i386/PAE: fix pud_page()
[linux-2.6-block.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
9f5314fb 8 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
9 */
10
05e4d316
PA
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
952cf6d7
JS
13
14#include <linux/numa.h>
15#include <linux/percpu.h>
16#include <asm/types.h>
17#include <asm/percpu.h>
18
19
20/*
21 * Addressing Terminology
22 *
9f5314fb
JS
23 * M - The low M bits of a physical address represent the offset
24 * into the blade local memory. RAM memory on a blade is physically
25 * contiguous (although various IO spaces may punch holes in
26 * it)..
952cf6d7 27 *
9f5314fb
JS
28 * N - Number of bits in the node portion of a socket physical
29 * address.
30 *
31 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
32 * routers always have low bit of 1, C/MBricks have low bit
33 * equal to 0. Most addressing macros that target UV hub chips
34 * right shift the NASID by 1 to exclude the always-zero bit.
35 * NASIDs contain up to 15 bits.
36 *
37 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
38 * of nasids.
39 *
40 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
41 * of the nasid for socket usage.
42 *
43 *
44 * NumaLink Global Physical Address Format:
45 * +--------------------------------+---------------------+
46 * |00..000| GNODE | NodeOffset |
47 * +--------------------------------+---------------------+
48 * |<-------53 - M bits --->|<--------M bits ----->
49 *
50 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
51 *
52 *
53 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
54 * +----------------+---------------+---------------------+
55 * |00..000000000000| PNODE | NodeOffset |
56 * +----------------+---------------+---------------------+
57 * <--- N bits --->|<--------M bits ----->
952cf6d7 58 *
9f5314fb
JS
59 * M - number of node offset bits (35 .. 40)
60 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
61 *
62 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
63 * The actual values are configuration dependent and are set at
9f5314fb
JS
64 * boot time. M & N values are set by the hardware/BIOS at boot.
65 *
952cf6d7
JS
66 *
67 * APICID format
68 * NOTE!!!!!! This is the current format of the APICID. However, code
69 * should assume that this will change in the future. Use functions
70 * in this file for all APICID bit manipulations and conversion.
71 *
72 * 1111110000000000
73 * 5432109876543210
9f5314fb 74 * pppppppppplc0cch
952cf6d7
JS
75 * sssssssssss
76 *
9f5314fb 77 * p = pnode bits
952cf6d7
JS
78 * l = socket number on board
79 * c = core
80 * h = hyperthread
9f5314fb 81 * s = bits that are in the SOCKET_ID CSR
952cf6d7
JS
82 *
83 * Note: Processor only supports 12 bits in the APICID register. The ACPI
84 * tables hold all 16 bits. Software needs to be aware of this.
85 *
86 * Unless otherwise specified, all references to APICID refer to
87 * the FULL value contained in ACPI tables, not the subset in the
88 * processor APICID register.
89 */
90
91
92/*
93 * Maximum number of bricks in all partitions and in all coherency domains.
94 * This is the total number of bricks accessible in the numalink fabric. It
95 * includes all C & M bricks. Routers are NOT included.
96 *
97 * This value is also the value of the maximum number of non-router NASIDs
98 * in the numalink fabric.
99 *
9f5314fb 100 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
101 */
102#define UV_MAX_NUMALINK_BLADES 16384
103
104/*
105 * Maximum number of C/Mbricks within a software SSI (hardware may support
106 * more).
107 */
108#define UV_MAX_SSI_BLADES 256
109
110/*
111 * The largest possible NASID of a C or M brick (+ 2)
112 */
113#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
114
115/*
116 * The following defines attributes of the HUB chip. These attributes are
117 * frequently referenced and are kept in the per-cpu data areas of each cpu.
118 * They are kept together in a struct to minimize cache misses.
119 */
120struct uv_hub_info_s {
121 unsigned long global_mmr_base;
9f5314fb
JS
122 unsigned long gpa_mask;
123 unsigned long gnode_upper;
124 unsigned long lowmem_remap_top;
125 unsigned long lowmem_remap_base;
126 unsigned short pnode;
127 unsigned short pnode_mask;
952cf6d7
JS
128 unsigned short coherency_domain_number;
129 unsigned short numa_blade_id;
130 unsigned char blade_processor_id;
131 unsigned char m_val;
132 unsigned char n_val;
133};
134DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
135#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
136#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
137
138/*
139 * Local & Global MMR space macros.
140 * Note: macros are intended to be used ONLY by inline functions
141 * in this file - not by other kernel code.
9f5314fb
JS
142 * n - NASID (full 15-bit global nasid)
143 * g - GNODE (full 15-bit global nasid, right shifted 1)
144 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 145 */
9f5314fb
JS
146#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
147#define UV_PNODE_TO_NASID(p) (((p) << 1) | uv_hub_info->gnode_upper)
952cf6d7
JS
148
149#define UV_LOCAL_MMR_BASE 0xf4000000UL
150#define UV_GLOBAL_MMR32_BASE 0xf8000000UL
151#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
83f5d894
JS
152#define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
153#define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
952cf6d7 154
9f5314fb
JS
155#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
156#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
952cf6d7 157
9f5314fb 158#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 159
9f5314fb
JS
160#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
161 ((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
162
163#define UV_APIC_PNODE_SHIFT 6
164
165/*
166 * Macros for converting between kernel virtual addresses, socket local physical
167 * addresses, and UV global physical addresses.
168 * Note: use the standard __pa() & __va() macros for converting
169 * between socket virtual and socket physical addresses.
170 */
171
172/* socket phys RAM --> UV global physical address */
173static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
174{
175 if (paddr < uv_hub_info->lowmem_remap_top)
176 paddr += uv_hub_info->lowmem_remap_base;
177 return paddr | uv_hub_info->gnode_upper;
178}
179
180
181/* socket virtual --> UV global physical address */
182static inline unsigned long uv_gpa(void *v)
183{
184 return __pa(v) | uv_hub_info->gnode_upper;
185}
186
187/* socket virtual --> UV global physical address */
188static inline void *uv_vgpa(void *v)
189{
190 return (void *)uv_gpa(v);
191}
192
193/* UV global physical address --> socket virtual */
194static inline void *uv_va(unsigned long gpa)
195{
196 return __va(gpa & uv_hub_info->gpa_mask);
197}
198
199/* pnode, offset --> socket virtual */
200static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
201{
202 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
203}
952cf6d7 204
952cf6d7
JS
205
206/*
9f5314fb 207 * Extract a PNODE from an APICID (full apicid, not processor subset)
952cf6d7 208 */
9f5314fb 209static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 210{
9f5314fb 211 return (apicid >> UV_APIC_PNODE_SHIFT);
952cf6d7
JS
212}
213
214/*
215 * Access global MMRs using the low memory MMR32 space. This region supports
216 * faster MMR access but not all MMRs are accessible in this space.
217 */
9f5314fb 218static inline unsigned long *uv_global_mmr32_address(int pnode,
952cf6d7
JS
219 unsigned long offset)
220{
221 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 222 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
223}
224
9f5314fb 225static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
952cf6d7
JS
226 unsigned long val)
227{
9f5314fb 228 *uv_global_mmr32_address(pnode, offset) = val;
952cf6d7
JS
229}
230
9f5314fb 231static inline unsigned long uv_read_global_mmr32(int pnode,
952cf6d7
JS
232 unsigned long offset)
233{
9f5314fb 234 return *uv_global_mmr32_address(pnode, offset);
952cf6d7
JS
235}
236
237/*
238 * Access Global MMR space using the MMR space located at the top of physical
239 * memory.
240 */
9f5314fb 241static inline unsigned long *uv_global_mmr64_address(int pnode,
952cf6d7
JS
242 unsigned long offset)
243{
244 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 245 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
246}
247
9f5314fb 248static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
952cf6d7
JS
249 unsigned long val)
250{
9f5314fb 251 *uv_global_mmr64_address(pnode, offset) = val;
952cf6d7
JS
252}
253
9f5314fb 254static inline unsigned long uv_read_global_mmr64(int pnode,
952cf6d7
JS
255 unsigned long offset)
256{
9f5314fb 257 return *uv_global_mmr64_address(pnode, offset);
952cf6d7
JS
258}
259
260/*
9f5314fb 261 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
262 * are accessible.
263 */
264static inline unsigned long *uv_local_mmr_address(unsigned long offset)
265{
266 return __va(UV_LOCAL_MMR_BASE | offset);
267}
268
269static inline unsigned long uv_read_local_mmr(unsigned long offset)
270{
271 return *uv_local_mmr_address(offset);
272}
273
274static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
275{
276 *uv_local_mmr_address(offset) = val;
277}
278
8400def8 279/*
9f5314fb 280 * Structures and definitions for converting between cpu, node, pnode, and blade
8400def8
JS
281 * numbers.
282 */
283struct uv_blade_info {
9f5314fb 284 unsigned short nr_possible_cpus;
8400def8 285 unsigned short nr_online_cpus;
9f5314fb 286 unsigned short pnode;
8400def8 287};
9f5314fb 288extern struct uv_blade_info *uv_blade_info;
8400def8
JS
289extern short *uv_node_to_blade;
290extern short *uv_cpu_to_blade;
291extern short uv_possible_blades;
292
293/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
294static inline int uv_blade_processor_id(void)
295{
296 return uv_hub_info->blade_processor_id;
297}
298
299/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
300static inline int uv_numa_blade_id(void)
301{
302 return uv_hub_info->numa_blade_id;
303}
304
305/* Convert a cpu number to the the UV blade number */
306static inline int uv_cpu_to_blade_id(int cpu)
307{
308 return uv_cpu_to_blade[cpu];
309}
310
311/* Convert linux node number to the UV blade number */
312static inline int uv_node_to_blade_id(int nid)
313{
314 return uv_node_to_blade[nid];
315}
316
9f5314fb
JS
317/* Convert a blade id to the PNODE of the blade */
318static inline int uv_blade_to_pnode(int bid)
8400def8 319{
9f5314fb 320 return uv_blade_info[bid].pnode;
8400def8
JS
321}
322
323/* Determine the number of possible cpus on a blade */
324static inline int uv_blade_nr_possible_cpus(int bid)
325{
9f5314fb 326 return uv_blade_info[bid].nr_possible_cpus;
8400def8
JS
327}
328
329/* Determine the number of online cpus on a blade */
330static inline int uv_blade_nr_online_cpus(int bid)
331{
332 return uv_blade_info[bid].nr_online_cpus;
333}
334
9f5314fb
JS
335/* Convert a cpu id to the PNODE of the blade containing the cpu */
336static inline int uv_cpu_to_pnode(int cpu)
8400def8 337{
9f5314fb 338 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
8400def8
JS
339}
340
9f5314fb
JS
341/* Convert a linux node number to the PNODE of the blade */
342static inline int uv_node_to_pnode(int nid)
8400def8 343{
9f5314fb 344 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
8400def8
JS
345}
346
347/* Maximum possible number of blades */
348static inline int uv_num_possible_blades(void)
349{
350 return uv_possible_blades;
351}
352
05e4d316 353#endif /* _ASM_X86_UV_UV_HUB_H */
952cf6d7 354