x86: Replace __get_cpu_var uses
[linux-2.6-block.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
5f40f7d9 8 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
9 */
10
05e4d316
PA
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
952cf6d7 13
bc5d9940 14#ifdef CONFIG_X86_64
952cf6d7
JS
15#include <linux/numa.h>
16#include <linux/percpu.h>
c08b6acc 17#include <linux/timer.h>
8dc579e8 18#include <linux/io.h>
952cf6d7
JS
19#include <asm/types.h>
20#include <asm/percpu.h>
66666e50 21#include <asm/uv/uv_mmrs.h>
02dd0a06
RH
22#include <asm/irq_vectors.h>
23#include <asm/io_apic.h>
952cf6d7
JS
24
25
26/*
27 * Addressing Terminology
28 *
9f5314fb
JS
29 * M - The low M bits of a physical address represent the offset
30 * into the blade local memory. RAM memory on a blade is physically
31 * contiguous (although various IO spaces may punch holes in
32 * it)..
952cf6d7 33 *
39d30770
MT
34 * N - Number of bits in the node portion of a socket physical
35 * address.
9f5314fb 36 *
39d30770
MT
37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
38 * routers always have low bit of 1, C/MBricks have low bit
39 * equal to 0. Most addressing macros that target UV hub chips
40 * right shift the NASID by 1 to exclude the always-zero bit.
41 * NASIDs contain up to 15 bits.
9f5314fb
JS
42 *
43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 * of nasids.
45 *
39d30770
MT
46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
47 * of the nasid for socket usage.
9f5314fb 48 *
6a469e46
JS
49 * GPA - (global physical address) a socket physical address converted
50 * so that it can be used by the GRU as a global address. Socket
51 * physical addresses 1) need additional NASID (node) bits added
52 * to the high end of the address, and 2) unaliased if the
53 * partition does not have a physical address 0. In addition, on
54 * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
55 *
9f5314fb
JS
56 *
57 * NumaLink Global Physical Address Format:
58 * +--------------------------------+---------------------+
59 * |00..000| GNODE | NodeOffset |
60 * +--------------------------------+---------------------+
61 * |<-------53 - M bits --->|<--------M bits ----->
62 *
63 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
64 *
65 *
66 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
67 * +----------------+---------------+---------------------+
68 * |00..000000000000| PNODE | NodeOffset |
69 * +----------------+---------------+---------------------+
70 * <--- N bits --->|<--------M bits ----->
952cf6d7 71 *
9f5314fb
JS
72 * M - number of node offset bits (35 .. 40)
73 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
74 *
75 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
76 * The actual values are configuration dependent and are set at
9f5314fb
JS
77 * boot time. M & N values are set by the hardware/BIOS at boot.
78 *
952cf6d7
JS
79 *
80 * APICID format
39d30770
MT
81 * NOTE!!!!!! This is the current format of the APICID. However, code
82 * should assume that this will change in the future. Use functions
83 * in this file for all APICID bit manipulations and conversion.
952cf6d7 84 *
39d30770
MT
85 * 1111110000000000
86 * 5432109876543210
2a919596
JS
87 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
88 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
89 * pppppppppppcccch SandyBridge (15 bits in hdw reg)
952cf6d7
JS
90 * sssssssssss
91 *
9f5314fb 92 * p = pnode bits
952cf6d7
JS
93 * l = socket number on board
94 * c = core
95 * h = hyperthread
9f5314fb 96 * s = bits that are in the SOCKET_ID CSR
952cf6d7 97 *
2a919596 98 * Note: Processor may support fewer bits in the APICID register. The ACPI
952cf6d7
JS
99 * tables hold all 16 bits. Software needs to be aware of this.
100 *
39d30770
MT
101 * Unless otherwise specified, all references to APICID refer to
102 * the FULL value contained in ACPI tables, not the subset in the
103 * processor APICID register.
952cf6d7
JS
104 */
105
106
107/*
108 * Maximum number of bricks in all partitions and in all coherency domains.
109 * This is the total number of bricks accessible in the numalink fabric. It
110 * includes all C & M bricks. Routers are NOT included.
111 *
112 * This value is also the value of the maximum number of non-router NASIDs
113 * in the numalink fabric.
114 *
9f5314fb 115 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
116 */
117#define UV_MAX_NUMALINK_BLADES 16384
118
119/*
120 * Maximum number of C/Mbricks within a software SSI (hardware may support
121 * more).
122 */
123#define UV_MAX_SSI_BLADES 256
124
125/*
126 * The largest possible NASID of a C or M brick (+ 2)
127 */
1d21e6e3 128#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
952cf6d7 129
7f1baa06
MT
130struct uv_scir_s {
131 struct timer_list timer;
132 unsigned long offset;
133 unsigned long last;
134 unsigned long idle_on;
135 unsigned long idle_off;
136 unsigned char state;
137 unsigned char enabled;
138};
139
952cf6d7
JS
140/*
141 * The following defines attributes of the HUB chip. These attributes are
142 * frequently referenced and are kept in the per-cpu data areas of each cpu.
143 * They are kept together in a struct to minimize cache misses.
144 */
145struct uv_hub_info_s {
69a72a0e
MT
146 unsigned long global_mmr_base;
147 unsigned long gpa_mask;
c4ed3f04 148 unsigned int gnode_extra;
2a919596
JS
149 unsigned char hub_revision;
150 unsigned char apic_pnode_shift;
6a469e46
JS
151 unsigned char m_shift;
152 unsigned char n_lshift;
69a72a0e
MT
153 unsigned long gnode_upper;
154 unsigned long lowmem_remap_top;
155 unsigned long lowmem_remap_base;
156 unsigned short pnode;
157 unsigned short pnode_mask;
158 unsigned short coherency_domain_number;
159 unsigned short numa_blade_id;
160 unsigned char blade_processor_id;
161 unsigned char m_val;
162 unsigned char n_val;
163 struct uv_scir_s scir;
952cf6d7 164};
7f1baa06 165
952cf6d7 166DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
89cbc767 167#define uv_hub_info this_cpu_ptr(&__uv_hub_info)
952cf6d7
JS
168#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
169
2a919596
JS
170/*
171 * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
172 * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
173 * This is a software convention - NOT the hardware revision numbers in
174 * the hub chip.
175 */
176#define UV1_HUB_REVISION_BASE 1
177#define UV2_HUB_REVISION_BASE 3
6edbd471 178#define UV3_HUB_REVISION_BASE 5
2a919596
JS
179
180static inline int is_uv1_hub(void)
181{
182 return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
183}
184
185static inline int is_uv2_hub(void)
6edbd471
MT
186{
187 return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
188 (uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
189}
190
191static inline int is_uv3_hub(void)
192{
193 return uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE;
194}
195
196static inline int is_uv_hub(void)
197{
198 return uv_hub_info->hub_revision;
199}
200
201/* code common to uv2 and uv3 only */
202static inline int is_uvx_hub(void)
2a919596
JS
203{
204 return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
205}
206
c8f730b1
RA
207union uvh_apicid {
208 unsigned long v;
209 struct uvh_apicid_s {
210 unsigned long local_apic_mask : 24;
211 unsigned long local_apic_shift : 5;
212 unsigned long unused1 : 3;
213 unsigned long pnode_mask : 24;
214 unsigned long pnode_shift : 5;
215 unsigned long unused2 : 3;
216 } s;
217};
218
952cf6d7
JS
219/*
220 * Local & Global MMR space macros.
39d30770
MT
221 * Note: macros are intended to be used ONLY by inline functions
222 * in this file - not by other kernel code.
223 * n - NASID (full 15-bit global nasid)
224 * g - GNODE (full 15-bit global nasid, right shifted 1)
225 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 226 */
9f5314fb 227#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
c4ed3f04
JS
228#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
229#define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
952cf6d7 230
2a919596
JS
231#define UV1_LOCAL_MMR_BASE 0xf4000000UL
232#define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
233#define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
234#define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
235
236#define UV2_LOCAL_MMR_BASE 0xfa000000UL
237#define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
238#define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
239#define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
240
6edbd471
MT
241#define UV3_LOCAL_MMR_BASE 0xfa000000UL
242#define UV3_GLOBAL_MMR32_BASE 0xfc000000UL
243#define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
244#define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
245
246#define UV_LOCAL_MMR_BASE (is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
247 (is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
248 UV3_LOCAL_MMR_BASE))
249#define UV_GLOBAL_MMR32_BASE (is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE :\
250 (is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE :\
251 UV3_GLOBAL_MMR32_BASE))
252#define UV_LOCAL_MMR_SIZE (is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
253 (is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
254 UV3_LOCAL_MMR_SIZE))
2a919596 255#define UV_GLOBAL_MMR32_SIZE (is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
6edbd471
MT
256 (is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE :\
257 UV3_GLOBAL_MMR32_SIZE))
952cf6d7
JS
258#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
259
56abcf24
JS
260#define UV_GLOBAL_GRU_MMR_BASE 0x4000000
261
9f5314fb
JS
262#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
263#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
952cf6d7 264
9f5314fb 265#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 266
9f5314fb 267#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
67e83f30 268 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
9f5314fb 269
c8f730b1 270#define UVH_APICID 0x002D0E00L
9f5314fb
JS
271#define UV_APIC_PNODE_SHIFT 6
272
8191c9f6
DS
273#define UV_APICID_HIBIT_MASK 0xffff0000
274
7f1baa06
MT
275/* Local Bus from cpu's perspective */
276#define LOCAL_BUS_BASE 0x1c00000
277#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
278
279/*
280 * System Controller Interface Reg
281 *
282 * Note there are NO leds on a UV system. This register is only
283 * used by the system controller to monitor system-wide operation.
284 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
285 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
286 * a node.
287 *
288 * The window is located at top of ACPI MMR space
289 */
290#define SCIR_WINDOW_COUNT 64
291#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
292 LOCAL_BUS_SIZE - \
293 SCIR_WINDOW_COUNT)
294
295#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
296#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
297#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
298
8661984f
DS
299/* Loop through all installed blades */
300#define for_each_possible_blade(bid) \
301 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
302
9f5314fb
JS
303/*
304 * Macros for converting between kernel virtual addresses, socket local physical
305 * addresses, and UV global physical addresses.
39d30770
MT
306 * Note: use the standard __pa() & __va() macros for converting
307 * between socket virtual and socket physical addresses.
9f5314fb
JS
308 */
309
310/* socket phys RAM --> UV global physical address */
311static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
312{
313 if (paddr < uv_hub_info->lowmem_remap_top)
189f67c4 314 paddr |= uv_hub_info->lowmem_remap_base;
6a469e46
JS
315 paddr |= uv_hub_info->gnode_upper;
316 paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
317 ((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
318 return paddr;
9f5314fb
JS
319}
320
321
322/* socket virtual --> UV global physical address */
323static inline unsigned long uv_gpa(void *v)
324{
189f67c4 325 return uv_soc_phys_ram_to_gpa(__pa(v));
9f5314fb 326}
1d21e6e3 327
fae419f2
RH
328/* Top two bits indicate the requested address is in MMR space. */
329static inline int
330uv_gpa_in_mmr_space(unsigned long gpa)
331{
332 return (gpa >> 62) == 0x3UL;
333}
334
729d69e6
RH
335/* UV global physical address --> socket phys RAM */
336static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
337{
5a51467b 338 unsigned long paddr;
729d69e6
RH
339 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
340 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
341
6a469e46
JS
342 gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
343 ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
5a51467b 344 paddr = gpa & uv_hub_info->gpa_mask;
729d69e6
RH
345 if (paddr >= remap_base && paddr < remap_base + remap_top)
346 paddr -= remap_base;
347 return paddr;
348}
349
350
6a469e46 351/* gpa -> pnode */
1d21e6e3
RH
352static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
353{
6a469e46 354 return gpa >> uv_hub_info->n_lshift;
1d21e6e3
RH
355}
356
357/* gpa -> pnode */
358static inline int uv_gpa_to_pnode(unsigned long gpa)
359{
360 unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
361
362 return uv_gpa_to_gnode(gpa) & n_mask;
363}
9f5314fb 364
6a469e46
JS
365/* gpa -> node offset*/
366static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
367{
368 return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
369}
370
9f5314fb
JS
371/* pnode, offset --> socket virtual */
372static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
373{
374 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
375}
952cf6d7 376
952cf6d7
JS
377
378/*
9f5314fb 379 * Extract a PNODE from an APICID (full apicid, not processor subset)
952cf6d7 380 */
9f5314fb 381static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 382{
c8f730b1 383 return (apicid >> uv_hub_info->apic_pnode_shift);
952cf6d7
JS
384}
385
2a919596
JS
386/*
387 * Convert an apicid to the socket number on the blade
388 */
389static inline int uv_apicid_to_socket(int apicid)
390{
391 if (is_uv1_hub())
392 return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
393 else
394 return 0;
395}
396
952cf6d7
JS
397/*
398 * Access global MMRs using the low memory MMR32 space. This region supports
399 * faster MMR access but not all MMRs are accessible in this space.
400 */
39d30770 401static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
952cf6d7
JS
402{
403 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 404 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
405}
406
39d30770 407static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
952cf6d7 408{
8dc579e8 409 writeq(val, uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
410}
411
39d30770 412static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
952cf6d7 413{
8dc579e8 414 return readq(uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
415}
416
417/*
418 * Access Global MMR space using the MMR space located at the top of physical
419 * memory.
420 */
a289cc7c 421static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
952cf6d7
JS
422{
423 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 424 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
425}
426
39d30770 427static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
952cf6d7 428{
8dc579e8 429 writeq(val, uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
430}
431
39d30770 432static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
952cf6d7 433{
8dc579e8 434 return readq(uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
435}
436
56abcf24
JS
437/*
438 * Global MMR space addresses when referenced by the GRU. (GRU does
439 * NOT use socket addressing).
440 */
441static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
442{
e1e0138d
JS
443 return UV_GLOBAL_GRU_MMR_BASE | offset |
444 ((unsigned long)pnode << uv_hub_info->m_val);
56abcf24
JS
445}
446
39d30770
MT
447static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
448{
449 writeb(val, uv_global_mmr64_address(pnode, offset));
450}
451
452static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
453{
454 return readb(uv_global_mmr64_address(pnode, offset));
455}
456
952cf6d7 457/*
9f5314fb 458 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
459 * are accessible.
460 */
461static inline unsigned long *uv_local_mmr_address(unsigned long offset)
462{
463 return __va(UV_LOCAL_MMR_BASE | offset);
464}
465
466static inline unsigned long uv_read_local_mmr(unsigned long offset)
467{
8dc579e8 468 return readq(uv_local_mmr_address(offset));
952cf6d7
JS
469}
470
471static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
472{
8dc579e8 473 writeq(val, uv_local_mmr_address(offset));
952cf6d7
JS
474}
475
7f1baa06
MT
476static inline unsigned char uv_read_local_mmr8(unsigned long offset)
477{
8dc579e8 478 return readb(uv_local_mmr_address(offset));
7f1baa06
MT
479}
480
481static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
482{
8dc579e8 483 writeb(val, uv_local_mmr_address(offset));
7f1baa06
MT
484}
485
8400def8 486/*
9f5314fb 487 * Structures and definitions for converting between cpu, node, pnode, and blade
8400def8
JS
488 * numbers.
489 */
490struct uv_blade_info {
9f5314fb 491 unsigned short nr_possible_cpus;
8400def8 492 unsigned short nr_online_cpus;
9f5314fb 493 unsigned short pnode;
6c7184b7 494 short memory_nid;
0d12ef0c
MT
495 spinlock_t nmi_lock; /* obsolete, see uv_hub_nmi */
496 unsigned long nmi_count; /* obsolete, see uv_hub_nmi */
8400def8 497};
9f5314fb 498extern struct uv_blade_info *uv_blade_info;
8400def8
JS
499extern short *uv_node_to_blade;
500extern short *uv_cpu_to_blade;
501extern short uv_possible_blades;
502
503/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
504static inline int uv_blade_processor_id(void)
505{
506 return uv_hub_info->blade_processor_id;
507}
508
509/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
510static inline int uv_numa_blade_id(void)
511{
512 return uv_hub_info->numa_blade_id;
513}
514
515/* Convert a cpu number to the the UV blade number */
516static inline int uv_cpu_to_blade_id(int cpu)
517{
518 return uv_cpu_to_blade[cpu];
519}
520
521/* Convert linux node number to the UV blade number */
522static inline int uv_node_to_blade_id(int nid)
523{
524 return uv_node_to_blade[nid];
525}
526
9f5314fb
JS
527/* Convert a blade id to the PNODE of the blade */
528static inline int uv_blade_to_pnode(int bid)
8400def8 529{
9f5314fb 530 return uv_blade_info[bid].pnode;
8400def8
JS
531}
532
6c7184b7
JS
533/* Nid of memory node on blade. -1 if no blade-local memory */
534static inline int uv_blade_to_memory_nid(int bid)
535{
536 return uv_blade_info[bid].memory_nid;
537}
538
8400def8
JS
539/* Determine the number of possible cpus on a blade */
540static inline int uv_blade_nr_possible_cpus(int bid)
541{
9f5314fb 542 return uv_blade_info[bid].nr_possible_cpus;
8400def8
JS
543}
544
545/* Determine the number of online cpus on a blade */
546static inline int uv_blade_nr_online_cpus(int bid)
547{
548 return uv_blade_info[bid].nr_online_cpus;
549}
550
9f5314fb
JS
551/* Convert a cpu id to the PNODE of the blade containing the cpu */
552static inline int uv_cpu_to_pnode(int cpu)
8400def8 553{
9f5314fb 554 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
8400def8
JS
555}
556
9f5314fb
JS
557/* Convert a linux node number to the PNODE of the blade */
558static inline int uv_node_to_pnode(int nid)
8400def8 559{
9f5314fb 560 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
8400def8
JS
561}
562
563/* Maximum possible number of blades */
564static inline int uv_num_possible_blades(void)
565{
566 return uv_possible_blades;
567}
568
0d12ef0c
MT
569/* Per Hub NMI support */
570extern void uv_nmi_setup(void);
571
572/* BMC sets a bit this MMR non-zero before sending an NMI */
573#define UVH_NMI_MMR UVH_SCRATCH5
574#define UVH_NMI_MMR_CLEAR UVH_SCRATCH5_ALIAS
575#define UVH_NMI_MMR_SHIFT 63
576#define UVH_NMI_MMR_TYPE "SCRATCH5"
577
578/* Newer SMM NMI handler, not present in all systems */
579#define UVH_NMI_MMRX UVH_EVENT_OCCURRED0
580#define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS
581#define UVH_NMI_MMRX_SHIFT (is_uv1_hub() ? \
582 UV1H_EVENT_OCCURRED0_EXTIO_INT0_SHFT :\
583 UVXH_EVENT_OCCURRED0_EXTIO_INT0_SHFT)
584#define UVH_NMI_MMRX_TYPE "EXTIO_INT0"
585
586/* Non-zero indicates newer SMM NMI handler present */
587#define UVH_NMI_MMRX_SUPPORTED UVH_EXTIO_INT0_BROADCAST
588
589/* Indicates to BIOS that we want to use the newer SMM NMI handler */
590#define UVH_NMI_MMRX_REQ UVH_SCRATCH5_ALIAS_2
591#define UVH_NMI_MMRX_REQ_SHIFT 62
592
593struct uv_hub_nmi_s {
594 raw_spinlock_t nmi_lock;
595 atomic_t in_nmi; /* flag this node in UV NMI IRQ */
596 atomic_t cpu_owner; /* last locker of this struct */
597 atomic_t read_mmr_count; /* count of MMR reads */
598 atomic_t nmi_count; /* count of true UV NMIs */
599 unsigned long nmi_value; /* last value read from NMI MMR */
600};
601
602struct uv_cpu_nmi_s {
603 struct uv_hub_nmi_s *hub;
604 atomic_t state;
605 atomic_t pinging;
606 int queries;
607 int pings;
608};
609
610DECLARE_PER_CPU(struct uv_cpu_nmi_s, __uv_cpu_nmi);
611#define uv_cpu_nmi (__get_cpu_var(__uv_cpu_nmi))
612#define uv_hub_nmi (uv_cpu_nmi.hub)
613#define uv_cpu_nmi_per(cpu) (per_cpu(__uv_cpu_nmi, cpu))
614#define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub)
615
616/* uv_cpu_nmi_states */
617#define UV_NMI_STATE_OUT 0
618#define UV_NMI_STATE_IN 1
619#define UV_NMI_STATE_DUMP 2
620#define UV_NMI_STATE_DUMP_DONE 3
621
7f1baa06
MT
622/* Update SCIR state */
623static inline void uv_set_scir_bits(unsigned char value)
624{
625 if (uv_hub_info->scir.state != value) {
626 uv_hub_info->scir.state = value;
627 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
628 }
629}
66666e50 630
39d30770
MT
631static inline unsigned long uv_scir_offset(int apicid)
632{
633 return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
634}
635
7f1baa06
MT
636static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
637{
638 if (uv_cpu_hub_info(cpu)->scir.state != value) {
39d30770
MT
639 uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
640 uv_cpu_hub_info(cpu)->scir.offset, value);
7f1baa06 641 uv_cpu_hub_info(cpu)->scir.state = value;
7f1baa06
MT
642 }
643}
952cf6d7 644
8191c9f6 645extern unsigned int uv_apicid_hibits;
56abcf24
JS
646static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
647{
8191c9f6 648 apicid |= uv_apicid_hibits;
56abcf24
JS
649 return (1UL << UVH_IPI_INT_SEND_SHFT) |
650 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
651 (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
652 (vector << UVH_IPI_INT_VECTOR_SHFT);
653}
654
66666e50
JS
655static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
656{
657 unsigned long val;
02dd0a06
RH
658 unsigned long dmode = dest_Fixed;
659
660 if (vector == NMI_VECTOR)
661 dmode = dest_NMI;
66666e50 662
56abcf24 663 val = uv_hub_ipi_value(apicid, vector, dmode);
66666e50
JS
664 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
665}
666
7a1110e8
JS
667/*
668 * Get the minimum revision number of the hub chips within the partition.
2a919596
JS
669 * 1 - UV1 rev 1.0 initial silicon
670 * 2 - UV1 rev 2.0 production silicon
671 * 3 - UV2 rev 1.0 initial silicon
6edbd471 672 * 5 - UV3 rev 1.0 initial silicon
7a1110e8
JS
673 */
674static inline int uv_get_min_hub_revision_id(void)
675{
2a919596 676 return uv_hub_info->hub_revision;
7a1110e8
JS
677}
678
bc5d9940 679#endif /* CONFIG_X86_64 */
7f1baa06 680#endif /* _ASM_X86_UV_UV_HUB_H */