RESULT_MISS) ] = -1,
818 },
819 },
820 [ C(BPU ) ] = {
821 [ C(OP_READ) ] = {
822 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
823 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
824 },
825 [ C(OP_WRITE) ] = {
826 [ C(RESULT_ACCESS) ] = -1,
827 [ C(RESULT_MISS) ] = -1,
828 },
829 [ C(OP_PREFETCH) ] = {
830 [ C(RESULT_ACCESS) ] = -1,
831 [ C(RESULT_MISS) ] = -1,
832 },
833 },
834};
835
60ce0fbd
SE
836static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
837{
838 /* user explicitly requested branch sampling */
839 if (has_branch_stack(event))
840 return true;
841
842 /* implicit branch sampling to correct PEBS skid */
843 if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1)
844 return true;
845
846 return false;
847}
848
f22f54f4
PZ
849static void intel_pmu_disable_all(void)
850{
851 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
852
853 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
854
15c7ad51 855 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
f22f54f4 856 intel_pmu_disable_bts();
ca037701
PZ
857
858 intel_pmu_pebs_disable_all();
caff2bef 859 intel_pmu_lbr_disable_all();
f22f54f4
PZ
860}
861
11164cd4 862static void intel_pmu_enable_all(int added)
f22f54f4
PZ
863{
864 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
865
d329527e
PZ
866 intel_pmu_pebs_enable_all();
867 intel_pmu_lbr_enable_all();
144d31e6
GN
868 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
869 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
f22f54f4 870
15c7ad51 871 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
f22f54f4 872 struct perf_event *event =
15c7ad51 873 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
f22f54f4
PZ
874
875 if (WARN_ON_ONCE(!event))
876 return;
877
878 intel_pmu_enable_bts(event->hw.config);
879 }
880}
881
11164cd4
PZ
882/*
883 * Workaround for:
884 * Intel Errata AAK100 (model 26)
885 * Intel Errata AAP53 (model 30)
40b91cd1 886 * Intel Errata BD53 (model 44)
11164cd4 887 *
351af072
ZY
888 * The official story:
889 * These chips need to be 'reset' when adding counters by programming the
890 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
891 * in sequence on the same PMC or on different PMCs.
892 *
893 * In practise it appears some of these events do in fact count, and
894 * we need to programm all 4 events.
11164cd4 895 */
351af072 896static void intel_pmu_nhm_workaround(void)
11164cd4 897{
351af072
ZY
898 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
899 static const unsigned long nhm_magic[4] = {
900 0x4300B5,
901 0x4300D2,
902 0x4300B1,
903 0x4300B1
904 };
905 struct perf_event *event;
906 int i;
11164cd4 907
351af072
ZY
908 /*
909 * The Errata requires below steps:
910 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
911 * 2) Configure 4 PERFEVTSELx with the magic events and clear
912 * the corresponding PMCx;
913 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
914 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
915 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
916 */
11164cd4 917
351af072
ZY
918 /*
919 * The real steps we choose are a little different from above.
920 * A) To reduce MSR operations, we don't run step 1) as they
921 * are already cleared before this function is called;
922 * B) Call x86_perf_event_update to save PMCx before configuring
923 * PERFEVTSELx with magic number;
924 * C) With step 5), we do clear only when the PERFEVTSELx is
925 * not used currently.
926 * D) Call x86_perf_event_set_period to restore PMCx;
927 */
11164cd4 928
351af072
ZY
929 /* We always operate 4 pairs of PERF Counters */
930 for (i = 0; i < 4; i++) {
931 event = cpuc->events[i];
932 if (event)
933 x86_perf_event_update(event);
934 }
11164cd4 935
351af072
ZY
936 for (i = 0; i < 4; i++) {
937 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
938 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
939 }
940
941 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
942 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
11164cd4 943
351af072
ZY
944 for (i = 0; i < 4; i++) {
945 event = cpuc->events[i];
946
947 if (event) {
948 x86_perf_event_set_period(event);
31fa58af 949 __x86_pmu_enable_event(&event->hw,
351af072
ZY
950 ARCH_PERFMON_EVENTSEL_ENABLE);
951 } else
952 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
11164cd4 953 }
351af072
ZY
954}
955
956static void intel_pmu_nhm_enable_all(int added)
957{
958 if (added)
959 intel_pmu_nhm_workaround();
11164cd4
PZ
960 intel_pmu_enable_all(added);
961}
962
f22f54f4
PZ
963static inline u64 intel_pmu_get_status(void)
964{
965 u64 status;
966
967 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
968
969 return status;
970}
971
972static inline void intel_pmu_ack_status(u64 ack)
973{
974 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
975}
976
ca037701 977static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
f22f54f4 978{
15c7ad51 979 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
f22f54f4
PZ
980 u64 ctrl_val, mask;
981
982 mask = 0xfULL << (idx * 4);
983
984 rdmsrl(hwc->config_base, ctrl_val);
985 ctrl_val &= ~mask;
7645a24c 986 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
987}
988
ca037701 989static void intel_pmu_disable_event(struct perf_event *event)
f22f54f4 990{
aff3d91a 991 struct hw_perf_event *hwc = &event->hw;
144d31e6 992 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
aff3d91a 993
15c7ad51 994 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
f22f54f4
PZ
995 intel_pmu_disable_bts();
996 intel_pmu_drain_bts_buffer();
997 return;
998 }
999
144d31e6
GN
1000 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1001 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1002
60ce0fbd
SE
1003 /*
1004 * must disable before any actual event
1005 * because any event may be combined with LBR
1006 */
1007 if (intel_pmu_needs_lbr_smpl(event))
1008 intel_pmu_lbr_disable(event);
1009
f22f54f4 1010 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 1011 intel_pmu_disable_fixed(hwc);
f22f54f4
PZ
1012 return;
1013 }
1014
aff3d91a 1015 x86_pmu_disable_event(event);
ca037701 1016
ab608344 1017 if (unlikely(event->attr.precise_ip))
ef21f683 1018 intel_pmu_pebs_disable(event);
f22f54f4
PZ
1019}
1020
ca037701 1021static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
f22f54f4 1022{
15c7ad51 1023 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
f22f54f4 1024 u64 ctrl_val, bits, mask;
f22f54f4
PZ
1025
1026 /*
1027 * Enable IRQ generation (0x8),
1028 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1029 * if requested:
1030 */
1031 bits = 0x8ULL;
1032 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1033 bits |= 0x2;
1034 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1035 bits |= 0x1;
1036
1037 /*
1038 * ANY bit is supported in v3 and up
1039 */
1040 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1041 bits |= 0x4;
1042
1043 bits <<= (idx * 4);
1044 mask = 0xfULL << (idx * 4);
1045
1046 rdmsrl(hwc->config_base, ctrl_val);
1047 ctrl_val &= ~mask;
1048 ctrl_val |= bits;
7645a24c 1049 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
1050}
1051
aff3d91a 1052static void intel_pmu_enable_event(struct perf_event *event)
f22f54f4 1053{
aff3d91a 1054 struct hw_perf_event *hwc = &event->hw;
144d31e6 1055 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
aff3d91a 1056
15c7ad51 1057 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
0a3aee0d 1058 if (!__this_cpu_read(cpu_hw_events.enabled))
f22f54f4
PZ
1059 return;
1060
1061 intel_pmu_enable_bts(hwc->config);
1062 return;
1063 }
60ce0fbd
SE
1064 /*
1065 * must enabled before any actual event
1066 * because any event may be combined with LBR
1067 */
1068 if (intel_pmu_needs_lbr_smpl(event))
1069 intel_pmu_lbr_enable(event);
f22f54f4 1070
144d31e6
GN
1071 if (event->attr.exclude_host)
1072 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1073 if (event->attr.exclude_guest)
1074 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1075
f22f54f4 1076 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 1077 intel_pmu_enable_fixed(hwc);
f22f54f4
PZ
1078 return;
1079 }
1080
ab608344 1081 if (unlikely(event->attr.precise_ip))
ef21f683 1082 intel_pmu_pebs_enable(event);
ca037701 1083
31fa58af 1084 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f22f54f4
PZ
1085}
1086
1087/*
1088 * Save and restart an expired event. Called by NMI contexts,
1089 * so it has to be careful about preempting normal event ops:
1090 */
de0428a7 1091int intel_pmu_save_and_restart(struct perf_event *event)
f22f54f4 1092{
cc2ad4ba
PZ
1093 x86_perf_event_update(event);
1094 return x86_perf_event_set_period(event);
f22f54f4
PZ
1095}
1096
1097static void intel_pmu_reset(void)
1098{
0a3aee0d 1099 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
f22f54f4
PZ
1100 unsigned long flags;
1101 int idx;
1102
948b1bb8 1103 if (!x86_pmu.num_counters)
f22f54f4
PZ
1104 return;
1105
1106 local_irq_save(flags);
1107
c767a54b 1108 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
f22f54f4 1109
948b1bb8 1110 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
715c85b1
PA
1111 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1112 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
f22f54f4 1113 }
948b1bb8 1114 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
715c85b1 1115 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
948b1bb8 1116
f22f54f4
PZ
1117 if (ds)
1118 ds->bts_index = ds->bts_buffer_base;
1119
1120 local_irq_restore(flags);
1121}
1122
1123/*
1124 * This handler is triggered by the local APIC, so the APIC IRQ handling
1125 * rules apply:
1126 */
1127static int intel_pmu_handle_irq(struct pt_regs *regs)
1128{
1129 struct perf_sample_data data;
1130 struct cpu_hw_events *cpuc;
1131 int bit, loops;
2e556b5b 1132 u64 status;
b0b2072d 1133 int handled;
f22f54f4 1134
f22f54f4
PZ
1135 cpuc = &__get_cpu_var(cpu_hw_events);
1136
2bce5dac
DZ
1137 /*
1138 * Some chipsets need to unmask the LVTPC in a particular spot
1139 * inside the nmi handler. As a result, the unmasking was pushed
1140 * into all the nmi handlers.
1141 *
1142 * This handler doesn't seem to have any issues with the unmasking
1143 * so it was left at the top.
1144 */
1145 apic_write(APIC_LVTPC, APIC_DM_NMI);
1146
3fb2b8dd 1147 intel_pmu_disable_all();
b0b2072d 1148 handled = intel_pmu_drain_bts_buffer();
f22f54f4
PZ
1149 status = intel_pmu_get_status();
1150 if (!status) {
11164cd4 1151 intel_pmu_enable_all(0);
b0b2072d 1152 return handled;
f22f54f4
PZ
1153 }
1154
1155 loops = 0;
1156again:
2e556b5b 1157 intel_pmu_ack_status(status);
f22f54f4
PZ
1158 if (++loops > 100) {
1159 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1160 perf_event_print_debug();
1161 intel_pmu_reset();
3fb2b8dd 1162 goto done;
f22f54f4
PZ
1163 }
1164
1165 inc_irq_stat(apic_perf_irqs);
ca037701 1166
caff2bef
PZ
1167 intel_pmu_lbr_read();
1168
ca037701
PZ
1169 /*
1170 * PEBS overflow sets bit 62 in the global status register
1171 */
de725dec
PZ
1172 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1173 handled++;
ca037701 1174 x86_pmu.drain_pebs(regs);
de725dec 1175 }
ca037701 1176
984b3f57 1177 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
f22f54f4
PZ
1178 struct perf_event *event = cpuc->events[bit];
1179
de725dec
PZ
1180 handled++;
1181
f22f54f4
PZ
1182 if (!test_bit(bit, cpuc->active_mask))
1183 continue;
1184
1185 if (!intel_pmu_save_and_restart(event))
1186 continue;
1187
fd0d000b 1188 perf_sample_data_init(&data, 0, event->hw.last_period);
f22f54f4 1189
60ce0fbd
SE
1190 if (has_branch_stack(event))
1191 data.br_stack = &cpuc->lbr_stack;
1192
a8b0ca17 1193 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1194 x86_pmu_stop(event, 0);
f22f54f4
PZ
1195 }
1196
f22f54f4
PZ
1197 /*
1198 * Repeat if there is more work to be done:
1199 */
1200 status = intel_pmu_get_status();
1201 if (status)
1202 goto again;
1203
3fb2b8dd 1204done:
11164cd4 1205 intel_pmu_enable_all(0);
de725dec 1206 return handled;
f22f54f4
PZ
1207}
1208
f22f54f4 1209static struct event_constraint *
ca037701 1210intel_bts_constraints(struct perf_event *event)
f22f54f4 1211{
ca037701
PZ
1212 struct hw_perf_event *hwc = &event->hw;
1213 unsigned int hw_event, bts_event;
f22f54f4 1214
18a073a3
PZ
1215 if (event->attr.freq)
1216 return NULL;
1217
ca037701
PZ
1218 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1219 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
f22f54f4 1220
ca037701 1221 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
f22f54f4 1222 return &bts_constraint;
ca037701 1223
f22f54f4
PZ
1224 return NULL;
1225}
1226
5a425294 1227static int intel_alt_er(int idx)
b79e8941
PZ
1228{
1229 if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
5a425294 1230 return idx;
b79e8941 1231
5a425294
PZ
1232 if (idx == EXTRA_REG_RSP_0)
1233 return EXTRA_REG_RSP_1;
1234
1235 if (idx == EXTRA_REG_RSP_1)
1236 return EXTRA_REG_RSP_0;
1237
1238 return idx;
1239}
1240
1241static void intel_fixup_er(struct perf_event *event, int idx)
1242{
1243 event->hw.extra_reg.idx = idx;
1244
1245 if (idx == EXTRA_REG_RSP_0) {
b79e8941
PZ
1246 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1247 event->hw.config |= 0x01b7;
b79e8941 1248 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
5a425294
PZ
1249 } else if (idx == EXTRA_REG_RSP_1) {
1250 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1251 event->hw.config |= 0x01bb;
1252 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
b79e8941 1253 }
b79e8941
PZ
1254}
1255
efc9f05d
SE
1256/*
1257 * manage allocation of shared extra msr for certain events
1258 *
1259 * sharing can be:
1260 * per-cpu: to be shared between the various events on a single PMU
1261 * per-core: per-cpu + shared by HT threads
1262 */
a7e3ed1e 1263static struct event_constraint *
efc9f05d 1264__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
b36817e8
SE
1265 struct perf_event *event,
1266 struct hw_perf_event_extra *reg)
a7e3ed1e 1267{
efc9f05d 1268 struct event_constraint *c = &emptyconstraint;
a7e3ed1e 1269 struct er_account *era;
cd8a38d3 1270 unsigned long flags;
5a425294 1271 int idx = reg->idx;
a7e3ed1e 1272
5a425294
PZ
1273 /*
1274 * reg->alloc can be set due to existing state, so for fake cpuc we
1275 * need to ignore this, otherwise we might fail to allocate proper fake
1276 * state for this extra reg constraint. Also see the comment below.
1277 */
1278 if (reg->alloc && !cpuc->is_fake)
b36817e8 1279 return NULL; /* call x86_get_event_constraint() */
a7e3ed1e 1280
b79e8941 1281again:
5a425294 1282 era = &cpuc->shared_regs->regs[idx];
cd8a38d3
SE
1283 /*
1284 * we use spin_lock_irqsave() to avoid lockdep issues when
1285 * passing a fake cpuc
1286 */
1287 raw_spin_lock_irqsave(&era->lock, flags);
efc9f05d
SE
1288
1289 if (!atomic_read(&era->ref) || era->config == reg->config) {
1290
5a425294
PZ
1291 /*
1292 * If its a fake cpuc -- as per validate_{group,event}() we
1293 * shouldn't touch event state and we can avoid doing so
1294 * since both will only call get_event_constraints() once
1295 * on each event, this avoids the need for reg->alloc.
1296 *
1297 * Not doing the ER fixup will only result in era->reg being
1298 * wrong, but since we won't actually try and program hardware
1299 * this isn't a problem either.
1300 */
1301 if (!cpuc->is_fake) {
1302 if (idx != reg->idx)
1303 intel_fixup_er(event, idx);
1304
1305 /*
1306 * x86_schedule_events() can call get_event_constraints()
1307 * multiple times on events in the case of incremental
1308 * scheduling(). reg->alloc ensures we only do the ER
1309 * allocation once.
1310 */
1311 reg->alloc = 1;
1312 }
1313
efc9f05d
SE
1314 /* lock in msr value */
1315 era->config = reg->config;
1316 era->reg = reg->reg;
1317
1318 /* one more user */
1319 atomic_inc(&era->ref);
1320
a7e3ed1e 1321 /*
b36817e8
SE
1322 * need to call x86_get_event_constraint()
1323 * to check if associated event has constraints
a7e3ed1e 1324 */
b36817e8 1325 c = NULL;
5a425294
PZ
1326 } else {
1327 idx = intel_alt_er(idx);
1328 if (idx != reg->idx) {
1329 raw_spin_unlock_irqrestore(&era->lock, flags);
1330 goto again;
1331 }
a7e3ed1e 1332 }
cd8a38d3 1333 raw_spin_unlock_irqrestore(&era->lock, flags);
a7e3ed1e 1334
efc9f05d
SE
1335 return c;
1336}
1337
1338static void
1339__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1340 struct hw_perf_event_extra *reg)
1341{
1342 struct er_account *era;
1343
1344 /*
5a425294
PZ
1345 * Only put constraint if extra reg was actually allocated. Also takes
1346 * care of event which do not use an extra shared reg.
1347 *
1348 * Also, if this is a fake cpuc we shouldn't touch any event state
1349 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1350 * either since it'll be thrown out.
efc9f05d 1351 */
5a425294 1352 if (!reg->alloc || cpuc->is_fake)
efc9f05d
SE
1353 return;
1354
1355 era = &cpuc->shared_regs->regs[reg->idx];
1356
1357 /* one fewer user */
1358 atomic_dec(&era->ref);
1359
1360 /* allocate again next time */
1361 reg->alloc = 0;
1362}
1363
1364static struct event_constraint *
1365intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1366 struct perf_event *event)
1367{
b36817e8
SE
1368 struct event_constraint *c = NULL, *d;
1369 struct hw_perf_event_extra *xreg, *breg;
1370
1371 xreg = &event->hw.extra_reg;
1372 if (xreg->idx != EXTRA_REG_NONE) {
1373 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1374 if (c == &emptyconstraint)
1375 return c;
1376 }
1377 breg = &event->hw.branch_reg;
1378 if (breg->idx != EXTRA_REG_NONE) {
1379 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1380 if (d == &emptyconstraint) {
1381 __intel_shared_reg_put_constraints(cpuc, xreg);
1382 c = d;
1383 }
1384 }
efc9f05d 1385 return c;
a7e3ed1e
AK
1386}
1387
de0428a7
KW
1388struct event_constraint *
1389x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1390{
1391 struct event_constraint *c;
1392
1393 if (x86_pmu.event_constraints) {
1394 for_each_event_constraint(c, x86_pmu.event_constraints) {
1395 if ((event->hw.config & c->cmask) == c->code)
1396 return c;
1397 }
1398 }
1399
1400 return &unconstrained;
1401}
1402
f22f54f4
PZ
1403static struct event_constraint *
1404intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1405{
1406 struct event_constraint *c;
1407
ca037701
PZ
1408 c = intel_bts_constraints(event);
1409 if (c)
1410 return c;
1411
1412 c = intel_pebs_constraints(event);
f22f54f4
PZ
1413 if (c)
1414 return c;
1415
efc9f05d 1416 c = intel_shared_regs_constraints(cpuc, event);
a7e3ed1e
AK
1417 if (c)
1418 return c;
1419
f22f54f4
PZ
1420 return x86_get_event_constraints(cpuc, event);
1421}
1422
efc9f05d
SE
1423static void
1424intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
a7e3ed1e
AK
1425 struct perf_event *event)
1426{
efc9f05d 1427 struct hw_perf_event_extra *reg;
a7e3ed1e 1428
efc9f05d
SE
1429 reg = &event->hw.extra_reg;
1430 if (reg->idx != EXTRA_REG_NONE)
1431 __intel_shared_reg_put_constraints(cpuc, reg);
b36817e8
SE
1432
1433 reg = &event->hw.branch_reg;
1434 if (reg->idx != EXTRA_REG_NONE)
1435 __intel_shared_reg_put_constraints(cpuc, reg);
efc9f05d 1436}
a7e3ed1e 1437
efc9f05d
SE
1438static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1439 struct perf_event *event)
1440{
1441 intel_put_shared_regs_event_constraints(cpuc, event);
a7e3ed1e
AK
1442}
1443
0780c927 1444static void intel_pebs_aliases_core2(struct perf_event *event)
b4cdc5c2 1445{
0780c927 1446 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
7639dae0
PZ
1447 /*
1448 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1449 * (0x003c) so that we can use it with PEBS.
1450 *
1451 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1452 * PEBS capable. However we can use INST_RETIRED.ANY_P
1453 * (0x00c0), which is a PEBS capable event, to get the same
1454 * count.
1455 *
1456 * INST_RETIRED.ANY_P counts the number of cycles that retires
1457 * CNTMASK instructions. By setting CNTMASK to a value (16)
1458 * larger than the maximum number of instructions that can be
1459 * retired per cycle (4) and then inverting the condition, we
1460 * count all cycles that retire 16 or less instructions, which
1461 * is every cycle.
1462 *
1463 * Thereby we gain a PEBS capable cycle counter.
1464 */
f9b4eeb8
PZ
1465 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1466
0780c927
PZ
1467 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1468 event->hw.config = alt_config;
1469 }
1470}
1471
1472static void intel_pebs_aliases_snb(struct perf_event *event)
1473{
1474 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1475 /*
1476 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1477 * (0x003c) so that we can use it with PEBS.
1478 *
1479 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1480 * PEBS capable. However we can use UOPS_RETIRED.ALL
1481 * (0x01c2), which is a PEBS capable event, to get the same
1482 * count.
1483 *
1484 * UOPS_RETIRED.ALL counts the number of cycles that retires
1485 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1486 * larger than the maximum number of micro-ops that can be
1487 * retired per cycle (4) and then inverting the condition, we
1488 * count all cycles that retire 16 or less micro-ops, which
1489 * is every cycle.
1490 *
1491 * Thereby we gain a PEBS capable cycle counter.
1492 */
1493 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
7639dae0
PZ
1494
1495 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1496 event->hw.config = alt_config;
1497 }
0780c927
PZ
1498}
1499
1500static int intel_pmu_hw_config(struct perf_event *event)
1501{
1502 int ret = x86_pmu_hw_config(event);
1503
1504 if (ret)
1505 return ret;
1506
1507 if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1508 x86_pmu.pebs_aliases(event);
7639dae0 1509
60ce0fbd
SE
1510 if (intel_pmu_needs_lbr_smpl(event)) {
1511 ret = intel_pmu_setup_lbr_filter(event);
1512 if (ret)
1513 return ret;
1514 }
1515
b4cdc5c2
PZ
1516 if (event->attr.type != PERF_TYPE_RAW)
1517 return 0;
1518
1519 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1520 return 0;
1521
1522 if (x86_pmu.version < 3)
1523 return -EINVAL;
1524
1525 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1526 return -EACCES;
1527
1528 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1529
1530 return 0;
1531}
1532
144d31e6
GN
1533struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1534{
1535 if (x86_pmu.guest_get_msrs)
1536 return x86_pmu.guest_get_msrs(nr);
1537 *nr = 0;
1538 return NULL;
1539}
1540EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1541
1542static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1543{
1544 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1545 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1546
1547 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1548 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1549 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
26a4f3c0
GN
1550 /*
1551 * If PMU counter has PEBS enabled it is not enough to disable counter
1552 * on a guest entry since PEBS memory write can overshoot guest entry
1553 * and corrupt guest memory. Disabling PEBS solves the problem.
1554 */
1555 arr[1].msr = MSR_IA32_PEBS_ENABLE;
1556 arr[1].host = cpuc->pebs_enabled;
1557 arr[1].guest = 0;
144d31e6 1558
26a4f3c0 1559 *nr = 2;
144d31e6
GN
1560 return arr;
1561}
1562
1563static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1564{
1565 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1566 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1567 int idx;
1568
1569 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1570 struct perf_event *event = cpuc->events[idx];
1571
1572 arr[idx].msr = x86_pmu_config_addr(idx);
1573 arr[idx].host = arr[idx].guest = 0;
1574
1575 if (!test_bit(idx, cpuc->active_mask))
1576 continue;
1577
1578 arr[idx].host = arr[idx].guest =
1579 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1580
1581 if (event->attr.exclude_host)
1582 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1583 else if (event->attr.exclude_guest)
1584 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1585 }
1586
1587 *nr = x86_pmu.num_counters;
1588 return arr;
1589}
1590
1591static void core_pmu_enable_event(struct perf_event *event)
1592{
1593 if (!event->attr.exclude_host)
1594 x86_pmu_enable_event(event);
1595}
1596
1597static void core_pmu_enable_all(int added)
1598{
1599 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1600 int idx;
1601
1602 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1603 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1604
1605 if (!test_bit(idx, cpuc->active_mask) ||
1606 cpuc->events[idx]->attr.exclude_host)
1607 continue;
1608
1609 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1610 }
1611}
1612
641cc938
JO
1613PMU_FORMAT_ATTR(event, "config:0-7" );
1614PMU_FORMAT_ATTR(umask, "config:8-15" );
1615PMU_FORMAT_ATTR(edge, "config:18" );
1616PMU_FORMAT_ATTR(pc, "config:19" );
1617PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
1618PMU_FORMAT_ATTR(inv, "config:23" );
1619PMU_FORMAT_ATTR(cmask, "config:24-31" );
1620
1621static struct attribute *intel_arch_formats_attr[] = {
1622 &format_attr_event.attr,
1623 &format_attr_umask.attr,
1624 &format_attr_edge.attr,
1625 &format_attr_pc.attr,
1626 &format_attr_inv.attr,
1627 &format_attr_cmask.attr,
1628 NULL,
1629};
1630
0bf79d44
JO
1631ssize_t intel_event_sysfs_show(char *page, u64 config)
1632{
1633 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
1634
1635 return x86_event_sysfs_show(page, config, event);
1636}
1637
caaa8be3 1638static __initconst const struct x86_pmu core_pmu = {
f22f54f4
PZ
1639 .name = "core",
1640 .handle_irq = x86_pmu_handle_irq,
1641 .disable_all = x86_pmu_disable_all,
144d31e6
GN
1642 .enable_all = core_pmu_enable_all,
1643 .enable = core_pmu_enable_event,
f22f54f4 1644 .disable = x86_pmu_disable_event,
b4cdc5c2 1645 .hw_config = x86_pmu_hw_config,
a072738e 1646 .schedule_events = x86_schedule_events,
f22f54f4
PZ
1647 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1648 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1649 .event_map = intel_pmu_event_map,
f22f54f4
PZ
1650 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1651 .apic = 1,
1652 /*
1653 * Intel PMCs cannot be accessed sanely above 32 bit width,
1654 * so we install an artificial 1<<31 period regardless of
1655 * the generic event period:
1656 */
1657 .max_period = (1ULL << 31) - 1,
1658 .get_event_constraints = intel_get_event_constraints,
a7e3ed1e 1659 .put_event_constraints = intel_put_event_constraints,
f22f54f4 1660 .event_constraints = intel_core_event_constraints,
144d31e6 1661 .guest_get_msrs = core_guest_get_msrs,
641cc938 1662 .format_attrs = intel_arch_formats_attr,
0bf79d44 1663 .events_sysfs_show = intel_event_sysfs_show,
f22f54f4
PZ
1664};
1665
de0428a7 1666struct intel_shared_regs *allocate_shared_regs(int cpu)
efc9f05d
SE
1667{
1668 struct intel_shared_regs *regs;
1669 int i;
1670
1671 regs = kzalloc_node(sizeof(struct intel_shared_regs),
1672 GFP_KERNEL, cpu_to_node(cpu));
1673 if (regs) {
1674 /*
1675 * initialize the locks to keep lockdep happy
1676 */
1677 for (i = 0; i < EXTRA_REG_MAX; i++)
1678 raw_spin_lock_init(&regs->regs[i].lock);
1679
1680 regs->core_id = -1;
1681 }
1682 return regs;
1683}
1684
a7e3ed1e
AK
1685static int intel_pmu_cpu_prepare(int cpu)
1686{
1687 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1688
b36817e8 1689 if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
69092624
LM
1690 return NOTIFY_OK;
1691
efc9f05d
SE
1692 cpuc->shared_regs = allocate_shared_regs(cpu);
1693 if (!cpuc->shared_regs)
a7e3ed1e
AK
1694 return NOTIFY_BAD;
1695
a7e3ed1e
AK
1696 return NOTIFY_OK;
1697}
1698
74846d35
PZ
1699static void intel_pmu_cpu_starting(int cpu)
1700{
a7e3ed1e
AK
1701 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1702 int core_id = topology_core_id(cpu);
1703 int i;
1704
69092624
LM
1705 init_debug_store_on_cpu(cpu);
1706 /*
1707 * Deal with CPUs that don't clear their LBRs on power-up.
1708 */
1709 intel_pmu_lbr_reset();
1710
b36817e8
SE
1711 cpuc->lbr_sel = NULL;
1712
1713 if (!cpuc->shared_regs)
69092624
LM
1714 return;
1715
b36817e8
SE
1716 if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
1717 for_each_cpu(i, topology_thread_cpumask(cpu)) {
1718 struct intel_shared_regs *pc;
a7e3ed1e 1719
b36817e8
SE
1720 pc = per_cpu(cpu_hw_events, i).shared_regs;
1721 if (pc && pc->core_id == core_id) {
1722 cpuc->kfree_on_online = cpuc->shared_regs;
1723 cpuc->shared_regs = pc;
1724 break;
1725 }
a7e3ed1e 1726 }
b36817e8
SE
1727 cpuc->shared_regs->core_id = core_id;
1728 cpuc->shared_regs->refcnt++;
a7e3ed1e
AK
1729 }
1730
b36817e8
SE
1731 if (x86_pmu.lbr_sel_map)
1732 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
74846d35
PZ
1733}
1734
1735static void intel_pmu_cpu_dying(int cpu)
1736{
a7e3ed1e 1737 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
efc9f05d 1738 struct intel_shared_regs *pc;
a7e3ed1e 1739
efc9f05d 1740 pc = cpuc->shared_regs;
a7e3ed1e
AK
1741 if (pc) {
1742 if (pc->core_id == -1 || --pc->refcnt == 0)
1743 kfree(pc);
efc9f05d 1744 cpuc->shared_regs = NULL;
a7e3ed1e
AK
1745 }
1746
74846d35
PZ
1747 fini_debug_store_on_cpu(cpu);
1748}
1749
d010b332
SE
1750static void intel_pmu_flush_branch_stack(void)
1751{
1752 /*
1753 * Intel LBR does not tag entries with the
1754 * PID of the current task, then we need to
1755 * flush it on ctxsw
1756 * For now, we simply reset it
1757 */
1758 if (x86_pmu.lbr_nr)
1759 intel_pmu_lbr_reset();
1760}
1761
641cc938
JO
1762PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
1763
1764static struct attribute *intel_arch3_formats_attr[] = {
1765 &format_attr_event.attr,
1766 &format_attr_umask.attr,
1767 &format_attr_edge.attr,
1768 &format_attr_pc.attr,
1769 &format_attr_any.attr,
1770 &format_attr_inv.attr,
1771 &format_attr_cmask.attr,
1772
1773 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
1774 NULL,
1775};
1776
caaa8be3 1777static __initconst const struct x86_pmu intel_pmu = {
f22f54f4
PZ
1778 .name = "Intel",
1779 .handle_irq = intel_pmu_handle_irq,
1780 .disable_all = intel_pmu_disable_all,
1781 .enable_all = intel_pmu_enable_all,
1782 .enable = intel_pmu_enable_event,
1783 .disable = intel_pmu_disable_event,
b4cdc5c2 1784 .hw_config = intel_pmu_hw_config,
a072738e 1785 .schedule_events = x86_schedule_events,
f22f54f4
PZ
1786 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1787 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1788 .event_map = intel_pmu_event_map,
f22f54f4
PZ
1789 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1790 .apic = 1,
1791 /*
1792 * Intel PMCs cannot be accessed sanely above 32 bit width,
1793 * so we install an artificial 1<<31 period regardless of
1794 * the generic event period:
1795 */
1796 .max_period = (1ULL << 31) - 1,
3f6da390 1797 .get_event_constraints = intel_get_event_constraints,
a7e3ed1e 1798 .put_event_constraints = intel_put_event_constraints,
0780c927 1799 .pebs_aliases = intel_pebs_aliases_core2,
3f6da390 1800
641cc938 1801 .format_attrs = intel_arch3_formats_attr,
0bf79d44 1802 .events_sysfs_show = intel_event_sysfs_show,
641cc938 1803
a7e3ed1e 1804 .cpu_prepare = intel_pmu_cpu_prepare,
74846d35
PZ
1805 .cpu_starting = intel_pmu_cpu_starting,
1806 .cpu_dying = intel_pmu_cpu_dying,
144d31e6 1807 .guest_get_msrs = intel_guest_get_msrs,
d010b332 1808 .flush_branch_stack = intel_pmu_flush_branch_stack,
f22f54f4
PZ
1809};
1810
c1d6f42f 1811static __init void intel_clovertown_quirk(void)
3c44780b
PZ
1812{
1813 /*
1814 * PEBS is unreliable due to:
1815 *
1816 * AJ67 - PEBS may experience CPL leaks
1817 * AJ68 - PEBS PMI may be delayed by one event
1818 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1819 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1820 *
1821 * AJ67 could be worked around by restricting the OS/USR flags.
1822 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1823 *
1824 * AJ106 could possibly be worked around by not allowing LBR
1825 * usage from PEBS, including the fixup.
1826 * AJ68 could possibly be worked around by always programming
ec75a716 1827 * a pebs_event_reset[0] value and coping with the lost events.
3c44780b
PZ
1828 *
1829 * But taken together it might just make sense to not enable PEBS on
1830 * these chips.
1831 */
c767a54b 1832 pr_warn("PEBS disabled due to CPU errata\n");
3c44780b
PZ
1833 x86_pmu.pebs = 0;
1834 x86_pmu.pebs_constraints = NULL;
1835}
1836
c93dc84c
PZ
1837static int intel_snb_pebs_broken(int cpu)
1838{
1839 u32 rev = UINT_MAX; /* default to broken for unknown models */
1840
1841 switch (cpu_data(cpu).x86_model) {
1842 case 42: /* SNB */
1843 rev = 0x28;
1844 break;
1845
1846 case 45: /* SNB-EP */
1847 switch (cpu_data(cpu).x86_mask) {
1848 case 6: rev = 0x618; break;
1849 case 7: rev = 0x70c; break;
1850 }
1851 }
1852
1853 return (cpu_data(cpu).microcode < rev);
1854}
1855
1856static void intel_snb_check_microcode(void)
1857{
1858 int pebs_broken = 0;
1859 int cpu;
1860
1861 get_online_cpus();
1862 for_each_online_cpu(cpu) {
1863 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
1864 break;
1865 }
1866 put_online_cpus();
1867
1868 if (pebs_broken == x86_pmu.pebs_broken)
1869 return;
1870
1871 /*
1872 * Serialized by the microcode lock..
1873 */
1874 if (x86_pmu.pebs_broken) {
1875 pr_info("PEBS enabled due to microcode update\n");
1876 x86_pmu.pebs_broken = 0;
1877 } else {
1878 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
1879 x86_pmu.pebs_broken = 1;
1880 }
1881}
1882
c1d6f42f 1883static __init void intel_sandybridge_quirk(void)
6a600a8b 1884{
c93dc84c
PZ
1885 x86_pmu.check_microcode = intel_snb_check_microcode;
1886 intel_snb_check_microcode();
6a600a8b
PZ
1887}
1888
c1d6f42f
PZ
1889static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
1890 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
1891 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
1892 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
1893 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
1894 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
1895 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
1896 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
ffb871bc
GN
1897};
1898
c1d6f42f
PZ
1899static __init void intel_arch_events_quirk(void)
1900{
1901 int bit;
1902
1903 /* disable event that reported as not presend by cpuid */
1904 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
1905 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
c767a54b
JP
1906 pr_warn("CPUID marked event: \'%s\' unavailable\n",
1907 intel_arch_events_map[bit].name);
c1d6f42f
PZ
1908 }
1909}
1910
1911static __init void intel_nehalem_quirk(void)
1912{
1913 union cpuid10_ebx ebx;
1914
1915 ebx.full = x86_pmu.events_maskl;
1916 if (ebx.split.no_branch_misses_retired) {
1917 /*
1918 * Erratum AAJ80 detected, we work it around by using
1919 * the BR_MISP_EXEC.ANY event. This will over-count
1920 * branch-misses, but it's still much better than the
1921 * architectural event which is often completely bogus:
1922 */
1923 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
1924 ebx.split.no_branch_misses_retired = 0;
1925 x86_pmu.events_maskl = ebx.full;
c767a54b 1926 pr_info("CPU erratum AAJ80 worked around\n");
c1d6f42f
PZ
1927 }
1928}
1929
de0428a7 1930__init int intel_pmu_init(void)
f22f54f4
PZ
1931{
1932 union cpuid10_edx edx;
1933 union cpuid10_eax eax;
ffb871bc 1934 union cpuid10_ebx ebx;
a1eac7ac 1935 struct event_constraint *c;
f22f54f4 1936 unsigned int unused;
f22f54f4
PZ
1937 int version;
1938
1939 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
a072738e
CG
1940 switch (boot_cpu_data.x86) {
1941 case 0x6:
1942 return p6_pmu_init();
e717bf4e
VW
1943 case 0xb:
1944 return knc_pmu_init();
a072738e
CG
1945 case 0xf:
1946 return p4_pmu_init();
1947 }
f22f54f4 1948 return -ENODEV;
f22f54f4
PZ
1949 }
1950
1951 /*
1952 * Check whether the Architectural PerfMon supports
1953 * Branch Misses Retired hw_event or not.
1954 */
ffb871bc
GN
1955 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
1956 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
f22f54f4
PZ
1957 return -ENODEV;
1958
1959 version = eax.split.version_id;
1960 if (version < 2)
1961 x86_pmu = core_pmu;
1962 else
1963 x86_pmu = intel_pmu;
1964
1965 x86_pmu.version = version;
948b1bb8
RR
1966 x86_pmu.num_counters = eax.split.num_counters;
1967 x86_pmu.cntval_bits = eax.split.bit_width;
1968 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
f22f54f4 1969
c1d6f42f
PZ
1970 x86_pmu.events_maskl = ebx.full;
1971 x86_pmu.events_mask_len = eax.split.mask_length;
1972
70ab7003
AK
1973 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
1974
f22f54f4
PZ
1975 /*
1976 * Quirk: v2 perfmon does not report fixed-purpose events, so
1977 * assume at least 3 events:
1978 */
1979 if (version > 1)
948b1bb8 1980 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
f22f54f4 1981
8db909a7
PZ
1982 /*
1983 * v2 and above have a perf capabilities MSR
1984 */
1985 if (version > 1) {
1986 u64 capabilities;
1987
1988 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
1989 x86_pmu.intel_cap.capabilities = capabilities;
1990 }
1991
ca037701
PZ
1992 intel_ds_init();
1993
c1d6f42f
PZ
1994 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
1995
f22f54f4
PZ
1996 /*
1997 * Install the hw-cache-events table:
1998 */
1999 switch (boot_cpu_data.x86_model) {
2000 case 14: /* 65 nm core solo/duo, "Yonah" */
2001 pr_cont("Core events, ");
2002 break;
2003
2004 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
c1d6f42f 2005 x86_add_quirk(intel_clovertown_quirk);
f22f54f4
PZ
2006 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
2007 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
2008 case 29: /* six-core 45 nm xeon "Dunnington" */
2009 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
2010 sizeof(hw_cache_event_ids));
2011
caff2bef
PZ
2012 intel_pmu_lbr_init_core();
2013
f22f54f4 2014 x86_pmu.event_constraints = intel_core2_event_constraints;
17e31629 2015 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
f22f54f4
PZ
2016 pr_cont("Core2 events, ");
2017 break;
2018
2019 case 26: /* 45 nm nehalem, "Bloomfield" */
2020 case 30: /* 45 nm nehalem, "Lynnfield" */
134fbadf 2021 case 46: /* 45 nm nehalem-ex, "Beckton" */
f22f54f4
PZ
2022 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
2023 sizeof(hw_cache_event_ids));
e994d7d2
AK
2024 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2025 sizeof(hw_cache_extra_regs));
f22f54f4 2026
caff2bef
PZ
2027 intel_pmu_lbr_init_nhm();
2028
f22f54f4 2029 x86_pmu.event_constraints = intel_nehalem_event_constraints;
17e31629 2030 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
11164cd4 2031 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
a7e3ed1e 2032 x86_pmu.extra_regs = intel_nehalem_extra_regs;
ec75a716 2033
91fc4cc0 2034 /* UOPS_ISSUED.STALLED_CYCLES */
f9b4eeb8
PZ
2035 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2036 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
91fc4cc0 2037 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
f9b4eeb8
PZ
2038 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2039 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
94403f88 2040
c1d6f42f 2041 x86_add_quirk(intel_nehalem_quirk);
ec75a716 2042
11164cd4 2043 pr_cont("Nehalem events, ");
f22f54f4 2044 break;
caff2bef 2045
b622d644 2046 case 28: /* Atom */
0927b482
SL
2047 case 38: /* Lincroft */
2048 case 39: /* Penwell */
2049 case 53: /* Cloverview */
2050 case 54: /* Cedarview */
f22f54f4
PZ
2051 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2052 sizeof(hw_cache_event_ids));
2053
caff2bef
PZ
2054 intel_pmu_lbr_init_atom();
2055
f22f54f4 2056 x86_pmu.event_constraints = intel_gen_event_constraints;
17e31629 2057 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
f22f54f4
PZ
2058 pr_cont("Atom events, ");
2059 break;
2060
2061 case 37: /* 32 nm nehalem, "Clarkdale" */
2062 case 44: /* 32 nm nehalem, "Gulftown" */
b2508e82 2063 case 47: /* 32 nm Xeon E7 */
f22f54f4
PZ
2064 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2065 sizeof(hw_cache_event_ids));
e994d7d2
AK
2066 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2067 sizeof(hw_cache_extra_regs));
f22f54f4 2068
caff2bef
PZ
2069 intel_pmu_lbr_init_nhm();
2070
f22f54f4 2071 x86_pmu.event_constraints = intel_westmere_event_constraints;
40b91cd1 2072 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
17e31629 2073 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
a7e3ed1e 2074 x86_pmu.extra_regs = intel_westmere_extra_regs;
b79e8941 2075 x86_pmu.er_flags |= ERF_HAS_RSP_1;
30112039
IM
2076
2077 /* UOPS_ISSUED.STALLED_CYCLES */
f9b4eeb8
PZ
2078 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2079 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
30112039 2080 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
f9b4eeb8
PZ
2081 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2082 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
30112039 2083
f22f54f4
PZ
2084 pr_cont("Westmere events, ");
2085 break;
b622d644 2086
b06b3d49 2087 case 42: /* SandyBridge */
a34668f6 2088 case 45: /* SandyBridge, "Romely-EP" */
47a8863d 2089 x86_add_quirk(intel_sandybridge_quirk);
b06b3d49
LM
2090 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2091 sizeof(hw_cache_event_ids));
74e6543f
YZ
2092 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2093 sizeof(hw_cache_extra_regs));
b06b3d49 2094
c5cc2cd9 2095 intel_pmu_lbr_init_snb();
b06b3d49
LM
2096
2097 x86_pmu.event_constraints = intel_snb_event_constraints;
de0428a7 2098 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
0780c927 2099 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
ee89cbc2
SE
2100 x86_pmu.extra_regs = intel_snb_extra_regs;
2101 /* all extra regs are per-cpu when HT is on */
b79e8941
PZ
2102 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2103 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
e04d1b23
LM
2104
2105 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
f9b4eeb8
PZ
2106 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2107 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
e04d1b23 2108 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
f9b4eeb8
PZ
2109 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2110 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
e04d1b23 2111
b06b3d49
LM
2112 pr_cont("SandyBridge events, ");
2113 break;
20a36e39 2114 case 58: /* IvyBridge */
923d8697 2115 case 62: /* IvyBridge EP */
20a36e39
SE
2116 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2117 sizeof(hw_cache_event_ids));
2118 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2119 sizeof(hw_cache_extra_regs));
2120
2121 intel_pmu_lbr_init_snb();
2122
69943182 2123 x86_pmu.event_constraints = intel_ivb_event_constraints;
20a36e39
SE
2124 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
2125 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2126 x86_pmu.extra_regs = intel_snb_extra_regs;
2127 /* all extra regs are per-cpu when HT is on */
2128 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2129 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2130
2131 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2132 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2133 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2134
2135 pr_cont("IvyBridge events, ");
2136 break;
2137
b06b3d49 2138
f22f54f4 2139 default:
0af3ac1f
AK
2140 switch (x86_pmu.version) {
2141 case 1:
2142 x86_pmu.event_constraints = intel_v1_event_constraints;
2143 pr_cont("generic architected perfmon v1, ");
2144 break;
2145 default:
2146 /*
2147 * default constraints for v2 and up
2148 */
2149 x86_pmu.event_constraints = intel_gen_event_constraints;
2150 pr_cont("generic architected perfmon, ");
2151 break;
2152 }
f22f54f4 2153 }
ffb871bc 2154
a1eac7ac
RR
2155 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2156 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2157 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2158 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2159 }
2160 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2161
2162 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2163 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2164 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2165 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2166 }
2167
2168 x86_pmu.intel_ctrl |=
2169 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2170
2171 if (x86_pmu.event_constraints) {
2172 /*
2173 * event on fixed counter2 (REF_CYCLES) only works on this
2174 * counter, so do not extend mask to generic counters
2175 */
2176 for_each_event_constraint(c, x86_pmu.event_constraints) {
2177 if (c->cmask != X86_RAW_EVENT_MASK
2178 || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2179 continue;
2180 }
2181
2182 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2183 c->weight += x86_pmu.num_counters;
2184 }
2185 }
2186
f22f54f4
PZ
2187 return 0;
2188}