Merge commit 'v2.6.28-rc8' into x86/uv
[linux-2.6-block.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
9f5314fb 8 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
9 */
10
05e4d316
PA
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
952cf6d7
JS
13
14#include <linux/numa.h>
15#include <linux/percpu.h>
c08b6acc 16#include <linux/timer.h>
952cf6d7
JS
17#include <asm/types.h>
18#include <asm/percpu.h>
19
20
21/*
22 * Addressing Terminology
23 *
9f5314fb
JS
24 * M - The low M bits of a physical address represent the offset
25 * into the blade local memory. RAM memory on a blade is physically
26 * contiguous (although various IO spaces may punch holes in
27 * it)..
952cf6d7 28 *
9f5314fb
JS
29 * N - Number of bits in the node portion of a socket physical
30 * address.
31 *
32 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
33 * routers always have low bit of 1, C/MBricks have low bit
34 * equal to 0. Most addressing macros that target UV hub chips
35 * right shift the NASID by 1 to exclude the always-zero bit.
36 * NASIDs contain up to 15 bits.
37 *
38 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
39 * of nasids.
40 *
41 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
42 * of the nasid for socket usage.
43 *
44 *
45 * NumaLink Global Physical Address Format:
46 * +--------------------------------+---------------------+
47 * |00..000| GNODE | NodeOffset |
48 * +--------------------------------+---------------------+
49 * |<-------53 - M bits --->|<--------M bits ----->
50 *
51 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
52 *
53 *
54 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
55 * +----------------+---------------+---------------------+
56 * |00..000000000000| PNODE | NodeOffset |
57 * +----------------+---------------+---------------------+
58 * <--- N bits --->|<--------M bits ----->
952cf6d7 59 *
9f5314fb
JS
60 * M - number of node offset bits (35 .. 40)
61 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
62 *
63 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
64 * The actual values are configuration dependent and are set at
9f5314fb
JS
65 * boot time. M & N values are set by the hardware/BIOS at boot.
66 *
952cf6d7
JS
67 *
68 * APICID format
69 * NOTE!!!!!! This is the current format of the APICID. However, code
70 * should assume that this will change in the future. Use functions
71 * in this file for all APICID bit manipulations and conversion.
72 *
73 * 1111110000000000
74 * 5432109876543210
9f5314fb 75 * pppppppppplc0cch
952cf6d7
JS
76 * sssssssssss
77 *
9f5314fb 78 * p = pnode bits
952cf6d7
JS
79 * l = socket number on board
80 * c = core
81 * h = hyperthread
9f5314fb 82 * s = bits that are in the SOCKET_ID CSR
952cf6d7
JS
83 *
84 * Note: Processor only supports 12 bits in the APICID register. The ACPI
85 * tables hold all 16 bits. Software needs to be aware of this.
86 *
87 * Unless otherwise specified, all references to APICID refer to
88 * the FULL value contained in ACPI tables, not the subset in the
89 * processor APICID register.
90 */
91
92
93/*
94 * Maximum number of bricks in all partitions and in all coherency domains.
95 * This is the total number of bricks accessible in the numalink fabric. It
96 * includes all C & M bricks. Routers are NOT included.
97 *
98 * This value is also the value of the maximum number of non-router NASIDs
99 * in the numalink fabric.
100 *
9f5314fb 101 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
102 */
103#define UV_MAX_NUMALINK_BLADES 16384
104
105/*
106 * Maximum number of C/Mbricks within a software SSI (hardware may support
107 * more).
108 */
109#define UV_MAX_SSI_BLADES 256
110
111/*
112 * The largest possible NASID of a C or M brick (+ 2)
113 */
114#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
115
7f1baa06
MT
116struct uv_scir_s {
117 struct timer_list timer;
118 unsigned long offset;
119 unsigned long last;
120 unsigned long idle_on;
121 unsigned long idle_off;
122 unsigned char state;
123 unsigned char enabled;
124};
125
952cf6d7
JS
126/*
127 * The following defines attributes of the HUB chip. These attributes are
128 * frequently referenced and are kept in the per-cpu data areas of each cpu.
129 * They are kept together in a struct to minimize cache misses.
130 */
131struct uv_hub_info_s {
69a72a0e
MT
132 unsigned long global_mmr_base;
133 unsigned long gpa_mask;
134 unsigned long gnode_upper;
135 unsigned long lowmem_remap_top;
136 unsigned long lowmem_remap_base;
137 unsigned short pnode;
138 unsigned short pnode_mask;
139 unsigned short coherency_domain_number;
140 unsigned short numa_blade_id;
141 unsigned char blade_processor_id;
142 unsigned char m_val;
143 unsigned char n_val;
144 struct uv_scir_s scir;
952cf6d7 145};
7f1baa06 146
952cf6d7
JS
147DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
148#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
149#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
150
151/*
152 * Local & Global MMR space macros.
153 * Note: macros are intended to be used ONLY by inline functions
154 * in this file - not by other kernel code.
9f5314fb
JS
155 * n - NASID (full 15-bit global nasid)
156 * g - GNODE (full 15-bit global nasid, right shifted 1)
157 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 158 */
9f5314fb
JS
159#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
160#define UV_PNODE_TO_NASID(p) (((p) << 1) | uv_hub_info->gnode_upper)
952cf6d7
JS
161
162#define UV_LOCAL_MMR_BASE 0xf4000000UL
163#define UV_GLOBAL_MMR32_BASE 0xf8000000UL
164#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
83f5d894
JS
165#define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
166#define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
952cf6d7 167
9f5314fb
JS
168#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
169#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
952cf6d7 170
9f5314fb 171#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 172
9f5314fb
JS
173#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
174 ((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
175
176#define UV_APIC_PNODE_SHIFT 6
177
7f1baa06
MT
178/* Local Bus from cpu's perspective */
179#define LOCAL_BUS_BASE 0x1c00000
180#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
181
182/*
183 * System Controller Interface Reg
184 *
185 * Note there are NO leds on a UV system. This register is only
186 * used by the system controller to monitor system-wide operation.
187 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
188 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
189 * a node.
190 *
191 * The window is located at top of ACPI MMR space
192 */
193#define SCIR_WINDOW_COUNT 64
194#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
195 LOCAL_BUS_SIZE - \
196 SCIR_WINDOW_COUNT)
197
198#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
199#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
200#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
201
9f5314fb
JS
202/*
203 * Macros for converting between kernel virtual addresses, socket local physical
204 * addresses, and UV global physical addresses.
205 * Note: use the standard __pa() & __va() macros for converting
206 * between socket virtual and socket physical addresses.
207 */
208
209/* socket phys RAM --> UV global physical address */
210static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
211{
212 if (paddr < uv_hub_info->lowmem_remap_top)
213 paddr += uv_hub_info->lowmem_remap_base;
214 return paddr | uv_hub_info->gnode_upper;
215}
216
217
218/* socket virtual --> UV global physical address */
219static inline unsigned long uv_gpa(void *v)
220{
221 return __pa(v) | uv_hub_info->gnode_upper;
222}
223
224/* socket virtual --> UV global physical address */
225static inline void *uv_vgpa(void *v)
226{
227 return (void *)uv_gpa(v);
228}
229
230/* UV global physical address --> socket virtual */
231static inline void *uv_va(unsigned long gpa)
232{
233 return __va(gpa & uv_hub_info->gpa_mask);
234}
235
236/* pnode, offset --> socket virtual */
237static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
238{
239 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
240}
952cf6d7 241
952cf6d7
JS
242
243/*
9f5314fb 244 * Extract a PNODE from an APICID (full apicid, not processor subset)
952cf6d7 245 */
9f5314fb 246static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 247{
9f5314fb 248 return (apicid >> UV_APIC_PNODE_SHIFT);
952cf6d7
JS
249}
250
251/*
252 * Access global MMRs using the low memory MMR32 space. This region supports
253 * faster MMR access but not all MMRs are accessible in this space.
254 */
9f5314fb 255static inline unsigned long *uv_global_mmr32_address(int pnode,
952cf6d7
JS
256 unsigned long offset)
257{
258 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 259 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
260}
261
9f5314fb 262static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
952cf6d7
JS
263 unsigned long val)
264{
9f5314fb 265 *uv_global_mmr32_address(pnode, offset) = val;
952cf6d7
JS
266}
267
9f5314fb 268static inline unsigned long uv_read_global_mmr32(int pnode,
952cf6d7
JS
269 unsigned long offset)
270{
9f5314fb 271 return *uv_global_mmr32_address(pnode, offset);
952cf6d7
JS
272}
273
274/*
275 * Access Global MMR space using the MMR space located at the top of physical
276 * memory.
277 */
9f5314fb 278static inline unsigned long *uv_global_mmr64_address(int pnode,
952cf6d7
JS
279 unsigned long offset)
280{
281 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 282 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
283}
284
9f5314fb 285static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
952cf6d7
JS
286 unsigned long val)
287{
9f5314fb 288 *uv_global_mmr64_address(pnode, offset) = val;
952cf6d7
JS
289}
290
9f5314fb 291static inline unsigned long uv_read_global_mmr64(int pnode,
952cf6d7
JS
292 unsigned long offset)
293{
9f5314fb 294 return *uv_global_mmr64_address(pnode, offset);
952cf6d7
JS
295}
296
297/*
9f5314fb 298 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
299 * are accessible.
300 */
301static inline unsigned long *uv_local_mmr_address(unsigned long offset)
302{
303 return __va(UV_LOCAL_MMR_BASE | offset);
304}
305
306static inline unsigned long uv_read_local_mmr(unsigned long offset)
307{
308 return *uv_local_mmr_address(offset);
309}
310
311static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
312{
313 *uv_local_mmr_address(offset) = val;
314}
315
7f1baa06
MT
316static inline unsigned char uv_read_local_mmr8(unsigned long offset)
317{
318 return *((unsigned char *)uv_local_mmr_address(offset));
319}
320
321static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
322{
323 *((unsigned char *)uv_local_mmr_address(offset)) = val;
324}
325
8400def8 326/*
9f5314fb 327 * Structures and definitions for converting between cpu, node, pnode, and blade
8400def8
JS
328 * numbers.
329 */
330struct uv_blade_info {
9f5314fb 331 unsigned short nr_possible_cpus;
8400def8 332 unsigned short nr_online_cpus;
9f5314fb 333 unsigned short pnode;
8400def8 334};
9f5314fb 335extern struct uv_blade_info *uv_blade_info;
8400def8
JS
336extern short *uv_node_to_blade;
337extern short *uv_cpu_to_blade;
338extern short uv_possible_blades;
339
340/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
341static inline int uv_blade_processor_id(void)
342{
343 return uv_hub_info->blade_processor_id;
344}
345
346/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
347static inline int uv_numa_blade_id(void)
348{
349 return uv_hub_info->numa_blade_id;
350}
351
352/* Convert a cpu number to the the UV blade number */
353static inline int uv_cpu_to_blade_id(int cpu)
354{
355 return uv_cpu_to_blade[cpu];
356}
357
358/* Convert linux node number to the UV blade number */
359static inline int uv_node_to_blade_id(int nid)
360{
361 return uv_node_to_blade[nid];
362}
363
9f5314fb
JS
364/* Convert a blade id to the PNODE of the blade */
365static inline int uv_blade_to_pnode(int bid)
8400def8 366{
9f5314fb 367 return uv_blade_info[bid].pnode;
8400def8
JS
368}
369
370/* Determine the number of possible cpus on a blade */
371static inline int uv_blade_nr_possible_cpus(int bid)
372{
9f5314fb 373 return uv_blade_info[bid].nr_possible_cpus;
8400def8
JS
374}
375
376/* Determine the number of online cpus on a blade */
377static inline int uv_blade_nr_online_cpus(int bid)
378{
379 return uv_blade_info[bid].nr_online_cpus;
380}
381
9f5314fb
JS
382/* Convert a cpu id to the PNODE of the blade containing the cpu */
383static inline int uv_cpu_to_pnode(int cpu)
8400def8 384{
9f5314fb 385 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
8400def8
JS
386}
387
9f5314fb
JS
388/* Convert a linux node number to the PNODE of the blade */
389static inline int uv_node_to_pnode(int nid)
8400def8 390{
9f5314fb 391 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
8400def8
JS
392}
393
394/* Maximum possible number of blades */
395static inline int uv_num_possible_blades(void)
396{
397 return uv_possible_blades;
398}
399
7f1baa06
MT
400/* Update SCIR state */
401static inline void uv_set_scir_bits(unsigned char value)
402{
403 if (uv_hub_info->scir.state != value) {
404 uv_hub_info->scir.state = value;
405 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
406 }
407}
408static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
409{
410 if (uv_cpu_hub_info(cpu)->scir.state != value) {
411 uv_cpu_hub_info(cpu)->scir.state = value;
412 uv_write_local_mmr8(uv_cpu_hub_info(cpu)->scir.offset, value);
413 }
414}
952cf6d7 415
7f1baa06 416#endif /* _ASM_X86_UV_UV_HUB_H */