x86/platform/UV: Update MMIOH setup function to work for both UV3 and UV4
[linux-2.6-block.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
5f40f7d9 8 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
9 */
10
05e4d316
PA
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
952cf6d7 13
bc5d9940 14#ifdef CONFIG_X86_64
952cf6d7
JS
15#include <linux/numa.h>
16#include <linux/percpu.h>
c08b6acc 17#include <linux/timer.h>
8dc579e8 18#include <linux/io.h>
952cf6d7
JS
19#include <asm/types.h>
20#include <asm/percpu.h>
66666e50 21#include <asm/uv/uv_mmrs.h>
02dd0a06
RH
22#include <asm/irq_vectors.h>
23#include <asm/io_apic.h>
952cf6d7
JS
24
25
26/*
27 * Addressing Terminology
28 *
9f5314fb
JS
29 * M - The low M bits of a physical address represent the offset
30 * into the blade local memory. RAM memory on a blade is physically
31 * contiguous (although various IO spaces may punch holes in
32 * it)..
952cf6d7 33 *
39d30770
MT
34 * N - Number of bits in the node portion of a socket physical
35 * address.
9f5314fb 36 *
39d30770
MT
37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
38 * routers always have low bit of 1, C/MBricks have low bit
39 * equal to 0. Most addressing macros that target UV hub chips
40 * right shift the NASID by 1 to exclude the always-zero bit.
41 * NASIDs contain up to 15 bits.
9f5314fb
JS
42 *
43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 * of nasids.
45 *
39d30770
MT
46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
47 * of the nasid for socket usage.
9f5314fb 48 *
6a469e46
JS
49 * GPA - (global physical address) a socket physical address converted
50 * so that it can be used by the GRU as a global address. Socket
51 * physical addresses 1) need additional NASID (node) bits added
52 * to the high end of the address, and 2) unaliased if the
53 * partition does not have a physical address 0. In addition, on
54 * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
55 *
9f5314fb
JS
56 *
57 * NumaLink Global Physical Address Format:
58 * +--------------------------------+---------------------+
59 * |00..000| GNODE | NodeOffset |
60 * +--------------------------------+---------------------+
61 * |<-------53 - M bits --->|<--------M bits ----->
62 *
63 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
64 *
65 *
66 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
67 * +----------------+---------------+---------------------+
68 * |00..000000000000| PNODE | NodeOffset |
69 * +----------------+---------------+---------------------+
70 * <--- N bits --->|<--------M bits ----->
952cf6d7 71 *
9f5314fb
JS
72 * M - number of node offset bits (35 .. 40)
73 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
74 *
75 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
76 * The actual values are configuration dependent and are set at
9f5314fb
JS
77 * boot time. M & N values are set by the hardware/BIOS at boot.
78 *
952cf6d7
JS
79 *
80 * APICID format
39d30770
MT
81 * NOTE!!!!!! This is the current format of the APICID. However, code
82 * should assume that this will change in the future. Use functions
83 * in this file for all APICID bit manipulations and conversion.
952cf6d7 84 *
39d30770
MT
85 * 1111110000000000
86 * 5432109876543210
2a919596
JS
87 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
88 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
89 * pppppppppppcccch SandyBridge (15 bits in hdw reg)
952cf6d7
JS
90 * sssssssssss
91 *
9f5314fb 92 * p = pnode bits
952cf6d7
JS
93 * l = socket number on board
94 * c = core
95 * h = hyperthread
9f5314fb 96 * s = bits that are in the SOCKET_ID CSR
952cf6d7 97 *
2a919596 98 * Note: Processor may support fewer bits in the APICID register. The ACPI
952cf6d7
JS
99 * tables hold all 16 bits. Software needs to be aware of this.
100 *
39d30770
MT
101 * Unless otherwise specified, all references to APICID refer to
102 * the FULL value contained in ACPI tables, not the subset in the
103 * processor APICID register.
952cf6d7
JS
104 */
105
106
107/*
108 * Maximum number of bricks in all partitions and in all coherency domains.
109 * This is the total number of bricks accessible in the numalink fabric. It
110 * includes all C & M bricks. Routers are NOT included.
111 *
112 * This value is also the value of the maximum number of non-router NASIDs
113 * in the numalink fabric.
114 *
9f5314fb 115 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
116 */
117#define UV_MAX_NUMALINK_BLADES 16384
118
119/*
120 * Maximum number of C/Mbricks within a software SSI (hardware may support
121 * more).
122 */
123#define UV_MAX_SSI_BLADES 256
124
125/*
126 * The largest possible NASID of a C or M brick (+ 2)
127 */
1d21e6e3 128#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
952cf6d7 129
7f1baa06
MT
130struct uv_scir_s {
131 struct timer_list timer;
132 unsigned long offset;
133 unsigned long last;
134 unsigned long idle_on;
135 unsigned long idle_off;
136 unsigned char state;
137 unsigned char enabled;
138};
139
952cf6d7
JS
140/*
141 * The following defines attributes of the HUB chip. These attributes are
142 * frequently referenced and are kept in the per-cpu data areas of each cpu.
143 * They are kept together in a struct to minimize cache misses.
144 */
145struct uv_hub_info_s {
69a72a0e
MT
146 unsigned long global_mmr_base;
147 unsigned long gpa_mask;
c4ed3f04 148 unsigned int gnode_extra;
2a919596
JS
149 unsigned char hub_revision;
150 unsigned char apic_pnode_shift;
6a469e46
JS
151 unsigned char m_shift;
152 unsigned char n_lshift;
69a72a0e
MT
153 unsigned long gnode_upper;
154 unsigned long lowmem_remap_top;
155 unsigned long lowmem_remap_base;
156 unsigned short pnode;
157 unsigned short pnode_mask;
158 unsigned short coherency_domain_number;
159 unsigned short numa_blade_id;
160 unsigned char blade_processor_id;
161 unsigned char m_val;
162 unsigned char n_val;
163 struct uv_scir_s scir;
952cf6d7 164};
7f1baa06 165
952cf6d7 166DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
89cbc767 167#define uv_hub_info this_cpu_ptr(&__uv_hub_info)
952cf6d7
JS
168#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
169
2a919596
JS
170/*
171 * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
172 * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
173 * This is a software convention - NOT the hardware revision numbers in
174 * the hub chip.
175 */
176#define UV1_HUB_REVISION_BASE 1
177#define UV2_HUB_REVISION_BASE 3
6edbd471 178#define UV3_HUB_REVISION_BASE 5
eb1e3461 179#define UV4_HUB_REVISION_BASE 7
2a919596 180
e0ee1c97 181#ifdef UV1_HUB_IS_SUPPORTED
2a919596
JS
182static inline int is_uv1_hub(void)
183{
184 return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
185}
e0ee1c97
MT
186#else
187static inline int is_uv1_hub(void)
188{
189 return 0;
190}
191#endif
2a919596 192
e0ee1c97 193#ifdef UV2_HUB_IS_SUPPORTED
2a919596 194static inline int is_uv2_hub(void)
6edbd471
MT
195{
196 return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
197 (uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
198}
e0ee1c97
MT
199#else
200static inline int is_uv2_hub(void)
201{
202 return 0;
203}
204#endif
6edbd471 205
e0ee1c97 206#ifdef UV3_HUB_IS_SUPPORTED
6edbd471
MT
207static inline int is_uv3_hub(void)
208{
eb1e3461
MT
209 return ((uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE) &&
210 (uv_hub_info->hub_revision < UV4_HUB_REVISION_BASE));
6edbd471 211}
e0ee1c97
MT
212#else
213static inline int is_uv3_hub(void)
214{
215 return 0;
216}
217#endif
6edbd471 218
eb1e3461
MT
219#ifdef UV4_HUB_IS_SUPPORTED
220static inline int is_uv4_hub(void)
221{
222 return uv_hub_info->hub_revision >= UV4_HUB_REVISION_BASE;
223}
224#else
225static inline int is_uv4_hub(void)
226{
227 return 0;
228}
229#endif
230
e0ee1c97 231static inline int is_uvx_hub(void)
6edbd471 232{
e0ee1c97
MT
233 if (uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE)
234 return uv_hub_info->hub_revision;
235
236 return 0;
6edbd471
MT
237}
238
e0ee1c97 239static inline int is_uv_hub(void)
2a919596 240{
e0ee1c97
MT
241#ifdef UV1_HUB_IS_SUPPORTED
242 return uv_hub_info->hub_revision;
243#endif
244 return is_uvx_hub();
2a919596
JS
245}
246
c8f730b1
RA
247union uvh_apicid {
248 unsigned long v;
249 struct uvh_apicid_s {
250 unsigned long local_apic_mask : 24;
251 unsigned long local_apic_shift : 5;
252 unsigned long unused1 : 3;
253 unsigned long pnode_mask : 24;
254 unsigned long pnode_shift : 5;
255 unsigned long unused2 : 3;
256 } s;
257};
258
952cf6d7
JS
259/*
260 * Local & Global MMR space macros.
39d30770
MT
261 * Note: macros are intended to be used ONLY by inline functions
262 * in this file - not by other kernel code.
263 * n - NASID (full 15-bit global nasid)
264 * g - GNODE (full 15-bit global nasid, right shifted 1)
265 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 266 */
9f5314fb 267#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
c4ed3f04
JS
268#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
269#define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
952cf6d7 270
2a919596
JS
271#define UV1_LOCAL_MMR_BASE 0xf4000000UL
272#define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
273#define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
274#define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
275
276#define UV2_LOCAL_MMR_BASE 0xfa000000UL
277#define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
278#define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
279#define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
280
6edbd471
MT
281#define UV3_LOCAL_MMR_BASE 0xfa000000UL
282#define UV3_GLOBAL_MMR32_BASE 0xfc000000UL
283#define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
284#define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
285
eb1e3461
MT
286#define UV4_LOCAL_MMR_BASE 0xfa000000UL
287#define UV4_GLOBAL_MMR32_BASE 0xfc000000UL
288#define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
289#define UV4_GLOBAL_MMR32_SIZE (16UL * 1024 * 1024)
290
291#define UV_LOCAL_MMR_BASE ( \
292 is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
293 is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
294 is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
295 /*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
296
297#define UV_GLOBAL_MMR32_BASE ( \
298 is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
299 is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
300 is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
301 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
302
303#define UV_LOCAL_MMR_SIZE ( \
304 is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
305 is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
306 is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
307 /*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
308
309#define UV_GLOBAL_MMR32_SIZE ( \
310 is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
311 is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
312 is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
313 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
314
952cf6d7
JS
315#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
316
56abcf24
JS
317#define UV_GLOBAL_GRU_MMR_BASE 0x4000000
318
9f5314fb
JS
319#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
320#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
952cf6d7 321
9f5314fb 322#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 323
9f5314fb 324#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
67e83f30 325 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
9f5314fb 326
c8f730b1 327#define UVH_APICID 0x002D0E00L
9f5314fb
JS
328#define UV_APIC_PNODE_SHIFT 6
329
8191c9f6
DS
330#define UV_APICID_HIBIT_MASK 0xffff0000
331
7f1baa06
MT
332/* Local Bus from cpu's perspective */
333#define LOCAL_BUS_BASE 0x1c00000
334#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
335
336/*
337 * System Controller Interface Reg
338 *
339 * Note there are NO leds on a UV system. This register is only
340 * used by the system controller to monitor system-wide operation.
341 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
342 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
343 * a node.
344 *
345 * The window is located at top of ACPI MMR space
346 */
347#define SCIR_WINDOW_COUNT 64
348#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
349 LOCAL_BUS_SIZE - \
350 SCIR_WINDOW_COUNT)
351
352#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
353#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
354#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
355
8661984f
DS
356/* Loop through all installed blades */
357#define for_each_possible_blade(bid) \
358 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
359
9f5314fb
JS
360/*
361 * Macros for converting between kernel virtual addresses, socket local physical
362 * addresses, and UV global physical addresses.
39d30770
MT
363 * Note: use the standard __pa() & __va() macros for converting
364 * between socket virtual and socket physical addresses.
9f5314fb
JS
365 */
366
367/* socket phys RAM --> UV global physical address */
368static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
369{
370 if (paddr < uv_hub_info->lowmem_remap_top)
189f67c4 371 paddr |= uv_hub_info->lowmem_remap_base;
6a469e46
JS
372 paddr |= uv_hub_info->gnode_upper;
373 paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
374 ((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
375 return paddr;
9f5314fb
JS
376}
377
378
379/* socket virtual --> UV global physical address */
380static inline unsigned long uv_gpa(void *v)
381{
189f67c4 382 return uv_soc_phys_ram_to_gpa(__pa(v));
9f5314fb 383}
1d21e6e3 384
fae419f2
RH
385/* Top two bits indicate the requested address is in MMR space. */
386static inline int
387uv_gpa_in_mmr_space(unsigned long gpa)
388{
389 return (gpa >> 62) == 0x3UL;
390}
391
729d69e6
RH
392/* UV global physical address --> socket phys RAM */
393static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
394{
5a51467b 395 unsigned long paddr;
729d69e6
RH
396 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
397 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
398
6a469e46
JS
399 gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
400 ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
5a51467b 401 paddr = gpa & uv_hub_info->gpa_mask;
729d69e6
RH
402 if (paddr >= remap_base && paddr < remap_base + remap_top)
403 paddr -= remap_base;
404 return paddr;
405}
406
407
6a469e46 408/* gpa -> pnode */
1d21e6e3
RH
409static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
410{
6a469e46 411 return gpa >> uv_hub_info->n_lshift;
1d21e6e3
RH
412}
413
414/* gpa -> pnode */
415static inline int uv_gpa_to_pnode(unsigned long gpa)
416{
417 unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
418
419 return uv_gpa_to_gnode(gpa) & n_mask;
420}
9f5314fb 421
6a469e46
JS
422/* gpa -> node offset*/
423static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
424{
425 return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
426}
427
9f5314fb
JS
428/* pnode, offset --> socket virtual */
429static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
430{
431 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
432}
952cf6d7 433
952cf6d7
JS
434
435/*
9f5314fb 436 * Extract a PNODE from an APICID (full apicid, not processor subset)
952cf6d7 437 */
9f5314fb 438static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 439{
c8f730b1 440 return (apicid >> uv_hub_info->apic_pnode_shift);
952cf6d7
JS
441}
442
2a919596
JS
443/*
444 * Convert an apicid to the socket number on the blade
445 */
446static inline int uv_apicid_to_socket(int apicid)
447{
448 if (is_uv1_hub())
449 return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
450 else
451 return 0;
452}
453
952cf6d7
JS
454/*
455 * Access global MMRs using the low memory MMR32 space. This region supports
456 * faster MMR access but not all MMRs are accessible in this space.
457 */
39d30770 458static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
952cf6d7
JS
459{
460 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 461 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
462}
463
39d30770 464static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
952cf6d7 465{
8dc579e8 466 writeq(val, uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
467}
468
39d30770 469static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
952cf6d7 470{
8dc579e8 471 return readq(uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
472}
473
474/*
475 * Access Global MMR space using the MMR space located at the top of physical
476 * memory.
477 */
a289cc7c 478static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
952cf6d7
JS
479{
480 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 481 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
482}
483
39d30770 484static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
952cf6d7 485{
8dc579e8 486 writeq(val, uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
487}
488
39d30770 489static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
952cf6d7 490{
8dc579e8 491 return readq(uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
492}
493
56abcf24
JS
494/*
495 * Global MMR space addresses when referenced by the GRU. (GRU does
496 * NOT use socket addressing).
497 */
498static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
499{
e1e0138d
JS
500 return UV_GLOBAL_GRU_MMR_BASE | offset |
501 ((unsigned long)pnode << uv_hub_info->m_val);
56abcf24
JS
502}
503
39d30770
MT
504static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
505{
506 writeb(val, uv_global_mmr64_address(pnode, offset));
507}
508
509static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
510{
511 return readb(uv_global_mmr64_address(pnode, offset));
512}
513
952cf6d7 514/*
9f5314fb 515 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
516 * are accessible.
517 */
518static inline unsigned long *uv_local_mmr_address(unsigned long offset)
519{
520 return __va(UV_LOCAL_MMR_BASE | offset);
521}
522
523static inline unsigned long uv_read_local_mmr(unsigned long offset)
524{
8dc579e8 525 return readq(uv_local_mmr_address(offset));
952cf6d7
JS
526}
527
528static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
529{
8dc579e8 530 writeq(val, uv_local_mmr_address(offset));
952cf6d7
JS
531}
532
7f1baa06
MT
533static inline unsigned char uv_read_local_mmr8(unsigned long offset)
534{
8dc579e8 535 return readb(uv_local_mmr_address(offset));
7f1baa06
MT
536}
537
538static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
539{
8dc579e8 540 writeb(val, uv_local_mmr_address(offset));
7f1baa06
MT
541}
542
8400def8 543/*
9f5314fb 544 * Structures and definitions for converting between cpu, node, pnode, and blade
8400def8
JS
545 * numbers.
546 */
547struct uv_blade_info {
9f5314fb 548 unsigned short nr_possible_cpus;
8400def8 549 unsigned short nr_online_cpus;
9f5314fb 550 unsigned short pnode;
6c7184b7 551 short memory_nid;
8400def8 552};
9f5314fb 553extern struct uv_blade_info *uv_blade_info;
8400def8
JS
554extern short *uv_node_to_blade;
555extern short *uv_cpu_to_blade;
556extern short uv_possible_blades;
557
558/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
559static inline int uv_blade_processor_id(void)
560{
561 return uv_hub_info->blade_processor_id;
562}
563
564/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
565static inline int uv_numa_blade_id(void)
566{
567 return uv_hub_info->numa_blade_id;
568}
569
570/* Convert a cpu number to the the UV blade number */
571static inline int uv_cpu_to_blade_id(int cpu)
572{
573 return uv_cpu_to_blade[cpu];
574}
575
576/* Convert linux node number to the UV blade number */
577static inline int uv_node_to_blade_id(int nid)
578{
579 return uv_node_to_blade[nid];
580}
581
9f5314fb
JS
582/* Convert a blade id to the PNODE of the blade */
583static inline int uv_blade_to_pnode(int bid)
8400def8 584{
9f5314fb 585 return uv_blade_info[bid].pnode;
8400def8
JS
586}
587
6c7184b7
JS
588/* Nid of memory node on blade. -1 if no blade-local memory */
589static inline int uv_blade_to_memory_nid(int bid)
590{
591 return uv_blade_info[bid].memory_nid;
592}
593
8400def8
JS
594/* Determine the number of possible cpus on a blade */
595static inline int uv_blade_nr_possible_cpus(int bid)
596{
9f5314fb 597 return uv_blade_info[bid].nr_possible_cpus;
8400def8
JS
598}
599
600/* Determine the number of online cpus on a blade */
601static inline int uv_blade_nr_online_cpus(int bid)
602{
603 return uv_blade_info[bid].nr_online_cpus;
604}
605
9f5314fb
JS
606/* Convert a cpu id to the PNODE of the blade containing the cpu */
607static inline int uv_cpu_to_pnode(int cpu)
8400def8 608{
9f5314fb 609 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
8400def8
JS
610}
611
9f5314fb
JS
612/* Convert a linux node number to the PNODE of the blade */
613static inline int uv_node_to_pnode(int nid)
8400def8 614{
9f5314fb 615 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
8400def8
JS
616}
617
618/* Maximum possible number of blades */
619static inline int uv_num_possible_blades(void)
620{
621 return uv_possible_blades;
622}
623
0d12ef0c
MT
624/* Per Hub NMI support */
625extern void uv_nmi_setup(void);
626
627/* BMC sets a bit this MMR non-zero before sending an NMI */
628#define UVH_NMI_MMR UVH_SCRATCH5
629#define UVH_NMI_MMR_CLEAR UVH_SCRATCH5_ALIAS
630#define UVH_NMI_MMR_SHIFT 63
631#define UVH_NMI_MMR_TYPE "SCRATCH5"
632
633/* Newer SMM NMI handler, not present in all systems */
634#define UVH_NMI_MMRX UVH_EVENT_OCCURRED0
635#define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS
c443c03d 636#define UVH_NMI_MMRX_SHIFT UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
0d12ef0c
MT
637#define UVH_NMI_MMRX_TYPE "EXTIO_INT0"
638
639/* Non-zero indicates newer SMM NMI handler present */
640#define UVH_NMI_MMRX_SUPPORTED UVH_EXTIO_INT0_BROADCAST
641
642/* Indicates to BIOS that we want to use the newer SMM NMI handler */
643#define UVH_NMI_MMRX_REQ UVH_SCRATCH5_ALIAS_2
644#define UVH_NMI_MMRX_REQ_SHIFT 62
645
646struct uv_hub_nmi_s {
647 raw_spinlock_t nmi_lock;
648 atomic_t in_nmi; /* flag this node in UV NMI IRQ */
649 atomic_t cpu_owner; /* last locker of this struct */
650 atomic_t read_mmr_count; /* count of MMR reads */
651 atomic_t nmi_count; /* count of true UV NMIs */
652 unsigned long nmi_value; /* last value read from NMI MMR */
653};
654
655struct uv_cpu_nmi_s {
656 struct uv_hub_nmi_s *hub;
e1632170
CL
657 int state;
658 int pinging;
0d12ef0c
MT
659 int queries;
660 int pings;
661};
662
e1632170
CL
663DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
664
7c52198b 665#define uv_hub_nmi this_cpu_read(uv_cpu_nmi.hub)
e1632170 666#define uv_cpu_nmi_per(cpu) (per_cpu(uv_cpu_nmi, cpu))
0d12ef0c
MT
667#define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub)
668
669/* uv_cpu_nmi_states */
670#define UV_NMI_STATE_OUT 0
671#define UV_NMI_STATE_IN 1
672#define UV_NMI_STATE_DUMP 2
673#define UV_NMI_STATE_DUMP_DONE 3
674
7f1baa06
MT
675/* Update SCIR state */
676static inline void uv_set_scir_bits(unsigned char value)
677{
678 if (uv_hub_info->scir.state != value) {
679 uv_hub_info->scir.state = value;
680 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
681 }
682}
66666e50 683
39d30770
MT
684static inline unsigned long uv_scir_offset(int apicid)
685{
686 return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
687}
688
7f1baa06
MT
689static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
690{
691 if (uv_cpu_hub_info(cpu)->scir.state != value) {
39d30770
MT
692 uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
693 uv_cpu_hub_info(cpu)->scir.offset, value);
7f1baa06 694 uv_cpu_hub_info(cpu)->scir.state = value;
7f1baa06
MT
695 }
696}
952cf6d7 697
8191c9f6 698extern unsigned int uv_apicid_hibits;
56abcf24
JS
699static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
700{
8191c9f6 701 apicid |= uv_apicid_hibits;
56abcf24
JS
702 return (1UL << UVH_IPI_INT_SEND_SHFT) |
703 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
704 (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
705 (vector << UVH_IPI_INT_VECTOR_SHFT);
706}
707
66666e50
JS
708static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
709{
710 unsigned long val;
02dd0a06
RH
711 unsigned long dmode = dest_Fixed;
712
713 if (vector == NMI_VECTOR)
714 dmode = dest_NMI;
66666e50 715
56abcf24 716 val = uv_hub_ipi_value(apicid, vector, dmode);
66666e50
JS
717 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
718}
719
7a1110e8
JS
720/*
721 * Get the minimum revision number of the hub chips within the partition.
eb1e3461 722 * (See UVx_HUB_REVISION_BASE above for specific values.)
7a1110e8
JS
723 */
724static inline int uv_get_min_hub_revision_id(void)
725{
2a919596 726 return uv_hub_info->hub_revision;
7a1110e8
JS
727}
728
bc5d9940 729#endif /* CONFIG_X86_64 */
7f1baa06 730#endif /* _ASM_X86_UV_UV_HUB_H */