Merge tag 'tpmdd-next-6.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
7a6d94f0 8 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
5f40f7d9 9 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
10 */
11
05e4d316
PA
12#ifndef _ASM_X86_UV_UV_HUB_H
13#define _ASM_X86_UV_UV_HUB_H
952cf6d7 14
bc5d9940 15#ifdef CONFIG_X86_64
952cf6d7
JS
16#include <linux/numa.h>
17#include <linux/percpu.h>
c08b6acc 18#include <linux/timer.h>
8dc579e8 19#include <linux/io.h>
906f3b20 20#include <linux/topology.h>
952cf6d7
JS
21#include <asm/types.h>
22#include <asm/percpu.h>
4fb7d087 23#include <asm/uv/uv.h>
66666e50 24#include <asm/uv/uv_mmrs.h>
c85375cd 25#include <asm/uv/bios.h>
02dd0a06
RH
26#include <asm/irq_vectors.h>
27#include <asm/io_apic.h>
952cf6d7
JS
28
29
30/*
31 * Addressing Terminology
32 *
9f5314fb
JS
33 * M - The low M bits of a physical address represent the offset
34 * into the blade local memory. RAM memory on a blade is physically
35 * contiguous (although various IO spaces may punch holes in
36 * it)..
952cf6d7 37 *
39d30770
MT
38 * N - Number of bits in the node portion of a socket physical
39 * address.
9f5314fb 40 *
39d30770
MT
41 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
42 * routers always have low bit of 1, C/MBricks have low bit
43 * equal to 0. Most addressing macros that target UV hub chips
44 * right shift the NASID by 1 to exclude the always-zero bit.
45 * NASIDs contain up to 15 bits.
9f5314fb
JS
46 *
47 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
48 * of nasids.
49 *
39d30770
MT
50 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
51 * of the nasid for socket usage.
9f5314fb 52 *
6a469e46
JS
53 * GPA - (global physical address) a socket physical address converted
54 * so that it can be used by the GRU as a global address. Socket
55 * physical addresses 1) need additional NASID (node) bits added
56 * to the high end of the address, and 2) unaliased if the
57 * partition does not have a physical address 0. In addition, on
58 * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
59 *
9f5314fb
JS
60 *
61 * NumaLink Global Physical Address Format:
62 * +--------------------------------+---------------------+
63 * |00..000| GNODE | NodeOffset |
64 * +--------------------------------+---------------------+
65 * |<-------53 - M bits --->|<--------M bits ----->
66 *
67 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
68 *
69 *
70 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
71 * +----------------+---------------+---------------------+
72 * |00..000000000000| PNODE | NodeOffset |
73 * +----------------+---------------+---------------------+
74 * <--- N bits --->|<--------M bits ----->
952cf6d7 75 *
9f5314fb
JS
76 * M - number of node offset bits (35 .. 40)
77 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
78 *
79 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
80 * The actual values are configuration dependent and are set at
9f5314fb
JS
81 * boot time. M & N values are set by the hardware/BIOS at boot.
82 *
952cf6d7
JS
83 *
84 * APICID format
39d30770
MT
85 * NOTE!!!!!! This is the current format of the APICID. However, code
86 * should assume that this will change in the future. Use functions
87 * in this file for all APICID bit manipulations and conversion.
952cf6d7 88 *
39d30770
MT
89 * 1111110000000000
90 * 5432109876543210
2a919596
JS
91 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
92 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
93 * pppppppppppcccch SandyBridge (15 bits in hdw reg)
952cf6d7
JS
94 * sssssssssss
95 *
9f5314fb 96 * p = pnode bits
952cf6d7
JS
97 * l = socket number on board
98 * c = core
99 * h = hyperthread
9f5314fb 100 * s = bits that are in the SOCKET_ID CSR
952cf6d7 101 *
2a919596 102 * Note: Processor may support fewer bits in the APICID register. The ACPI
952cf6d7
JS
103 * tables hold all 16 bits. Software needs to be aware of this.
104 *
39d30770
MT
105 * Unless otherwise specified, all references to APICID refer to
106 * the FULL value contained in ACPI tables, not the subset in the
107 * processor APICID register.
952cf6d7
JS
108 */
109
952cf6d7
JS
110/*
111 * Maximum number of bricks in all partitions and in all coherency domains.
112 * This is the total number of bricks accessible in the numalink fabric. It
113 * includes all C & M bricks. Routers are NOT included.
114 *
115 * This value is also the value of the maximum number of non-router NASIDs
116 * in the numalink fabric.
117 *
9f5314fb 118 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
119 */
120#define UV_MAX_NUMALINK_BLADES 16384
121
122/*
123 * Maximum number of C/Mbricks within a software SSI (hardware may support
124 * more).
125 */
126#define UV_MAX_SSI_BLADES 256
127
128/*
129 * The largest possible NASID of a C or M brick (+ 2)
130 */
1d21e6e3 131#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
952cf6d7 132
c85375cd
MT
133/* GAM (globally addressed memory) range table */
134struct uv_gam_range_s {
135 u32 limit; /* PA bits 56:26 (GAM_RANGE_SHFT) */
136 u16 nasid; /* node's global physical address */
137 s8 base; /* entry index of node's base addr */
138 u8 reserved;
139};
140
952cf6d7
JS
141/*
142 * The following defines attributes of the HUB chip. These attributes are
0045ddd2
MT
143 * frequently referenced and are kept in a common per hub struct.
144 * After setup, the struct is read only, so it should be readily
145 * available in the L3 cache on the cpu socket for the node.
952cf6d7
JS
146 */
147struct uv_hub_info_s {
647128f1
MT
148 unsigned int hub_type;
149 unsigned char hub_revision;
69a72a0e 150 unsigned long global_mmr_base;
1de329c1 151 unsigned long global_mmr_shift;
69a72a0e 152 unsigned long gpa_mask;
6e27b91c
MT
153 unsigned short *socket_to_node;
154 unsigned short *socket_to_pnode;
155 unsigned short *pnode_to_socket;
c85375cd 156 struct uv_gam_range_s *gr_table;
1de329c1
MT
157 unsigned short min_socket;
158 unsigned short min_pnode;
c85375cd
MT
159 unsigned char m_val;
160 unsigned char n_val;
161 unsigned char gr_table_len;
2a919596 162 unsigned char apic_pnode_shift;
1de329c1 163 unsigned char gpa_shift;
6c779442 164 unsigned char nasid_shift;
6a469e46
JS
165 unsigned char m_shift;
166 unsigned char n_lshift;
1de329c1 167 unsigned int gnode_extra;
69a72a0e
MT
168 unsigned long gnode_upper;
169 unsigned long lowmem_remap_top;
170 unsigned long lowmem_remap_base;
1de329c1
MT
171 unsigned long global_gru_base;
172 unsigned long global_gru_shift;
69a72a0e
MT
173 unsigned short pnode;
174 unsigned short pnode_mask;
175 unsigned short coherency_domain_number;
176 unsigned short numa_blade_id;
906f3b20
MT
177 unsigned short nr_possible_cpus;
178 unsigned short nr_online_cpus;
179 short memory_nid;
8a50c585 180 unsigned short *node_to_socket;
952cf6d7 181};
7f1baa06 182
0045ddd2
MT
183/* CPU specific info with a pointer to the hub common info struct */
184struct uv_cpu_info_s {
185 void *p_uv_hub_info;
186 unsigned char blade_cpu_id;
c4d98077 187 void *reserved;
0045ddd2
MT
188};
189DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
190
191#define uv_cpu_info this_cpu_ptr(&__uv_cpu_info)
192#define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu))
193
3edcf2ff
MT
194/* Node specific hub common info struct */
195extern void **__uv_hub_info_list;
196static inline struct uv_hub_info_s *uv_hub_info_list(int node)
197{
198 return (struct uv_hub_info_s *)__uv_hub_info_list[node];
199}
200
201static inline struct uv_hub_info_s *_uv_hub_info(void)
202{
203 return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
204}
205#define uv_hub_info _uv_hub_info()
206
207static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
208{
209 return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
210}
211
647128f1
MT
212static inline int uv_hub_type(void)
213{
214 return uv_hub_info->hub_type;
215}
216
217static inline __init void uv_hub_type_set(int uvmask)
218{
219 uv_hub_info->hub_type = uvmask;
220}
221
222
2a919596 223/*
0045ddd2 224 * HUB revision ranges for each UV HUB architecture.
2a919596
JS
225 * This is a software convention - NOT the hardware revision numbers in
226 * the hub chip.
227 */
2a919596 228#define UV2_HUB_REVISION_BASE 3
6edbd471 229#define UV3_HUB_REVISION_BASE 5
eb1e3461 230#define UV4_HUB_REVISION_BASE 7
8078d195 231#define UV4A_HUB_REVISION_BASE 8 /* UV4 (fixed) rev 2 */
6c779442 232#define UV5_HUB_REVISION_BASE 9
2a919596 233
647128f1
MT
234static inline int is_uv(int uvmask) { return uv_hub_type() & uvmask; }
235static inline int is_uv1_hub(void) { return 0; }
236static inline int is_uv2_hub(void) { return is_uv(UV2); }
237static inline int is_uv3_hub(void) { return is_uv(UV3); }
238static inline int is_uv4a_hub(void) { return is_uv(UV4A); }
239static inline int is_uv4_hub(void) { return is_uv(UV4); }
6c779442 240static inline int is_uv5_hub(void) { return is_uv(UV5); }
6edbd471 241
647128f1
MT
242/*
243 * UV4A is a revision of UV4. So on UV4A, both is_uv4_hub() and
244 * is_uv4a_hub() return true, While on UV4, only is_uv4_hub()
245 * returns true. So to get true results, first test if is UV4A,
246 * then test if is UV4.
247 */
8078d195 248
647128f1
MT
249/* UVX class: UV2,3,4 */
250static inline int is_uvx_hub(void) { return is_uv(UVX); }
eb1e3461 251
647128f1 252/* UVY class: UV5,..? */
6c779442 253static inline int is_uvy_hub(void) { return is_uv(UVY); }
6edbd471 254
647128f1
MT
255/* Any UV Hubbed System */
256static inline int is_uv_hub(void) { return is_uv(UV_ANY); }
2a919596 257
c8f730b1
RA
258union uvh_apicid {
259 unsigned long v;
260 struct uvh_apicid_s {
261 unsigned long local_apic_mask : 24;
262 unsigned long local_apic_shift : 5;
263 unsigned long unused1 : 3;
264 unsigned long pnode_mask : 24;
265 unsigned long pnode_shift : 5;
266 unsigned long unused2 : 3;
267 } s;
268};
269
952cf6d7
JS
270/*
271 * Local & Global MMR space macros.
39d30770
MT
272 * Note: macros are intended to be used ONLY by inline functions
273 * in this file - not by other kernel code.
274 * n - NASID (full 15-bit global nasid)
275 * g - GNODE (full 15-bit global nasid, right shifted 1)
276 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 277 */
6c779442
MT
278#define UV_NASID_TO_PNODE(n) \
279 (((n) >> uv_hub_info->nasid_shift) & uv_hub_info->pnode_mask)
c4ed3f04 280#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
6c779442
MT
281#define UV_PNODE_TO_NASID(p) \
282 (UV_PNODE_TO_GNODE(p) << uv_hub_info->nasid_shift)
952cf6d7 283
2a919596
JS
284#define UV2_LOCAL_MMR_BASE 0xfa000000UL
285#define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
286#define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
287#define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
288
6edbd471
MT
289#define UV3_LOCAL_MMR_BASE 0xfa000000UL
290#define UV3_GLOBAL_MMR32_BASE 0xfc000000UL
291#define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
292#define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
293
eb1e3461 294#define UV4_LOCAL_MMR_BASE 0xfa000000UL
c4d98077 295#define UV4_GLOBAL_MMR32_BASE 0
eb1e3461 296#define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
c4d98077 297#define UV4_GLOBAL_MMR32_SIZE 0
eb1e3461 298
6c779442
MT
299#define UV5_LOCAL_MMR_BASE 0xfa000000UL
300#define UV5_GLOBAL_MMR32_BASE 0
301#define UV5_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
302#define UV5_GLOBAL_MMR32_SIZE 0
303
eb1e3461 304#define UV_LOCAL_MMR_BASE ( \
6c779442
MT
305 is_uv(UV2) ? UV2_LOCAL_MMR_BASE : \
306 is_uv(UV3) ? UV3_LOCAL_MMR_BASE : \
307 is_uv(UV4) ? UV4_LOCAL_MMR_BASE : \
308 is_uv(UV5) ? UV5_LOCAL_MMR_BASE : \
309 0)
eb1e3461
MT
310
311#define UV_GLOBAL_MMR32_BASE ( \
6c779442
MT
312 is_uv(UV2) ? UV2_GLOBAL_MMR32_BASE : \
313 is_uv(UV3) ? UV3_GLOBAL_MMR32_BASE : \
314 is_uv(UV4) ? UV4_GLOBAL_MMR32_BASE : \
315 is_uv(UV5) ? UV5_GLOBAL_MMR32_BASE : \
316 0)
eb1e3461
MT
317
318#define UV_LOCAL_MMR_SIZE ( \
6c779442
MT
319 is_uv(UV2) ? UV2_LOCAL_MMR_SIZE : \
320 is_uv(UV3) ? UV3_LOCAL_MMR_SIZE : \
321 is_uv(UV4) ? UV4_LOCAL_MMR_SIZE : \
322 is_uv(UV5) ? UV5_LOCAL_MMR_SIZE : \
323 0)
eb1e3461
MT
324
325#define UV_GLOBAL_MMR32_SIZE ( \
6c779442
MT
326 is_uv(UV2) ? UV2_GLOBAL_MMR32_SIZE : \
327 is_uv(UV3) ? UV3_GLOBAL_MMR32_SIZE : \
328 is_uv(UV4) ? UV4_GLOBAL_MMR32_SIZE : \
329 is_uv(UV5) ? UV5_GLOBAL_MMR32_SIZE : \
330 0)
eb1e3461 331
952cf6d7
JS
332#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
333
56abcf24
JS
334#define UV_GLOBAL_GRU_MMR_BASE 0x4000000
335
9f5314fb 336#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
1de329c1
MT
337#define _UV_GLOBAL_MMR64_PNODE_SHIFT 26
338#define UV_GLOBAL_MMR64_PNODE_SHIFT (uv_hub_info->global_mmr_shift)
952cf6d7 339
9f5314fb 340#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 341
9f5314fb 342#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
67e83f30 343 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
9f5314fb 344
c8f730b1 345#define UVH_APICID 0x002D0E00L
9f5314fb
JS
346#define UV_APIC_PNODE_SHIFT 6
347
7f1baa06
MT
348/* Local Bus from cpu's perspective */
349#define LOCAL_BUS_BASE 0x1c00000
350#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
351
352/*
353 * System Controller Interface Reg
354 *
355 * Note there are NO leds on a UV system. This register is only
356 * used by the system controller to monitor system-wide operation.
d9f6e12f 357 * There are 64 regs per node. With Nehalem cpus (2 cores per node,
7f1baa06
MT
358 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
359 * a node.
360 *
361 * The window is located at top of ACPI MMR space
362 */
363#define SCIR_WINDOW_COUNT 64
364#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
365 LOCAL_BUS_SIZE - \
366 SCIR_WINDOW_COUNT)
367
368#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
369#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
370#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
371
8661984f
DS
372/* Loop through all installed blades */
373#define for_each_possible_blade(bid) \
374 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
375
9f5314fb
JS
376/*
377 * Macros for converting between kernel virtual addresses, socket local physical
378 * addresses, and UV global physical addresses.
39d30770
MT
379 * Note: use the standard __pa() & __va() macros for converting
380 * between socket virtual and socket physical addresses.
9f5314fb
JS
381 */
382
c85375cd
MT
383/* global bits offset - number of local address bits in gpa for this UV arch */
384static inline unsigned int uv_gpa_shift(void)
385{
386 return uv_hub_info->gpa_shift;
387}
388#define _uv_gpa_shift
389
390/* Find node that has the address range that contains global address */
391static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
392{
393 struct uv_gam_range_s *gr = uv_hub_info->gr_table;
394 unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
395 int i, num = uv_hub_info->gr_table_len;
396
397 if (gr) {
398 for (i = 0; i < num; i++, gr++) {
399 if (pal < gr->limit)
400 return gr;
401 }
402 }
403 pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
404 BUG();
405}
406
407/* Return base address of node that contains global address */
408static inline unsigned long uv_gam_range_base(unsigned long pa)
409{
410 struct uv_gam_range_s *gr = uv_gam_range(pa);
411 int base = gr->base;
412
413 if (base < 0)
414 return 0UL;
415
416 return uv_hub_info->gr_table[base].limit;
417}
418
419/* socket phys RAM --> UV global NASID (UV4+) */
420static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
421{
422 return uv_gam_range(paddr)->nasid;
423}
424#define _uv_soc_phys_ram_to_nasid
425
426/* socket virtual --> UV global NASID (UV4+) */
427static inline unsigned long uv_gpa_nasid(void *v)
428{
429 return uv_soc_phys_ram_to_nasid(__pa(v));
430}
431
9f5314fb
JS
432/* socket phys RAM --> UV global physical address */
433static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
434{
c85375cd
MT
435 unsigned int m_val = uv_hub_info->m_val;
436
9f5314fb 437 if (paddr < uv_hub_info->lowmem_remap_top)
189f67c4 438 paddr |= uv_hub_info->lowmem_remap_base;
ad483005
MT
439
440 if (m_val) {
441 paddr |= uv_hub_info->gnode_upper;
c85375cd
MT
442 paddr = ((paddr << uv_hub_info->m_shift)
443 >> uv_hub_info->m_shift) |
444 ((paddr >> uv_hub_info->m_val)
445 << uv_hub_info->n_lshift);
ad483005 446 } else {
c85375cd
MT
447 paddr |= uv_soc_phys_ram_to_nasid(paddr)
448 << uv_hub_info->gpa_shift;
ad483005 449 }
6a469e46 450 return paddr;
9f5314fb
JS
451}
452
9f5314fb
JS
453/* socket virtual --> UV global physical address */
454static inline unsigned long uv_gpa(void *v)
455{
189f67c4 456 return uv_soc_phys_ram_to_gpa(__pa(v));
9f5314fb 457}
1d21e6e3 458
fae419f2
RH
459/* Top two bits indicate the requested address is in MMR space. */
460static inline int
461uv_gpa_in_mmr_space(unsigned long gpa)
462{
463 return (gpa >> 62) == 0x3UL;
464}
465
729d69e6
RH
466/* UV global physical address --> socket phys RAM */
467static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
468{
5a51467b 469 unsigned long paddr;
729d69e6
RH
470 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
471 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
c85375cd
MT
472 unsigned int m_val = uv_hub_info->m_val;
473
474 if (m_val)
475 gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
476 ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
729d69e6 477
5a51467b 478 paddr = gpa & uv_hub_info->gpa_mask;
729d69e6
RH
479 if (paddr >= remap_base && paddr < remap_base + remap_top)
480 paddr -= remap_base;
481 return paddr;
482}
483
906f3b20 484/* gpa -> gnode */
1d21e6e3
RH
485static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
486{
c85375cd
MT
487 unsigned int n_lshift = uv_hub_info->n_lshift;
488
489 if (n_lshift)
490 return gpa >> n_lshift;
491
492 return uv_gam_range(gpa)->nasid >> 1;
1d21e6e3
RH
493}
494
495/* gpa -> pnode */
496static inline int uv_gpa_to_pnode(unsigned long gpa)
497{
906f3b20 498 return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
1d21e6e3 499}
9f5314fb 500
906f3b20 501/* gpa -> node offset */
6a469e46
JS
502static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
503{
c85375cd
MT
504 unsigned int m_shift = uv_hub_info->m_shift;
505
506 if (m_shift)
507 return (gpa << m_shift) >> m_shift;
508
509 return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
6a469e46
JS
510}
511
c85375cd
MT
512/* Convert socket to node */
513static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
9f5314fb 514{
c85375cd 515 return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
9f5314fb 516}
952cf6d7 517
6e27b91c
MT
518static inline int uv_socket_to_node(int socket)
519{
c85375cd
MT
520 return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
521}
6e27b91c 522
8c646cee
SW
523static inline int uv_pnode_to_socket(int pnode)
524{
525 unsigned short *p2s = uv_hub_info->pnode_to_socket;
526
527 return p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
528}
529
c85375cd
MT
530/* pnode, offset --> socket virtual */
531static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
532{
533 unsigned int m_val = uv_hub_info->m_val;
534 unsigned long base;
8a50c585 535 unsigned short sockid;
c85375cd
MT
536
537 if (m_val)
538 return __va(((unsigned long)pnode << m_val) | offset);
539
8c646cee 540 sockid = uv_pnode_to_socket(pnode);
c85375cd
MT
541
542 /* limit address of previous socket is our base, except node 0 is 0 */
8a50c585 543 if (sockid == 0)
c85375cd
MT
544 return __va((unsigned long)offset);
545
8a50c585 546 base = (unsigned long)(uv_hub_info->gr_table[sockid - 1].limit);
c85375cd 547 return __va(base << UV_GAM_RANGE_SHFT | offset);
6e27b91c
MT
548}
549
550/* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
9f5314fb 551static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 552{
6e27b91c
MT
553 int pnode = apicid >> uv_hub_info->apic_pnode_shift;
554 unsigned short *s2pn = uv_hub_info->socket_to_pnode;
555
556 return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
952cf6d7
JS
557}
558
559/*
560 * Access global MMRs using the low memory MMR32 space. This region supports
561 * faster MMR access but not all MMRs are accessible in this space.
562 */
39d30770 563static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
952cf6d7
JS
564{
565 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 566 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
567}
568
39d30770 569static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
952cf6d7 570{
8dc579e8 571 writeq(val, uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
572}
573
39d30770 574static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
952cf6d7 575{
8dc579e8 576 return readq(uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
577}
578
579/*
580 * Access Global MMR space using the MMR space located at the top of physical
581 * memory.
582 */
a289cc7c 583static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
952cf6d7
JS
584{
585 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 586 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
587}
588
39d30770 589static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
952cf6d7 590{
8dc579e8 591 writeq(val, uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
592}
593
39d30770 594static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
952cf6d7 595{
8dc579e8 596 return readq(uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
597}
598
39d30770
MT
599static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
600{
601 writeb(val, uv_global_mmr64_address(pnode, offset));
602}
603
604static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
605{
606 return readb(uv_global_mmr64_address(pnode, offset));
607}
608
952cf6d7 609/*
9f5314fb 610 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
611 * are accessible.
612 */
613static inline unsigned long *uv_local_mmr_address(unsigned long offset)
614{
615 return __va(UV_LOCAL_MMR_BASE | offset);
616}
617
618static inline unsigned long uv_read_local_mmr(unsigned long offset)
619{
8dc579e8 620 return readq(uv_local_mmr_address(offset));
952cf6d7
JS
621}
622
623static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
624{
8dc579e8 625 writeq(val, uv_local_mmr_address(offset));
952cf6d7
JS
626}
627
7f1baa06
MT
628static inline unsigned char uv_read_local_mmr8(unsigned long offset)
629{
8dc579e8 630 return readb(uv_local_mmr_address(offset));
7f1baa06
MT
631}
632
633static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
634{
8dc579e8 635 writeb(val, uv_local_mmr_address(offset));
7f1baa06
MT
636}
637
8400def8
JS
638/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
639static inline int uv_blade_processor_id(void)
640{
5627a825 641 return uv_cpu_info->blade_cpu_id;
8400def8
JS
642}
643
5627a825
MT
644/* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
645static inline int uv_cpu_blade_processor_id(int cpu)
646{
647 return uv_cpu_info_per(cpu)->blade_cpu_id;
648}
5627a825 649
9b9ee172 650/* Blade number to Node number (UV2..UV4 is 1:1) */
906f3b20
MT
651static inline int uv_blade_to_node(int blade)
652{
8a50c585 653 return uv_socket_to_node(blade);
906f3b20
MT
654}
655
54aa699e 656/* Blade number of current cpu. Numbered 0 .. <#blades -1> */
8400def8
JS
657static inline int uv_numa_blade_id(void)
658{
659 return uv_hub_info->numa_blade_id;
660}
661
906f3b20
MT
662/*
663 * Convert linux node number to the UV blade number.
9b9ee172 664 * .. Currently for UV2 thru UV4 the node and the blade are identical.
8a50c585 665 * .. UV5 needs conversion when sub-numa clustering is enabled.
906f3b20
MT
666 */
667static inline int uv_node_to_blade_id(int nid)
8400def8 668{
8a50c585
SW
669 unsigned short *n2s = uv_hub_info->node_to_socket;
670
671 return n2s ? n2s[nid] : nid;
8400def8
JS
672}
673
de0038bf 674/* Convert a CPU number to the UV blade number */
906f3b20 675static inline int uv_cpu_to_blade_id(int cpu)
8400def8 676{
8a50c585 677 return uv_cpu_hub_info(cpu)->numa_blade_id;
8400def8
JS
678}
679
9f5314fb
JS
680/* Convert a blade id to the PNODE of the blade */
681static inline int uv_blade_to_pnode(int bid)
8400def8 682{
8a50c585
SW
683 unsigned short *s2p = uv_hub_info->socket_to_pnode;
684
685 return s2p ? s2p[bid] : bid;
8400def8
JS
686}
687
6c7184b7
JS
688/* Nid of memory node on blade. -1 if no blade-local memory */
689static inline int uv_blade_to_memory_nid(int bid)
690{
906f3b20 691 return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
6c7184b7
JS
692}
693
8400def8
JS
694/* Determine the number of possible cpus on a blade */
695static inline int uv_blade_nr_possible_cpus(int bid)
696{
906f3b20 697 return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
8400def8
JS
698}
699
700/* Determine the number of online cpus on a blade */
701static inline int uv_blade_nr_online_cpus(int bid)
702{
906f3b20 703 return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
8400def8
JS
704}
705
9f5314fb
JS
706/* Convert a cpu id to the PNODE of the blade containing the cpu */
707static inline int uv_cpu_to_pnode(int cpu)
8400def8 708{
906f3b20 709 return uv_cpu_hub_info(cpu)->pnode;
8400def8
JS
710}
711
9f5314fb
JS
712/* Convert a linux node number to the PNODE of the blade */
713static inline int uv_node_to_pnode(int nid)
8400def8 714{
906f3b20 715 return uv_hub_info_list(nid)->pnode;
8400def8
JS
716}
717
718/* Maximum possible number of blades */
906f3b20 719extern short uv_possible_blades;
8400def8
JS
720static inline int uv_num_possible_blades(void)
721{
722 return uv_possible_blades;
723}
724
0d12ef0c
MT
725/* Per Hub NMI support */
726extern void uv_nmi_setup(void);
abdf1df6 727extern void uv_nmi_setup_hubless(void);
0d12ef0c 728
97d21003 729/* BIOS/Kernel flags exchange MMR */
730#define UVH_BIOS_KERNEL_MMR UVH_SCRATCH5
731#define UVH_BIOS_KERNEL_MMR_ALIAS UVH_SCRATCH5_ALIAS
732#define UVH_BIOS_KERNEL_MMR_ALIAS_2 UVH_SCRATCH5_ALIAS_2
733
734/* TSC sync valid, set by BIOS */
735#define UVH_TSC_SYNC_MMR UVH_BIOS_KERNEL_MMR
736#define UVH_TSC_SYNC_SHIFT 10
737#define UVH_TSC_SYNC_SHIFT_UV2K 16 /* UV2/3k have different bits */
738#define UVH_TSC_SYNC_MASK 3 /* 0011 */
739#define UVH_TSC_SYNC_VALID 3 /* 0011 */
6a7cf55e 740#define UVH_TSC_SYNC_UNKNOWN 0 /* 0000 */
97d21003 741
0d12ef0c 742/* BMC sets a bit this MMR non-zero before sending an NMI */
97d21003 743#define UVH_NMI_MMR UVH_BIOS_KERNEL_MMR
744#define UVH_NMI_MMR_CLEAR UVH_BIOS_KERNEL_MMR_ALIAS
0d12ef0c 745#define UVH_NMI_MMR_SHIFT 63
97d21003 746#define UVH_NMI_MMR_TYPE "SCRATCH5"
0d12ef0c 747
0d12ef0c
MT
748struct uv_hub_nmi_s {
749 raw_spinlock_t nmi_lock;
750 atomic_t in_nmi; /* flag this node in UV NMI IRQ */
751 atomic_t cpu_owner; /* last locker of this struct */
752 atomic_t read_mmr_count; /* count of MMR reads */
753 atomic_t nmi_count; /* count of true UV NMIs */
754 unsigned long nmi_value; /* last value read from NMI MMR */
abdf1df6 755 bool hub_present; /* false means UV hubless system */
756 bool pch_owner; /* indicates this hub owns PCH */
0d12ef0c
MT
757};
758
759struct uv_cpu_nmi_s {
760 struct uv_hub_nmi_s *hub;
e1632170
CL
761 int state;
762 int pinging;
0d12ef0c
MT
763 int queries;
764 int pings;
765};
766
e1632170
CL
767DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
768
7c52198b 769#define uv_hub_nmi this_cpu_read(uv_cpu_nmi.hub)
e1632170 770#define uv_cpu_nmi_per(cpu) (per_cpu(uv_cpu_nmi, cpu))
0d12ef0c
MT
771#define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub)
772
773/* uv_cpu_nmi_states */
774#define UV_NMI_STATE_OUT 0
775#define UV_NMI_STATE_IN 1
776#define UV_NMI_STATE_DUMP 2
777#define UV_NMI_STATE_DUMP_DONE 3
778
7a1110e8
JS
779/*
780 * Get the minimum revision number of the hub chips within the partition.
eb1e3461 781 * (See UVx_HUB_REVISION_BASE above for specific values.)
7a1110e8
JS
782 */
783static inline int uv_get_min_hub_revision_id(void)
784{
2a919596 785 return uv_hub_info->hub_revision;
7a1110e8
JS
786}
787
bc5d9940 788#endif /* CONFIG_X86_64 */
7f1baa06 789#endif /* _ASM_X86_UV_UV_HUB_H */