gru: update driver version number
[linux-2.6-block.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
9f5314fb 8 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
9 */
10
05e4d316
PA
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
952cf6d7 13
bc5d9940 14#ifdef CONFIG_X86_64
952cf6d7
JS
15#include <linux/numa.h>
16#include <linux/percpu.h>
c08b6acc 17#include <linux/timer.h>
8dc579e8 18#include <linux/io.h>
952cf6d7
JS
19#include <asm/types.h>
20#include <asm/percpu.h>
66666e50 21#include <asm/uv/uv_mmrs.h>
02dd0a06
RH
22#include <asm/irq_vectors.h>
23#include <asm/io_apic.h>
952cf6d7
JS
24
25
26/*
27 * Addressing Terminology
28 *
9f5314fb
JS
29 * M - The low M bits of a physical address represent the offset
30 * into the blade local memory. RAM memory on a blade is physically
31 * contiguous (although various IO spaces may punch holes in
32 * it)..
952cf6d7 33 *
9f5314fb
JS
34 * N - Number of bits in the node portion of a socket physical
35 * address.
36 *
37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
38 * routers always have low bit of 1, C/MBricks have low bit
39 * equal to 0. Most addressing macros that target UV hub chips
40 * right shift the NASID by 1 to exclude the always-zero bit.
41 * NASIDs contain up to 15 bits.
42 *
43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 * of nasids.
45 *
46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
47 * of the nasid for socket usage.
48 *
49 *
50 * NumaLink Global Physical Address Format:
51 * +--------------------------------+---------------------+
52 * |00..000| GNODE | NodeOffset |
53 * +--------------------------------+---------------------+
54 * |<-------53 - M bits --->|<--------M bits ----->
55 *
56 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
57 *
58 *
59 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
60 * +----------------+---------------+---------------------+
61 * |00..000000000000| PNODE | NodeOffset |
62 * +----------------+---------------+---------------------+
63 * <--- N bits --->|<--------M bits ----->
952cf6d7 64 *
9f5314fb
JS
65 * M - number of node offset bits (35 .. 40)
66 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
67 *
68 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
69 * The actual values are configuration dependent and are set at
9f5314fb
JS
70 * boot time. M & N values are set by the hardware/BIOS at boot.
71 *
952cf6d7
JS
72 *
73 * APICID format
74 * NOTE!!!!!! This is the current format of the APICID. However, code
75 * should assume that this will change in the future. Use functions
76 * in this file for all APICID bit manipulations and conversion.
77 *
78 * 1111110000000000
79 * 5432109876543210
9f5314fb 80 * pppppppppplc0cch
952cf6d7
JS
81 * sssssssssss
82 *
9f5314fb 83 * p = pnode bits
952cf6d7
JS
84 * l = socket number on board
85 * c = core
86 * h = hyperthread
9f5314fb 87 * s = bits that are in the SOCKET_ID CSR
952cf6d7
JS
88 *
89 * Note: Processor only supports 12 bits in the APICID register. The ACPI
90 * tables hold all 16 bits. Software needs to be aware of this.
91 *
92 * Unless otherwise specified, all references to APICID refer to
93 * the FULL value contained in ACPI tables, not the subset in the
94 * processor APICID register.
95 */
96
97
98/*
99 * Maximum number of bricks in all partitions and in all coherency domains.
100 * This is the total number of bricks accessible in the numalink fabric. It
101 * includes all C & M bricks. Routers are NOT included.
102 *
103 * This value is also the value of the maximum number of non-router NASIDs
104 * in the numalink fabric.
105 *
9f5314fb 106 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
107 */
108#define UV_MAX_NUMALINK_BLADES 16384
109
110/*
111 * Maximum number of C/Mbricks within a software SSI (hardware may support
112 * more).
113 */
114#define UV_MAX_SSI_BLADES 256
115
116/*
117 * The largest possible NASID of a C or M brick (+ 2)
118 */
1d21e6e3 119#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
952cf6d7 120
7f1baa06
MT
121struct uv_scir_s {
122 struct timer_list timer;
123 unsigned long offset;
124 unsigned long last;
125 unsigned long idle_on;
126 unsigned long idle_off;
127 unsigned char state;
128 unsigned char enabled;
129};
130
952cf6d7
JS
131/*
132 * The following defines attributes of the HUB chip. These attributes are
133 * frequently referenced and are kept in the per-cpu data areas of each cpu.
134 * They are kept together in a struct to minimize cache misses.
135 */
136struct uv_hub_info_s {
69a72a0e
MT
137 unsigned long global_mmr_base;
138 unsigned long gpa_mask;
c4ed3f04 139 unsigned int gnode_extra;
69a72a0e
MT
140 unsigned long gnode_upper;
141 unsigned long lowmem_remap_top;
142 unsigned long lowmem_remap_base;
143 unsigned short pnode;
144 unsigned short pnode_mask;
145 unsigned short coherency_domain_number;
146 unsigned short numa_blade_id;
147 unsigned char blade_processor_id;
148 unsigned char m_val;
149 unsigned char n_val;
150 struct uv_scir_s scir;
952cf6d7 151};
7f1baa06 152
952cf6d7
JS
153DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
154#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
155#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
156
157/*
158 * Local & Global MMR space macros.
159 * Note: macros are intended to be used ONLY by inline functions
160 * in this file - not by other kernel code.
9f5314fb
JS
161 * n - NASID (full 15-bit global nasid)
162 * g - GNODE (full 15-bit global nasid, right shifted 1)
163 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 164 */
9f5314fb 165#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
c4ed3f04
JS
166#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
167#define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
952cf6d7
JS
168
169#define UV_LOCAL_MMR_BASE 0xf4000000UL
170#define UV_GLOBAL_MMR32_BASE 0xf8000000UL
171#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
83f5d894
JS
172#define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
173#define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
952cf6d7 174
9f5314fb
JS
175#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
176#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
952cf6d7 177
9f5314fb 178#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 179
9f5314fb 180#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
67e83f30 181 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
9f5314fb
JS
182
183#define UV_APIC_PNODE_SHIFT 6
184
7f1baa06
MT
185/* Local Bus from cpu's perspective */
186#define LOCAL_BUS_BASE 0x1c00000
187#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
188
189/*
190 * System Controller Interface Reg
191 *
192 * Note there are NO leds on a UV system. This register is only
193 * used by the system controller to monitor system-wide operation.
194 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
195 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
196 * a node.
197 *
198 * The window is located at top of ACPI MMR space
199 */
200#define SCIR_WINDOW_COUNT 64
201#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
202 LOCAL_BUS_SIZE - \
203 SCIR_WINDOW_COUNT)
204
205#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
206#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
207#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
208
8661984f
DS
209/* Loop through all installed blades */
210#define for_each_possible_blade(bid) \
211 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
212
9f5314fb
JS
213/*
214 * Macros for converting between kernel virtual addresses, socket local physical
215 * addresses, and UV global physical addresses.
216 * Note: use the standard __pa() & __va() macros for converting
217 * between socket virtual and socket physical addresses.
218 */
219
220/* socket phys RAM --> UV global physical address */
221static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
222{
223 if (paddr < uv_hub_info->lowmem_remap_top)
189f67c4 224 paddr |= uv_hub_info->lowmem_remap_base;
9f5314fb
JS
225 return paddr | uv_hub_info->gnode_upper;
226}
227
228
229/* socket virtual --> UV global physical address */
230static inline unsigned long uv_gpa(void *v)
231{
189f67c4 232 return uv_soc_phys_ram_to_gpa(__pa(v));
9f5314fb 233}
1d21e6e3 234
fae419f2
RH
235/* Top two bits indicate the requested address is in MMR space. */
236static inline int
237uv_gpa_in_mmr_space(unsigned long gpa)
238{
239 return (gpa >> 62) == 0x3UL;
240}
241
729d69e6
RH
242/* UV global physical address --> socket phys RAM */
243static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
244{
245 unsigned long paddr = gpa & uv_hub_info->gpa_mask;
246 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
247 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
248
249 if (paddr >= remap_base && paddr < remap_base + remap_top)
250 paddr -= remap_base;
251 return paddr;
252}
253
254
1d21e6e3
RH
255/* gnode -> pnode */
256static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
257{
258 return gpa >> uv_hub_info->m_val;
259}
260
261/* gpa -> pnode */
262static inline int uv_gpa_to_pnode(unsigned long gpa)
263{
264 unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
265
266 return uv_gpa_to_gnode(gpa) & n_mask;
267}
9f5314fb
JS
268
269/* pnode, offset --> socket virtual */
270static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
271{
272 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
273}
952cf6d7 274
952cf6d7
JS
275
276/*
9f5314fb 277 * Extract a PNODE from an APICID (full apicid, not processor subset)
952cf6d7 278 */
9f5314fb 279static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 280{
9f5314fb 281 return (apicid >> UV_APIC_PNODE_SHIFT);
952cf6d7
JS
282}
283
284/*
285 * Access global MMRs using the low memory MMR32 space. This region supports
286 * faster MMR access but not all MMRs are accessible in this space.
287 */
9f5314fb 288static inline unsigned long *uv_global_mmr32_address(int pnode,
952cf6d7
JS
289 unsigned long offset)
290{
291 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 292 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
293}
294
9f5314fb 295static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
952cf6d7
JS
296 unsigned long val)
297{
8dc579e8 298 writeq(val, uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
299}
300
9f5314fb 301static inline unsigned long uv_read_global_mmr32(int pnode,
952cf6d7
JS
302 unsigned long offset)
303{
8dc579e8 304 return readq(uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
305}
306
307/*
308 * Access Global MMR space using the MMR space located at the top of physical
309 * memory.
310 */
9f5314fb 311static inline unsigned long *uv_global_mmr64_address(int pnode,
952cf6d7
JS
312 unsigned long offset)
313{
314 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 315 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
316}
317
9f5314fb 318static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
952cf6d7
JS
319 unsigned long val)
320{
8dc579e8 321 writeq(val, uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
322}
323
9f5314fb 324static inline unsigned long uv_read_global_mmr64(int pnode,
952cf6d7
JS
325 unsigned long offset)
326{
8dc579e8 327 return readq(uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
328}
329
330/*
9f5314fb 331 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
332 * are accessible.
333 */
334static inline unsigned long *uv_local_mmr_address(unsigned long offset)
335{
336 return __va(UV_LOCAL_MMR_BASE | offset);
337}
338
339static inline unsigned long uv_read_local_mmr(unsigned long offset)
340{
8dc579e8 341 return readq(uv_local_mmr_address(offset));
952cf6d7
JS
342}
343
344static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
345{
8dc579e8 346 writeq(val, uv_local_mmr_address(offset));
952cf6d7
JS
347}
348
7f1baa06
MT
349static inline unsigned char uv_read_local_mmr8(unsigned long offset)
350{
8dc579e8 351 return readb(uv_local_mmr_address(offset));
7f1baa06
MT
352}
353
354static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
355{
8dc579e8 356 writeb(val, uv_local_mmr_address(offset));
7f1baa06
MT
357}
358
8400def8 359/*
9f5314fb 360 * Structures and definitions for converting between cpu, node, pnode, and blade
8400def8
JS
361 * numbers.
362 */
363struct uv_blade_info {
9f5314fb 364 unsigned short nr_possible_cpus;
8400def8 365 unsigned short nr_online_cpus;
9f5314fb 366 unsigned short pnode;
6c7184b7 367 short memory_nid;
8400def8 368};
9f5314fb 369extern struct uv_blade_info *uv_blade_info;
8400def8
JS
370extern short *uv_node_to_blade;
371extern short *uv_cpu_to_blade;
372extern short uv_possible_blades;
373
374/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
375static inline int uv_blade_processor_id(void)
376{
377 return uv_hub_info->blade_processor_id;
378}
379
380/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
381static inline int uv_numa_blade_id(void)
382{
383 return uv_hub_info->numa_blade_id;
384}
385
386/* Convert a cpu number to the the UV blade number */
387static inline int uv_cpu_to_blade_id(int cpu)
388{
389 return uv_cpu_to_blade[cpu];
390}
391
392/* Convert linux node number to the UV blade number */
393static inline int uv_node_to_blade_id(int nid)
394{
395 return uv_node_to_blade[nid];
396}
397
9f5314fb
JS
398/* Convert a blade id to the PNODE of the blade */
399static inline int uv_blade_to_pnode(int bid)
8400def8 400{
9f5314fb 401 return uv_blade_info[bid].pnode;
8400def8
JS
402}
403
6c7184b7
JS
404/* Nid of memory node on blade. -1 if no blade-local memory */
405static inline int uv_blade_to_memory_nid(int bid)
406{
407 return uv_blade_info[bid].memory_nid;
408}
409
8400def8
JS
410/* Determine the number of possible cpus on a blade */
411static inline int uv_blade_nr_possible_cpus(int bid)
412{
9f5314fb 413 return uv_blade_info[bid].nr_possible_cpus;
8400def8
JS
414}
415
416/* Determine the number of online cpus on a blade */
417static inline int uv_blade_nr_online_cpus(int bid)
418{
419 return uv_blade_info[bid].nr_online_cpus;
420}
421
9f5314fb
JS
422/* Convert a cpu id to the PNODE of the blade containing the cpu */
423static inline int uv_cpu_to_pnode(int cpu)
8400def8 424{
9f5314fb 425 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
8400def8
JS
426}
427
9f5314fb
JS
428/* Convert a linux node number to the PNODE of the blade */
429static inline int uv_node_to_pnode(int nid)
8400def8 430{
9f5314fb 431 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
8400def8
JS
432}
433
434/* Maximum possible number of blades */
435static inline int uv_num_possible_blades(void)
436{
437 return uv_possible_blades;
438}
439
7f1baa06
MT
440/* Update SCIR state */
441static inline void uv_set_scir_bits(unsigned char value)
442{
443 if (uv_hub_info->scir.state != value) {
444 uv_hub_info->scir.state = value;
445 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
446 }
447}
66666e50 448
7f1baa06
MT
449static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
450{
451 if (uv_cpu_hub_info(cpu)->scir.state != value) {
452 uv_cpu_hub_info(cpu)->scir.state = value;
453 uv_write_local_mmr8(uv_cpu_hub_info(cpu)->scir.offset, value);
454 }
455}
952cf6d7 456
66666e50
JS
457static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
458{
459 unsigned long val;
02dd0a06
RH
460 unsigned long dmode = dest_Fixed;
461
462 if (vector == NMI_VECTOR)
463 dmode = dest_NMI;
66666e50
JS
464
465 val = (1UL << UVH_IPI_INT_SEND_SHFT) |
d2374aec 466 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
02dd0a06 467 (dmode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
66666e50
JS
468 (vector << UVH_IPI_INT_VECTOR_SHFT);
469 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
470}
471
bc5d9940 472#endif /* CONFIG_X86_64 */
7f1baa06 473#endif /* _ASM_X86_UV_UV_HUB_H */