tracing, perf: Convert the power tracer into an event tracer
[linux-2.6-block.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
CommitLineData
1da177e4 1/*
3a58df35 2 * acpi-cpufreq.c - ACPI Processor P-States Driver
1da177e4
LT
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
fe27cb35 7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
1da177e4
LT
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
fe27cb35
VP
31#include <linux/smp.h>
32#include <linux/sched.h>
1da177e4 33#include <linux/cpufreq.h>
d395bf12 34#include <linux/compiler.h>
8adcc0c6 35#include <linux/dmi.h>
61613521 36#include <trace/events/power.h>
1da177e4
LT
37
38#include <linux/acpi.h>
3a58df35
DJ
39#include <linux/io.h>
40#include <linux/delay.h>
41#include <linux/uaccess.h>
42
1da177e4
LT
43#include <acpi/processor.h>
44
dde9f7ba 45#include <asm/msr.h>
fe27cb35
VP
46#include <asm/processor.h>
47#include <asm/cpufeature.h>
fe27cb35 48
3a58df35
DJ
49#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
50 "acpi-cpufreq", msg)
1da177e4
LT
51
52MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
53MODULE_DESCRIPTION("ACPI Processor P-States Driver");
54MODULE_LICENSE("GPL");
55
dde9f7ba
VP
56enum {
57 UNDEFINED_CAPABLE = 0,
58 SYSTEM_INTEL_MSR_CAPABLE,
59 SYSTEM_IO_CAPABLE,
60};
61
62#define INTEL_MSR_RANGE (0xffff)
63
fe27cb35 64struct acpi_cpufreq_data {
64be7eed
VP
65 struct acpi_processor_performance *acpi_data;
66 struct cpufreq_frequency_table *freq_table;
67 unsigned int resume;
68 unsigned int cpu_feature;
1da177e4
LT
69};
70
ea348f3e 71static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
72
5cbc19a9 73static DEFINE_PER_CPU(struct aperfmperf, old_perf);
093f13e2 74
50109292
FY
75/* acpi_perf_data is a pointer to percpu data. */
76static struct acpi_processor_performance *acpi_perf_data;
1da177e4
LT
77
78static struct cpufreq_driver acpi_cpufreq_driver;
79
d395bf12
VP
80static unsigned int acpi_pstate_strict;
81
dde9f7ba
VP
82static int check_est_cpu(unsigned int cpuid)
83{
92cb7612 84 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
dde9f7ba 85
0de51088 86 return cpu_has(cpu, X86_FEATURE_EST);
dde9f7ba
VP
87}
88
dde9f7ba 89static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
fe27cb35 90{
64be7eed
VP
91 struct acpi_processor_performance *perf;
92 int i;
fe27cb35
VP
93
94 perf = data->acpi_data;
95
3a58df35 96 for (i = 0; i < perf->state_count; i++) {
fe27cb35
VP
97 if (value == perf->states[i].status)
98 return data->freq_table[i].frequency;
99 }
100 return 0;
101}
102
dde9f7ba
VP
103static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
104{
105 int i;
a6f6e6e6 106 struct acpi_processor_performance *perf;
dde9f7ba
VP
107
108 msr &= INTEL_MSR_RANGE;
a6f6e6e6
VP
109 perf = data->acpi_data;
110
3a58df35 111 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
a6f6e6e6 112 if (msr == perf->states[data->freq_table[i].index].status)
dde9f7ba
VP
113 return data->freq_table[i].frequency;
114 }
115 return data->freq_table[0].frequency;
116}
117
dde9f7ba
VP
118static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
119{
120 switch (data->cpu_feature) {
64be7eed 121 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba 122 return extract_msr(val, data);
64be7eed 123 case SYSTEM_IO_CAPABLE:
dde9f7ba 124 return extract_io(val, data);
64be7eed 125 default:
dde9f7ba
VP
126 return 0;
127 }
128}
129
dde9f7ba
VP
130struct msr_addr {
131 u32 reg;
132};
133
fe27cb35
VP
134struct io_addr {
135 u16 port;
136 u8 bit_width;
137};
138
139struct drv_cmd {
dde9f7ba 140 unsigned int type;
bfa318ad 141 const struct cpumask *mask;
3a58df35
DJ
142 union {
143 struct msr_addr msr;
144 struct io_addr io;
145 } addr;
fe27cb35
VP
146 u32 val;
147};
148
01599fca
AM
149/* Called via smp_call_function_single(), on the target CPU */
150static void do_drv_read(void *_cmd)
1da177e4 151{
72859081 152 struct drv_cmd *cmd = _cmd;
dde9f7ba
VP
153 u32 h;
154
155 switch (cmd->type) {
64be7eed 156 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba
VP
157 rdmsr(cmd->addr.msr.reg, cmd->val, h);
158 break;
64be7eed 159 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
160 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
161 &cmd->val,
162 (u32)cmd->addr.io.bit_width);
dde9f7ba 163 break;
64be7eed 164 default:
dde9f7ba
VP
165 break;
166 }
fe27cb35 167}
1da177e4 168
01599fca
AM
169/* Called via smp_call_function_many(), on the target CPUs */
170static void do_drv_write(void *_cmd)
fe27cb35 171{
72859081 172 struct drv_cmd *cmd = _cmd;
13424f65 173 u32 lo, hi;
dde9f7ba
VP
174
175 switch (cmd->type) {
64be7eed 176 case SYSTEM_INTEL_MSR_CAPABLE:
13424f65
VP
177 rdmsr(cmd->addr.msr.reg, lo, hi);
178 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
179 wrmsr(cmd->addr.msr.reg, lo, hi);
dde9f7ba 180 break;
64be7eed 181 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
182 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
183 cmd->val,
184 (u32)cmd->addr.io.bit_width);
dde9f7ba 185 break;
64be7eed 186 default:
dde9f7ba
VP
187 break;
188 }
fe27cb35 189}
1da177e4 190
95dd7227 191static void drv_read(struct drv_cmd *cmd)
fe27cb35 192{
fe27cb35
VP
193 cmd->val = 0;
194
01599fca 195 smp_call_function_single(cpumask_any(cmd->mask), do_drv_read, cmd, 1);
fe27cb35
VP
196}
197
198static void drv_write(struct drv_cmd *cmd)
199{
ea34f43a
LT
200 int this_cpu;
201
202 this_cpu = get_cpu();
203 if (cpumask_test_cpu(this_cpu, cmd->mask))
204 do_drv_write(cmd);
01599fca 205 smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
ea34f43a 206 put_cpu();
fe27cb35 207}
1da177e4 208
4d8bb537 209static u32 get_cur_val(const struct cpumask *mask)
fe27cb35 210{
64be7eed
VP
211 struct acpi_processor_performance *perf;
212 struct drv_cmd cmd;
1da177e4 213
4d8bb537 214 if (unlikely(cpumask_empty(mask)))
fe27cb35 215 return 0;
1da177e4 216
4d8bb537 217 switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
dde9f7ba
VP
218 case SYSTEM_INTEL_MSR_CAPABLE:
219 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
220 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
221 break;
222 case SYSTEM_IO_CAPABLE:
223 cmd.type = SYSTEM_IO_CAPABLE;
4d8bb537 224 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
dde9f7ba
VP
225 cmd.addr.io.port = perf->control_register.address;
226 cmd.addr.io.bit_width = perf->control_register.bit_width;
227 break;
228 default:
229 return 0;
230 }
231
bfa318ad 232 cmd.mask = mask;
fe27cb35 233 drv_read(&cmd);
1da177e4 234
fe27cb35
VP
235 dprintk("get_cur_val = %u\n", cmd.val);
236
237 return cmd.val;
238}
1da177e4 239
01599fca
AM
240/* Called via smp_call_function_single(), on the target CPU */
241static void read_measured_perf_ctrs(void *_cur)
e39ad415 242{
5cbc19a9 243 struct aperfmperf *am = _cur;
e39ad415 244
5cbc19a9 245 get_aperfmperf(am);
e39ad415
MT
246}
247
dfde5d62
VP
248/*
249 * Return the measured active (C0) frequency on this CPU since last call
250 * to this function.
251 * Input: cpu number
252 * Return: Average CPU frequency in terms of max frequency (zero on error)
253 *
254 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
255 * over a period of time, while CPU is in C0 state.
256 * IA32_MPERF counts at the rate of max advertised frequency
257 * IA32_APERF counts at the rate of actual CPU frequency
258 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
259 * no meaning should be associated with absolute values of these MSRs.
260 */
bf0b90e3 261static unsigned int get_measured_perf(struct cpufreq_policy *policy,
262 unsigned int cpu)
dfde5d62 263{
5cbc19a9
PZ
264 struct aperfmperf perf;
265 unsigned long ratio;
dfde5d62
VP
266 unsigned int retval;
267
5cbc19a9 268 if (smp_call_function_single(cpu, read_measured_perf_ctrs, &perf, 1))
dfde5d62 269 return 0;
dfde5d62 270
5cbc19a9
PZ
271 ratio = calc_aperfmperf_ratio(&per_cpu(old_perf, cpu), &perf);
272 per_cpu(old_perf, cpu) = perf;
dfde5d62 273
5cbc19a9 274 retval = (policy->cpuinfo.max_freq * ratio) >> APERFMPERF_SHIFT;
dfde5d62 275
dfde5d62
VP
276 return retval;
277}
278
fe27cb35
VP
279static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
280{
ea348f3e 281 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
64be7eed 282 unsigned int freq;
e56a727b 283 unsigned int cached_freq;
fe27cb35
VP
284
285 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
286
287 if (unlikely(data == NULL ||
64be7eed 288 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35 289 return 0;
1da177e4
LT
290 }
291
e56a727b 292 cached_freq = data->freq_table[data->acpi_data->state].frequency;
e39ad415 293 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
e56a727b
VP
294 if (freq != cached_freq) {
295 /*
296 * The dreaded BIOS frequency change behind our back.
297 * Force set the frequency on next target call.
298 */
299 data->resume = 1;
300 }
301
fe27cb35 302 dprintk("cur freq = %u\n", freq);
1da177e4 303
fe27cb35 304 return freq;
1da177e4
LT
305}
306
72859081 307static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
64be7eed 308 struct acpi_cpufreq_data *data)
fe27cb35 309{
64be7eed
VP
310 unsigned int cur_freq;
311 unsigned int i;
1da177e4 312
3a58df35 313 for (i = 0; i < 100; i++) {
fe27cb35
VP
314 cur_freq = extract_freq(get_cur_val(mask), data);
315 if (cur_freq == freq)
316 return 1;
317 udelay(10);
318 }
319 return 0;
320}
321
322static int acpi_cpufreq_target(struct cpufreq_policy *policy,
64be7eed 323 unsigned int target_freq, unsigned int relation)
1da177e4 324{
ea348f3e 325 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
64be7eed
VP
326 struct acpi_processor_performance *perf;
327 struct cpufreq_freqs freqs;
64be7eed 328 struct drv_cmd cmd;
8edc59d9
VP
329 unsigned int next_state = 0; /* Index into freq_table */
330 unsigned int next_perf_state = 0; /* Index into perf table */
64be7eed
VP
331 unsigned int i;
332 int result = 0;
fe27cb35
VP
333
334 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
335
336 if (unlikely(data == NULL ||
95dd7227 337 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35
VP
338 return -ENODEV;
339 }
1da177e4 340
fe27cb35 341 perf = data->acpi_data;
1da177e4 342 result = cpufreq_frequency_table_target(policy,
64be7eed
VP
343 data->freq_table,
344 target_freq,
345 relation, &next_state);
4d8bb537
MT
346 if (unlikely(result)) {
347 result = -ENODEV;
348 goto out;
349 }
1da177e4 350
fe27cb35 351 next_perf_state = data->freq_table[next_state].index;
7650b281 352 if (perf->state == next_perf_state) {
fe27cb35 353 if (unlikely(data->resume)) {
64be7eed
VP
354 dprintk("Called after resume, resetting to P%d\n",
355 next_perf_state);
fe27cb35
VP
356 data->resume = 0;
357 } else {
64be7eed
VP
358 dprintk("Already at target state (P%d)\n",
359 next_perf_state);
4d8bb537 360 goto out;
fe27cb35 361 }
09b4d1ee
VP
362 }
363
61613521 364 trace_power_frequency(POWER_PSTATE, data->freq_table[next_state].frequency);
f3f47a67 365
64be7eed
VP
366 switch (data->cpu_feature) {
367 case SYSTEM_INTEL_MSR_CAPABLE:
368 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
369 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
13424f65 370 cmd.val = (u32) perf->states[next_perf_state].control;
64be7eed
VP
371 break;
372 case SYSTEM_IO_CAPABLE:
373 cmd.type = SYSTEM_IO_CAPABLE;
374 cmd.addr.io.port = perf->control_register.address;
375 cmd.addr.io.bit_width = perf->control_register.bit_width;
376 cmd.val = (u32) perf->states[next_perf_state].control;
377 break;
378 default:
4d8bb537
MT
379 result = -ENODEV;
380 goto out;
64be7eed 381 }
09b4d1ee 382
4d8bb537 383 /* cpufreq holds the hotplug lock, so we are safe from here on */
fe27cb35 384 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
bfa318ad 385 cmd.mask = policy->cpus;
fe27cb35 386 else
bfa318ad 387 cmd.mask = cpumask_of(policy->cpu);
09b4d1ee 388
8edc59d9
VP
389 freqs.old = perf->states[perf->state].core_frequency * 1000;
390 freqs.new = data->freq_table[next_state].frequency;
4d8bb537 391 for_each_cpu(i, cmd.mask) {
fe27cb35
VP
392 freqs.cpu = i;
393 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
09b4d1ee 394 }
1da177e4 395
fe27cb35 396 drv_write(&cmd);
09b4d1ee 397
fe27cb35 398 if (acpi_pstate_strict) {
4d8bb537 399 if (!check_freqs(cmd.mask, freqs.new, data)) {
fe27cb35 400 dprintk("acpi_cpufreq_target failed (%d)\n",
64be7eed 401 policy->cpu);
4d8bb537
MT
402 result = -EAGAIN;
403 goto out;
09b4d1ee
VP
404 }
405 }
406
4d8bb537 407 for_each_cpu(i, cmd.mask) {
fe27cb35
VP
408 freqs.cpu = i;
409 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
410 }
411 perf->state = next_perf_state;
412
4d8bb537 413out:
fe27cb35 414 return result;
1da177e4
LT
415}
416
64be7eed 417static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
1da177e4 418{
ea348f3e 419 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4
LT
420
421 dprintk("acpi_cpufreq_verify\n");
422
fe27cb35 423 return cpufreq_frequency_table_verify(policy, data->freq_table);
1da177e4
LT
424}
425
1da177e4 426static unsigned long
64be7eed 427acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
1da177e4 428{
64be7eed 429 struct acpi_processor_performance *perf = data->acpi_data;
09b4d1ee 430
1da177e4
LT
431 if (cpu_khz) {
432 /* search the closest match to cpu_khz */
433 unsigned int i;
434 unsigned long freq;
09b4d1ee 435 unsigned long freqn = perf->states[0].core_frequency * 1000;
1da177e4 436
3a58df35 437 for (i = 0; i < (perf->state_count-1); i++) {
1da177e4 438 freq = freqn;
95dd7227 439 freqn = perf->states[i+1].core_frequency * 1000;
1da177e4 440 if ((2 * cpu_khz) > (freqn + freq)) {
09b4d1ee 441 perf->state = i;
64be7eed 442 return freq;
1da177e4
LT
443 }
444 }
95dd7227 445 perf->state = perf->state_count-1;
64be7eed 446 return freqn;
09b4d1ee 447 } else {
1da177e4 448 /* assume CPU is at P0... */
09b4d1ee
VP
449 perf->state = 0;
450 return perf->states[0].core_frequency * 1000;
451 }
1da177e4
LT
452}
453
2fdf66b4
RR
454static void free_acpi_perf_data(void)
455{
456 unsigned int i;
457
458 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
459 for_each_possible_cpu(i)
460 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
461 ->shared_cpu_map);
462 free_percpu(acpi_perf_data);
463}
464
09b4d1ee
VP
465/*
466 * acpi_cpufreq_early_init - initialize ACPI P-States library
467 *
468 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
469 * in order to determine correct frequency and voltage pairings. We can
470 * do _PDC and _PSD and find out the processor dependency for the
471 * actual init that will happen later...
472 */
50109292 473static int __init acpi_cpufreq_early_init(void)
09b4d1ee 474{
2fdf66b4 475 unsigned int i;
09b4d1ee
VP
476 dprintk("acpi_cpufreq_early_init\n");
477
50109292
FY
478 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
479 if (!acpi_perf_data) {
480 dprintk("Memory allocation error for acpi_perf_data.\n");
481 return -ENOMEM;
09b4d1ee 482 }
2fdf66b4 483 for_each_possible_cpu(i) {
eaa95840 484 if (!zalloc_cpumask_var_node(
80855f73
MT
485 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
486 GFP_KERNEL, cpu_to_node(i))) {
2fdf66b4
RR
487
488 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
489 free_acpi_perf_data();
490 return -ENOMEM;
491 }
492 }
09b4d1ee
VP
493
494 /* Do initialization in ACPI core */
fe27cb35
VP
495 acpi_processor_preregister_performance(acpi_perf_data);
496 return 0;
09b4d1ee
VP
497}
498
95625b8f 499#ifdef CONFIG_SMP
8adcc0c6
VP
500/*
501 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
502 * or do it in BIOS firmware and won't inform about it to OS. If not
503 * detected, this has a side effect of making CPU run at a different speed
504 * than OS intended it to run at. Detect it and handle it cleanly.
505 */
506static int bios_with_sw_any_bug;
507
1855256c 508static int sw_any_bug_found(const struct dmi_system_id *d)
8adcc0c6
VP
509{
510 bios_with_sw_any_bug = 1;
511 return 0;
512}
513
1855256c 514static const struct dmi_system_id sw_any_bug_dmi_table[] = {
8adcc0c6
VP
515 {
516 .callback = sw_any_bug_found,
517 .ident = "Supermicro Server X6DLP",
518 .matches = {
519 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
520 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
521 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
522 },
523 },
524 { }
525};
95625b8f 526#endif
8adcc0c6 527
64be7eed 528static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
1da177e4 529{
64be7eed
VP
530 unsigned int i;
531 unsigned int valid_states = 0;
532 unsigned int cpu = policy->cpu;
533 struct acpi_cpufreq_data *data;
64be7eed 534 unsigned int result = 0;
92cb7612 535 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
64be7eed 536 struct acpi_processor_performance *perf;
1da177e4 537
1da177e4 538 dprintk("acpi_cpufreq_cpu_init\n");
1da177e4 539
fe27cb35 540 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
1da177e4 541 if (!data)
64be7eed 542 return -ENOMEM;
1da177e4 543
b36128c8 544 data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
ea348f3e 545 per_cpu(drv_data, cpu) = data;
1da177e4 546
95dd7227 547 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
fe27cb35 548 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
1da177e4 549
fe27cb35 550 result = acpi_processor_register_performance(data->acpi_data, cpu);
1da177e4
LT
551 if (result)
552 goto err_free;
553
09b4d1ee 554 perf = data->acpi_data;
09b4d1ee 555 policy->shared_type = perf->shared_type;
95dd7227 556
46f18e3a 557 /*
95dd7227 558 * Will let policy->cpus know about dependency only when software
46f18e3a
VP
559 * coordination is required.
560 */
561 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
8adcc0c6 562 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
835481d9 563 cpumask_copy(policy->cpus, perf->shared_cpu_map);
8adcc0c6 564 }
835481d9 565 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
8adcc0c6
VP
566
567#ifdef CONFIG_SMP
568 dmi_check_system(sw_any_bug_dmi_table);
835481d9 569 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
8adcc0c6 570 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
835481d9 571 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
8adcc0c6
VP
572 }
573#endif
09b4d1ee 574
1da177e4 575 /* capability check */
09b4d1ee 576 if (perf->state_count <= 1) {
1da177e4
LT
577 dprintk("No P-States\n");
578 result = -ENODEV;
579 goto err_unreg;
580 }
09b4d1ee 581
fe27cb35
VP
582 if (perf->control_register.space_id != perf->status_register.space_id) {
583 result = -ENODEV;
584 goto err_unreg;
585 }
586
587 switch (perf->control_register.space_id) {
64be7eed 588 case ACPI_ADR_SPACE_SYSTEM_IO:
fe27cb35 589 dprintk("SYSTEM IO addr space\n");
dde9f7ba
VP
590 data->cpu_feature = SYSTEM_IO_CAPABLE;
591 break;
64be7eed 592 case ACPI_ADR_SPACE_FIXED_HARDWARE:
dde9f7ba
VP
593 dprintk("HARDWARE addr space\n");
594 if (!check_est_cpu(cpu)) {
595 result = -ENODEV;
596 goto err_unreg;
597 }
598 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
fe27cb35 599 break;
64be7eed 600 default:
fe27cb35 601 dprintk("Unknown addr space %d\n",
64be7eed 602 (u32) (perf->control_register.space_id));
1da177e4
LT
603 result = -ENODEV;
604 goto err_unreg;
605 }
606
95dd7227
DJ
607 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
608 (perf->state_count+1), GFP_KERNEL);
1da177e4
LT
609 if (!data->freq_table) {
610 result = -ENOMEM;
611 goto err_unreg;
612 }
613
614 /* detect transition latency */
615 policy->cpuinfo.transition_latency = 0;
3a58df35 616 for (i = 0; i < perf->state_count; i++) {
64be7eed
VP
617 if ((perf->states[i].transition_latency * 1000) >
618 policy->cpuinfo.transition_latency)
619 policy->cpuinfo.transition_latency =
620 perf->states[i].transition_latency * 1000;
1da177e4 621 }
1da177e4 622
a59d1637
PV
623 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
624 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
625 policy->cpuinfo.transition_latency > 20 * 1000) {
a59d1637 626 policy->cpuinfo.transition_latency = 20 * 1000;
61c8c67e
JP
627 printk_once(KERN_INFO
628 "P-state transition latency capped at 20 uS\n");
a59d1637
PV
629 }
630
1da177e4 631 /* table init */
3a58df35
DJ
632 for (i = 0; i < perf->state_count; i++) {
633 if (i > 0 && perf->states[i].core_frequency >=
3cdf552b 634 data->freq_table[valid_states-1].frequency / 1000)
fe27cb35
VP
635 continue;
636
637 data->freq_table[valid_states].index = i;
638 data->freq_table[valid_states].frequency =
64be7eed 639 perf->states[i].core_frequency * 1000;
fe27cb35 640 valid_states++;
1da177e4 641 }
3d4a7ef3 642 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
8edc59d9 643 perf->state = 0;
1da177e4
LT
644
645 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
95dd7227 646 if (result)
1da177e4 647 goto err_freqfree;
1da177e4 648
d876dfbb
TR
649 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
650 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
651
a507ac4b 652 switch (perf->control_register.space_id) {
64be7eed 653 case ACPI_ADR_SPACE_SYSTEM_IO:
dde9f7ba
VP
654 /* Current speed is unknown and not detectable by IO port */
655 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
656 break;
64be7eed 657 case ACPI_ADR_SPACE_FIXED_HARDWARE:
7650b281 658 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
a507ac4b 659 policy->cur = get_cur_freq_on_cpu(cpu);
dde9f7ba 660 break;
64be7eed 661 default:
dde9f7ba
VP
662 break;
663 }
664
1da177e4
LT
665 /* notify BIOS that we exist */
666 acpi_processor_notify_smm(THIS_MODULE);
667
dfde5d62 668 /* Check for APERF/MPERF support in hardware */
a8303aaf
PZ
669 if (cpu_has(c, X86_FEATURE_APERFMPERF))
670 acpi_cpufreq_driver.getavg = get_measured_perf;
dfde5d62 671
fe27cb35 672 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
09b4d1ee 673 for (i = 0; i < perf->state_count; i++)
1da177e4 674 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
64be7eed 675 (i == perf->state ? '*' : ' '), i,
09b4d1ee
VP
676 (u32) perf->states[i].core_frequency,
677 (u32) perf->states[i].power,
678 (u32) perf->states[i].transition_latency);
1da177e4
LT
679
680 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
64be7eed 681
4b31e774
DB
682 /*
683 * the first call to ->target() should result in us actually
684 * writing something to the appropriate registers.
685 */
686 data->resume = 1;
64be7eed 687
fe27cb35 688 return result;
1da177e4 689
95dd7227 690err_freqfree:
1da177e4 691 kfree(data->freq_table);
95dd7227 692err_unreg:
09b4d1ee 693 acpi_processor_unregister_performance(perf, cpu);
95dd7227 694err_free:
1da177e4 695 kfree(data);
ea348f3e 696 per_cpu(drv_data, cpu) = NULL;
1da177e4 697
64be7eed 698 return result;
1da177e4
LT
699}
700
64be7eed 701static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
1da177e4 702{
ea348f3e 703 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 704
1da177e4
LT
705 dprintk("acpi_cpufreq_cpu_exit\n");
706
707 if (data) {
708 cpufreq_frequency_table_put_attr(policy->cpu);
ea348f3e 709 per_cpu(drv_data, policy->cpu) = NULL;
64be7eed
VP
710 acpi_processor_unregister_performance(data->acpi_data,
711 policy->cpu);
1da177e4
LT
712 kfree(data);
713 }
714
64be7eed 715 return 0;
1da177e4
LT
716}
717
64be7eed 718static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
1da177e4 719{
ea348f3e 720 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 721
1da177e4
LT
722 dprintk("acpi_cpufreq_resume\n");
723
724 data->resume = 1;
725
64be7eed 726 return 0;
1da177e4
LT
727}
728
64be7eed 729static struct freq_attr *acpi_cpufreq_attr[] = {
1da177e4
LT
730 &cpufreq_freq_attr_scaling_available_freqs,
731 NULL,
732};
733
734static struct cpufreq_driver acpi_cpufreq_driver = {
64be7eed
VP
735 .verify = acpi_cpufreq_verify,
736 .target = acpi_cpufreq_target,
64be7eed
VP
737 .init = acpi_cpufreq_cpu_init,
738 .exit = acpi_cpufreq_cpu_exit,
739 .resume = acpi_cpufreq_resume,
740 .name = "acpi-cpufreq",
741 .owner = THIS_MODULE,
742 .attr = acpi_cpufreq_attr,
1da177e4
LT
743};
744
64be7eed 745static int __init acpi_cpufreq_init(void)
1da177e4 746{
50109292
FY
747 int ret;
748
ee297533
YL
749 if (acpi_disabled)
750 return 0;
751
1da177e4
LT
752 dprintk("acpi_cpufreq_init\n");
753
50109292
FY
754 ret = acpi_cpufreq_early_init();
755 if (ret)
756 return ret;
09b4d1ee 757
847aef6f
AM
758 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
759 if (ret)
2fdf66b4 760 free_acpi_perf_data();
847aef6f
AM
761
762 return ret;
1da177e4
LT
763}
764
64be7eed 765static void __exit acpi_cpufreq_exit(void)
1da177e4
LT
766{
767 dprintk("acpi_cpufreq_exit\n");
768
769 cpufreq_unregister_driver(&acpi_cpufreq_driver);
770
50109292 771 free_percpu(acpi_perf_data);
1da177e4
LT
772}
773
d395bf12 774module_param(acpi_pstate_strict, uint, 0644);
64be7eed 775MODULE_PARM_DESC(acpi_pstate_strict,
95dd7227
DJ
776 "value 0 or non-zero. non-zero -> strict ACPI checks are "
777 "performed during frequency changes.");
1da177e4
LT
778
779late_initcall(acpi_cpufreq_init);
780module_exit(acpi_cpufreq_exit);
781
782MODULE_ALIAS("acpi");