x86: xen: 64-bit kernel RPL should be 0
[linux-2.6-block.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
9f5314fb 8 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
9 */
10
05e4d316
PA
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
952cf6d7 13
bc5d9940 14#ifdef CONFIG_X86_64
952cf6d7
JS
15#include <linux/numa.h>
16#include <linux/percpu.h>
c08b6acc 17#include <linux/timer.h>
8dc579e8 18#include <linux/io.h>
952cf6d7
JS
19#include <asm/types.h>
20#include <asm/percpu.h>
66666e50 21#include <asm/uv/uv_mmrs.h>
02dd0a06
RH
22#include <asm/irq_vectors.h>
23#include <asm/io_apic.h>
952cf6d7
JS
24
25
26/*
27 * Addressing Terminology
28 *
9f5314fb
JS
29 * M - The low M bits of a physical address represent the offset
30 * into the blade local memory. RAM memory on a blade is physically
31 * contiguous (although various IO spaces may punch holes in
32 * it)..
952cf6d7 33 *
39d30770
MT
34 * N - Number of bits in the node portion of a socket physical
35 * address.
9f5314fb 36 *
39d30770
MT
37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
38 * routers always have low bit of 1, C/MBricks have low bit
39 * equal to 0. Most addressing macros that target UV hub chips
40 * right shift the NASID by 1 to exclude the always-zero bit.
41 * NASIDs contain up to 15 bits.
9f5314fb
JS
42 *
43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 * of nasids.
45 *
39d30770
MT
46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
47 * of the nasid for socket usage.
9f5314fb
JS
48 *
49 *
50 * NumaLink Global Physical Address Format:
51 * +--------------------------------+---------------------+
52 * |00..000| GNODE | NodeOffset |
53 * +--------------------------------+---------------------+
54 * |<-------53 - M bits --->|<--------M bits ----->
55 *
56 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
57 *
58 *
59 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
60 * +----------------+---------------+---------------------+
61 * |00..000000000000| PNODE | NodeOffset |
62 * +----------------+---------------+---------------------+
63 * <--- N bits --->|<--------M bits ----->
952cf6d7 64 *
9f5314fb
JS
65 * M - number of node offset bits (35 .. 40)
66 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
67 *
68 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
69 * The actual values are configuration dependent and are set at
9f5314fb
JS
70 * boot time. M & N values are set by the hardware/BIOS at boot.
71 *
952cf6d7
JS
72 *
73 * APICID format
39d30770
MT
74 * NOTE!!!!!! This is the current format of the APICID. However, code
75 * should assume that this will change in the future. Use functions
76 * in this file for all APICID bit manipulations and conversion.
952cf6d7 77 *
39d30770
MT
78 * 1111110000000000
79 * 5432109876543210
9f5314fb 80 * pppppppppplc0cch
952cf6d7
JS
81 * sssssssssss
82 *
9f5314fb 83 * p = pnode bits
952cf6d7
JS
84 * l = socket number on board
85 * c = core
86 * h = hyperthread
9f5314fb 87 * s = bits that are in the SOCKET_ID CSR
952cf6d7
JS
88 *
89 * Note: Processor only supports 12 bits in the APICID register. The ACPI
90 * tables hold all 16 bits. Software needs to be aware of this.
91 *
39d30770
MT
92 * Unless otherwise specified, all references to APICID refer to
93 * the FULL value contained in ACPI tables, not the subset in the
94 * processor APICID register.
952cf6d7
JS
95 */
96
97
98/*
99 * Maximum number of bricks in all partitions and in all coherency domains.
100 * This is the total number of bricks accessible in the numalink fabric. It
101 * includes all C & M bricks. Routers are NOT included.
102 *
103 * This value is also the value of the maximum number of non-router NASIDs
104 * in the numalink fabric.
105 *
9f5314fb 106 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
107 */
108#define UV_MAX_NUMALINK_BLADES 16384
109
110/*
111 * Maximum number of C/Mbricks within a software SSI (hardware may support
112 * more).
113 */
114#define UV_MAX_SSI_BLADES 256
115
116/*
117 * The largest possible NASID of a C or M brick (+ 2)
118 */
1d21e6e3 119#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
952cf6d7 120
7f1baa06
MT
121struct uv_scir_s {
122 struct timer_list timer;
123 unsigned long offset;
124 unsigned long last;
125 unsigned long idle_on;
126 unsigned long idle_off;
127 unsigned char state;
128 unsigned char enabled;
129};
130
952cf6d7
JS
131/*
132 * The following defines attributes of the HUB chip. These attributes are
133 * frequently referenced and are kept in the per-cpu data areas of each cpu.
134 * They are kept together in a struct to minimize cache misses.
135 */
136struct uv_hub_info_s {
69a72a0e
MT
137 unsigned long global_mmr_base;
138 unsigned long gpa_mask;
c4ed3f04 139 unsigned int gnode_extra;
69a72a0e
MT
140 unsigned long gnode_upper;
141 unsigned long lowmem_remap_top;
142 unsigned long lowmem_remap_base;
143 unsigned short pnode;
144 unsigned short pnode_mask;
145 unsigned short coherency_domain_number;
146 unsigned short numa_blade_id;
147 unsigned char blade_processor_id;
148 unsigned char m_val;
149 unsigned char n_val;
150 struct uv_scir_s scir;
952cf6d7 151};
7f1baa06 152
952cf6d7 153DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
39d30770 154#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
952cf6d7
JS
155#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
156
157/*
158 * Local & Global MMR space macros.
39d30770
MT
159 * Note: macros are intended to be used ONLY by inline functions
160 * in this file - not by other kernel code.
161 * n - NASID (full 15-bit global nasid)
162 * g - GNODE (full 15-bit global nasid, right shifted 1)
163 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 164 */
9f5314fb 165#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
c4ed3f04
JS
166#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
167#define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
952cf6d7
JS
168
169#define UV_LOCAL_MMR_BASE 0xf4000000UL
170#define UV_GLOBAL_MMR32_BASE 0xf8000000UL
171#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
83f5d894
JS
172#define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
173#define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
952cf6d7 174
56abcf24
JS
175#define UV_GLOBAL_GRU_MMR_BASE 0x4000000
176
9f5314fb
JS
177#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
178#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
952cf6d7 179
9f5314fb 180#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 181
9f5314fb 182#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
67e83f30 183 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
9f5314fb
JS
184
185#define UV_APIC_PNODE_SHIFT 6
186
7f1baa06
MT
187/* Local Bus from cpu's perspective */
188#define LOCAL_BUS_BASE 0x1c00000
189#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
190
191/*
192 * System Controller Interface Reg
193 *
194 * Note there are NO leds on a UV system. This register is only
195 * used by the system controller to monitor system-wide operation.
196 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
197 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
198 * a node.
199 *
200 * The window is located at top of ACPI MMR space
201 */
202#define SCIR_WINDOW_COUNT 64
203#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
204 LOCAL_BUS_SIZE - \
205 SCIR_WINDOW_COUNT)
206
207#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
208#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
209#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
210
8661984f
DS
211/* Loop through all installed blades */
212#define for_each_possible_blade(bid) \
213 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
214
9f5314fb
JS
215/*
216 * Macros for converting between kernel virtual addresses, socket local physical
217 * addresses, and UV global physical addresses.
39d30770
MT
218 * Note: use the standard __pa() & __va() macros for converting
219 * between socket virtual and socket physical addresses.
9f5314fb
JS
220 */
221
222/* socket phys RAM --> UV global physical address */
223static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
224{
225 if (paddr < uv_hub_info->lowmem_remap_top)
189f67c4 226 paddr |= uv_hub_info->lowmem_remap_base;
9f5314fb
JS
227 return paddr | uv_hub_info->gnode_upper;
228}
229
230
231/* socket virtual --> UV global physical address */
232static inline unsigned long uv_gpa(void *v)
233{
189f67c4 234 return uv_soc_phys_ram_to_gpa(__pa(v));
9f5314fb 235}
1d21e6e3 236
fae419f2
RH
237/* Top two bits indicate the requested address is in MMR space. */
238static inline int
239uv_gpa_in_mmr_space(unsigned long gpa)
240{
241 return (gpa >> 62) == 0x3UL;
242}
243
729d69e6
RH
244/* UV global physical address --> socket phys RAM */
245static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
246{
247 unsigned long paddr = gpa & uv_hub_info->gpa_mask;
248 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
249 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
250
251 if (paddr >= remap_base && paddr < remap_base + remap_top)
252 paddr -= remap_base;
253 return paddr;
254}
255
256
1d21e6e3
RH
257/* gnode -> pnode */
258static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
259{
260 return gpa >> uv_hub_info->m_val;
261}
262
263/* gpa -> pnode */
264static inline int uv_gpa_to_pnode(unsigned long gpa)
265{
266 unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
267
268 return uv_gpa_to_gnode(gpa) & n_mask;
269}
9f5314fb
JS
270
271/* pnode, offset --> socket virtual */
272static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
273{
274 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
275}
952cf6d7 276
952cf6d7
JS
277
278/*
9f5314fb 279 * Extract a PNODE from an APICID (full apicid, not processor subset)
952cf6d7 280 */
9f5314fb 281static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 282{
9f5314fb 283 return (apicid >> UV_APIC_PNODE_SHIFT);
952cf6d7
JS
284}
285
286/*
287 * Access global MMRs using the low memory MMR32 space. This region supports
288 * faster MMR access but not all MMRs are accessible in this space.
289 */
39d30770 290static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
952cf6d7
JS
291{
292 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 293 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
294}
295
39d30770 296static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
952cf6d7 297{
8dc579e8 298 writeq(val, uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
299}
300
39d30770 301static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
952cf6d7 302{
8dc579e8 303 return readq(uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
304}
305
306/*
307 * Access Global MMR space using the MMR space located at the top of physical
308 * memory.
309 */
39d30770 310static inline unsigned long *uv_global_mmr64_address(int pnode, unsigned long offset)
952cf6d7
JS
311{
312 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 313 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
314}
315
39d30770 316static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
952cf6d7 317{
8dc579e8 318 writeq(val, uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
319}
320
39d30770 321static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
952cf6d7 322{
8dc579e8 323 return readq(uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
324}
325
56abcf24
JS
326/*
327 * Global MMR space addresses when referenced by the GRU. (GRU does
328 * NOT use socket addressing).
329 */
330static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
331{
332 return UV_GLOBAL_GRU_MMR_BASE | offset | (pnode << uv_hub_info->m_val);
333}
334
39d30770
MT
335static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
336{
337 writeb(val, uv_global_mmr64_address(pnode, offset));
338}
339
340static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
341{
342 return readb(uv_global_mmr64_address(pnode, offset));
343}
344
952cf6d7 345/*
9f5314fb 346 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
347 * are accessible.
348 */
349static inline unsigned long *uv_local_mmr_address(unsigned long offset)
350{
351 return __va(UV_LOCAL_MMR_BASE | offset);
352}
353
354static inline unsigned long uv_read_local_mmr(unsigned long offset)
355{
8dc579e8 356 return readq(uv_local_mmr_address(offset));
952cf6d7
JS
357}
358
359static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
360{
8dc579e8 361 writeq(val, uv_local_mmr_address(offset));
952cf6d7
JS
362}
363
7f1baa06
MT
364static inline unsigned char uv_read_local_mmr8(unsigned long offset)
365{
8dc579e8 366 return readb(uv_local_mmr_address(offset));
7f1baa06
MT
367}
368
369static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
370{
8dc579e8 371 writeb(val, uv_local_mmr_address(offset));
7f1baa06
MT
372}
373
8400def8 374/*
9f5314fb 375 * Structures and definitions for converting between cpu, node, pnode, and blade
8400def8
JS
376 * numbers.
377 */
378struct uv_blade_info {
9f5314fb 379 unsigned short nr_possible_cpus;
8400def8 380 unsigned short nr_online_cpus;
9f5314fb 381 unsigned short pnode;
6c7184b7 382 short memory_nid;
8400def8 383};
9f5314fb 384extern struct uv_blade_info *uv_blade_info;
8400def8
JS
385extern short *uv_node_to_blade;
386extern short *uv_cpu_to_blade;
387extern short uv_possible_blades;
388
389/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
390static inline int uv_blade_processor_id(void)
391{
392 return uv_hub_info->blade_processor_id;
393}
394
395/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
396static inline int uv_numa_blade_id(void)
397{
398 return uv_hub_info->numa_blade_id;
399}
400
401/* Convert a cpu number to the the UV blade number */
402static inline int uv_cpu_to_blade_id(int cpu)
403{
404 return uv_cpu_to_blade[cpu];
405}
406
407/* Convert linux node number to the UV blade number */
408static inline int uv_node_to_blade_id(int nid)
409{
410 return uv_node_to_blade[nid];
411}
412
9f5314fb
JS
413/* Convert a blade id to the PNODE of the blade */
414static inline int uv_blade_to_pnode(int bid)
8400def8 415{
9f5314fb 416 return uv_blade_info[bid].pnode;
8400def8
JS
417}
418
6c7184b7
JS
419/* Nid of memory node on blade. -1 if no blade-local memory */
420static inline int uv_blade_to_memory_nid(int bid)
421{
422 return uv_blade_info[bid].memory_nid;
423}
424
8400def8
JS
425/* Determine the number of possible cpus on a blade */
426static inline int uv_blade_nr_possible_cpus(int bid)
427{
9f5314fb 428 return uv_blade_info[bid].nr_possible_cpus;
8400def8
JS
429}
430
431/* Determine the number of online cpus on a blade */
432static inline int uv_blade_nr_online_cpus(int bid)
433{
434 return uv_blade_info[bid].nr_online_cpus;
435}
436
9f5314fb
JS
437/* Convert a cpu id to the PNODE of the blade containing the cpu */
438static inline int uv_cpu_to_pnode(int cpu)
8400def8 439{
9f5314fb 440 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
8400def8
JS
441}
442
9f5314fb
JS
443/* Convert a linux node number to the PNODE of the blade */
444static inline int uv_node_to_pnode(int nid)
8400def8 445{
9f5314fb 446 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
8400def8
JS
447}
448
449/* Maximum possible number of blades */
450static inline int uv_num_possible_blades(void)
451{
452 return uv_possible_blades;
453}
454
7f1baa06
MT
455/* Update SCIR state */
456static inline void uv_set_scir_bits(unsigned char value)
457{
458 if (uv_hub_info->scir.state != value) {
459 uv_hub_info->scir.state = value;
460 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
461 }
462}
66666e50 463
39d30770
MT
464static inline unsigned long uv_scir_offset(int apicid)
465{
466 return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
467}
468
7f1baa06
MT
469static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
470{
471 if (uv_cpu_hub_info(cpu)->scir.state != value) {
39d30770
MT
472 uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
473 uv_cpu_hub_info(cpu)->scir.offset, value);
7f1baa06 474 uv_cpu_hub_info(cpu)->scir.state = value;
7f1baa06
MT
475 }
476}
952cf6d7 477
56abcf24
JS
478static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
479{
480 return (1UL << UVH_IPI_INT_SEND_SHFT) |
481 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
482 (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
483 (vector << UVH_IPI_INT_VECTOR_SHFT);
484}
485
66666e50
JS
486static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
487{
488 unsigned long val;
02dd0a06
RH
489 unsigned long dmode = dest_Fixed;
490
491 if (vector == NMI_VECTOR)
492 dmode = dest_NMI;
66666e50 493
56abcf24 494 val = uv_hub_ipi_value(apicid, vector, dmode);
66666e50
JS
495 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
496}
497
bc5d9940 498#endif /* CONFIG_X86_64 */
7f1baa06 499#endif /* _ASM_X86_UV_UV_HUB_H */