x86/platform/UV: Move blade local processor ID to the per cpu info struct
[linux-2.6-block.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
5f40f7d9 8 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
9 */
10
05e4d316
PA
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
952cf6d7 13
bc5d9940 14#ifdef CONFIG_X86_64
952cf6d7
JS
15#include <linux/numa.h>
16#include <linux/percpu.h>
c08b6acc 17#include <linux/timer.h>
8dc579e8 18#include <linux/io.h>
952cf6d7
JS
19#include <asm/types.h>
20#include <asm/percpu.h>
66666e50 21#include <asm/uv/uv_mmrs.h>
02dd0a06
RH
22#include <asm/irq_vectors.h>
23#include <asm/io_apic.h>
952cf6d7
JS
24
25
26/*
27 * Addressing Terminology
28 *
9f5314fb
JS
29 * M - The low M bits of a physical address represent the offset
30 * into the blade local memory. RAM memory on a blade is physically
31 * contiguous (although various IO spaces may punch holes in
32 * it)..
952cf6d7 33 *
39d30770
MT
34 * N - Number of bits in the node portion of a socket physical
35 * address.
9f5314fb 36 *
39d30770
MT
37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
38 * routers always have low bit of 1, C/MBricks have low bit
39 * equal to 0. Most addressing macros that target UV hub chips
40 * right shift the NASID by 1 to exclude the always-zero bit.
41 * NASIDs contain up to 15 bits.
9f5314fb
JS
42 *
43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 * of nasids.
45 *
39d30770
MT
46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
47 * of the nasid for socket usage.
9f5314fb 48 *
6a469e46
JS
49 * GPA - (global physical address) a socket physical address converted
50 * so that it can be used by the GRU as a global address. Socket
51 * physical addresses 1) need additional NASID (node) bits added
52 * to the high end of the address, and 2) unaliased if the
53 * partition does not have a physical address 0. In addition, on
54 * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
55 *
9f5314fb
JS
56 *
57 * NumaLink Global Physical Address Format:
58 * +--------------------------------+---------------------+
59 * |00..000| GNODE | NodeOffset |
60 * +--------------------------------+---------------------+
61 * |<-------53 - M bits --->|<--------M bits ----->
62 *
63 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
64 *
65 *
66 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
67 * +----------------+---------------+---------------------+
68 * |00..000000000000| PNODE | NodeOffset |
69 * +----------------+---------------+---------------------+
70 * <--- N bits --->|<--------M bits ----->
952cf6d7 71 *
9f5314fb
JS
72 * M - number of node offset bits (35 .. 40)
73 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
74 *
75 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
76 * The actual values are configuration dependent and are set at
9f5314fb
JS
77 * boot time. M & N values are set by the hardware/BIOS at boot.
78 *
952cf6d7
JS
79 *
80 * APICID format
39d30770
MT
81 * NOTE!!!!!! This is the current format of the APICID. However, code
82 * should assume that this will change in the future. Use functions
83 * in this file for all APICID bit manipulations and conversion.
952cf6d7 84 *
39d30770
MT
85 * 1111110000000000
86 * 5432109876543210
2a919596
JS
87 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
88 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
89 * pppppppppppcccch SandyBridge (15 bits in hdw reg)
952cf6d7
JS
90 * sssssssssss
91 *
9f5314fb 92 * p = pnode bits
952cf6d7
JS
93 * l = socket number on board
94 * c = core
95 * h = hyperthread
9f5314fb 96 * s = bits that are in the SOCKET_ID CSR
952cf6d7 97 *
2a919596 98 * Note: Processor may support fewer bits in the APICID register. The ACPI
952cf6d7
JS
99 * tables hold all 16 bits. Software needs to be aware of this.
100 *
39d30770
MT
101 * Unless otherwise specified, all references to APICID refer to
102 * the FULL value contained in ACPI tables, not the subset in the
103 * processor APICID register.
952cf6d7
JS
104 */
105
106
107/*
108 * Maximum number of bricks in all partitions and in all coherency domains.
109 * This is the total number of bricks accessible in the numalink fabric. It
110 * includes all C & M bricks. Routers are NOT included.
111 *
112 * This value is also the value of the maximum number of non-router NASIDs
113 * in the numalink fabric.
114 *
9f5314fb 115 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
116 */
117#define UV_MAX_NUMALINK_BLADES 16384
118
119/*
120 * Maximum number of C/Mbricks within a software SSI (hardware may support
121 * more).
122 */
123#define UV_MAX_SSI_BLADES 256
124
125/*
126 * The largest possible NASID of a C or M brick (+ 2)
127 */
1d21e6e3 128#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
952cf6d7 129
d38bb135 130/* System Controller Interface Reg info */
7f1baa06
MT
131struct uv_scir_s {
132 struct timer_list timer;
133 unsigned long offset;
134 unsigned long last;
135 unsigned long idle_on;
136 unsigned long idle_off;
137 unsigned char state;
138 unsigned char enabled;
139};
140
952cf6d7
JS
141/*
142 * The following defines attributes of the HUB chip. These attributes are
0045ddd2
MT
143 * frequently referenced and are kept in a common per hub struct.
144 * After setup, the struct is read only, so it should be readily
145 * available in the L3 cache on the cpu socket for the node.
952cf6d7
JS
146 */
147struct uv_hub_info_s {
69a72a0e
MT
148 unsigned long global_mmr_base;
149 unsigned long gpa_mask;
c4ed3f04 150 unsigned int gnode_extra;
2a919596
JS
151 unsigned char hub_revision;
152 unsigned char apic_pnode_shift;
6a469e46
JS
153 unsigned char m_shift;
154 unsigned char n_lshift;
69a72a0e
MT
155 unsigned long gnode_upper;
156 unsigned long lowmem_remap_top;
157 unsigned long lowmem_remap_base;
158 unsigned short pnode;
159 unsigned short pnode_mask;
160 unsigned short coherency_domain_number;
161 unsigned short numa_blade_id;
69a72a0e
MT
162 unsigned char m_val;
163 unsigned char n_val;
952cf6d7 164};
7f1baa06 165
952cf6d7 166DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
89cbc767 167#define uv_hub_info this_cpu_ptr(&__uv_hub_info)
952cf6d7
JS
168#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
169
0045ddd2
MT
170/* CPU specific info with a pointer to the hub common info struct */
171struct uv_cpu_info_s {
172 void *p_uv_hub_info;
173 unsigned char blade_cpu_id;
174 struct uv_scir_s scir;
175};
176DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
177
178#define uv_cpu_info this_cpu_ptr(&__uv_cpu_info)
179#define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu))
180
d38bb135
MT
181#define uv_scir_info (&uv_cpu_info->scir)
182#define uv_cpu_scir_info(cpu) (&uv_cpu_info_per(cpu)->scir)
183
2a919596 184/*
0045ddd2 185 * HUB revision ranges for each UV HUB architecture.
2a919596
JS
186 * This is a software convention - NOT the hardware revision numbers in
187 * the hub chip.
188 */
189#define UV1_HUB_REVISION_BASE 1
190#define UV2_HUB_REVISION_BASE 3
6edbd471 191#define UV3_HUB_REVISION_BASE 5
eb1e3461 192#define UV4_HUB_REVISION_BASE 7
2a919596 193
e0ee1c97 194#ifdef UV1_HUB_IS_SUPPORTED
2a919596
JS
195static inline int is_uv1_hub(void)
196{
197 return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
198}
e0ee1c97
MT
199#else
200static inline int is_uv1_hub(void)
201{
202 return 0;
203}
204#endif
2a919596 205
e0ee1c97 206#ifdef UV2_HUB_IS_SUPPORTED
2a919596 207static inline int is_uv2_hub(void)
6edbd471
MT
208{
209 return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
210 (uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
211}
e0ee1c97
MT
212#else
213static inline int is_uv2_hub(void)
214{
215 return 0;
216}
217#endif
6edbd471 218
e0ee1c97 219#ifdef UV3_HUB_IS_SUPPORTED
6edbd471
MT
220static inline int is_uv3_hub(void)
221{
eb1e3461
MT
222 return ((uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE) &&
223 (uv_hub_info->hub_revision < UV4_HUB_REVISION_BASE));
6edbd471 224}
e0ee1c97
MT
225#else
226static inline int is_uv3_hub(void)
227{
228 return 0;
229}
230#endif
6edbd471 231
eb1e3461
MT
232#ifdef UV4_HUB_IS_SUPPORTED
233static inline int is_uv4_hub(void)
234{
235 return uv_hub_info->hub_revision >= UV4_HUB_REVISION_BASE;
236}
237#else
238static inline int is_uv4_hub(void)
239{
240 return 0;
241}
242#endif
243
e0ee1c97 244static inline int is_uvx_hub(void)
6edbd471 245{
e0ee1c97
MT
246 if (uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE)
247 return uv_hub_info->hub_revision;
248
249 return 0;
6edbd471
MT
250}
251
e0ee1c97 252static inline int is_uv_hub(void)
2a919596 253{
e0ee1c97
MT
254#ifdef UV1_HUB_IS_SUPPORTED
255 return uv_hub_info->hub_revision;
256#endif
257 return is_uvx_hub();
2a919596
JS
258}
259
c8f730b1
RA
260union uvh_apicid {
261 unsigned long v;
262 struct uvh_apicid_s {
263 unsigned long local_apic_mask : 24;
264 unsigned long local_apic_shift : 5;
265 unsigned long unused1 : 3;
266 unsigned long pnode_mask : 24;
267 unsigned long pnode_shift : 5;
268 unsigned long unused2 : 3;
269 } s;
270};
271
952cf6d7
JS
272/*
273 * Local & Global MMR space macros.
39d30770
MT
274 * Note: macros are intended to be used ONLY by inline functions
275 * in this file - not by other kernel code.
276 * n - NASID (full 15-bit global nasid)
277 * g - GNODE (full 15-bit global nasid, right shifted 1)
278 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 279 */
9f5314fb 280#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
c4ed3f04
JS
281#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
282#define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
952cf6d7 283
2a919596
JS
284#define UV1_LOCAL_MMR_BASE 0xf4000000UL
285#define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
286#define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
287#define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
288
289#define UV2_LOCAL_MMR_BASE 0xfa000000UL
290#define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
291#define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
292#define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
293
6edbd471
MT
294#define UV3_LOCAL_MMR_BASE 0xfa000000UL
295#define UV3_GLOBAL_MMR32_BASE 0xfc000000UL
296#define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
297#define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
298
eb1e3461
MT
299#define UV4_LOCAL_MMR_BASE 0xfa000000UL
300#define UV4_GLOBAL_MMR32_BASE 0xfc000000UL
301#define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
302#define UV4_GLOBAL_MMR32_SIZE (16UL * 1024 * 1024)
303
304#define UV_LOCAL_MMR_BASE ( \
305 is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
306 is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
307 is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
308 /*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
309
310#define UV_GLOBAL_MMR32_BASE ( \
311 is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
312 is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
313 is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
314 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
315
316#define UV_LOCAL_MMR_SIZE ( \
317 is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
318 is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
319 is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
320 /*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
321
322#define UV_GLOBAL_MMR32_SIZE ( \
323 is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
324 is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
325 is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
326 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
327
952cf6d7
JS
328#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
329
56abcf24
JS
330#define UV_GLOBAL_GRU_MMR_BASE 0x4000000
331
9f5314fb
JS
332#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
333#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
952cf6d7 334
9f5314fb 335#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 336
9f5314fb 337#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
67e83f30 338 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
9f5314fb 339
c8f730b1 340#define UVH_APICID 0x002D0E00L
9f5314fb
JS
341#define UV_APIC_PNODE_SHIFT 6
342
8191c9f6
DS
343#define UV_APICID_HIBIT_MASK 0xffff0000
344
7f1baa06
MT
345/* Local Bus from cpu's perspective */
346#define LOCAL_BUS_BASE 0x1c00000
347#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
348
349/*
350 * System Controller Interface Reg
351 *
352 * Note there are NO leds on a UV system. This register is only
353 * used by the system controller to monitor system-wide operation.
354 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
355 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
356 * a node.
357 *
358 * The window is located at top of ACPI MMR space
359 */
360#define SCIR_WINDOW_COUNT 64
361#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
362 LOCAL_BUS_SIZE - \
363 SCIR_WINDOW_COUNT)
364
365#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
366#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
367#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
368
8661984f
DS
369/* Loop through all installed blades */
370#define for_each_possible_blade(bid) \
371 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
372
9f5314fb
JS
373/*
374 * Macros for converting between kernel virtual addresses, socket local physical
375 * addresses, and UV global physical addresses.
39d30770
MT
376 * Note: use the standard __pa() & __va() macros for converting
377 * between socket virtual and socket physical addresses.
9f5314fb
JS
378 */
379
380/* socket phys RAM --> UV global physical address */
381static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
382{
383 if (paddr < uv_hub_info->lowmem_remap_top)
189f67c4 384 paddr |= uv_hub_info->lowmem_remap_base;
6a469e46
JS
385 paddr |= uv_hub_info->gnode_upper;
386 paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
387 ((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
388 return paddr;
9f5314fb
JS
389}
390
391
392/* socket virtual --> UV global physical address */
393static inline unsigned long uv_gpa(void *v)
394{
189f67c4 395 return uv_soc_phys_ram_to_gpa(__pa(v));
9f5314fb 396}
1d21e6e3 397
fae419f2
RH
398/* Top two bits indicate the requested address is in MMR space. */
399static inline int
400uv_gpa_in_mmr_space(unsigned long gpa)
401{
402 return (gpa >> 62) == 0x3UL;
403}
404
729d69e6
RH
405/* UV global physical address --> socket phys RAM */
406static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
407{
5a51467b 408 unsigned long paddr;
729d69e6
RH
409 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
410 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
411
6a469e46
JS
412 gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
413 ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
5a51467b 414 paddr = gpa & uv_hub_info->gpa_mask;
729d69e6
RH
415 if (paddr >= remap_base && paddr < remap_base + remap_top)
416 paddr -= remap_base;
417 return paddr;
418}
419
420
6a469e46 421/* gpa -> pnode */
1d21e6e3
RH
422static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
423{
6a469e46 424 return gpa >> uv_hub_info->n_lshift;
1d21e6e3
RH
425}
426
427/* gpa -> pnode */
428static inline int uv_gpa_to_pnode(unsigned long gpa)
429{
430 unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
431
432 return uv_gpa_to_gnode(gpa) & n_mask;
433}
9f5314fb 434
6a469e46
JS
435/* gpa -> node offset*/
436static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
437{
438 return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
439}
440
9f5314fb
JS
441/* pnode, offset --> socket virtual */
442static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
443{
444 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
445}
952cf6d7 446
952cf6d7
JS
447
448/*
9f5314fb 449 * Extract a PNODE from an APICID (full apicid, not processor subset)
952cf6d7 450 */
9f5314fb 451static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 452{
c8f730b1 453 return (apicid >> uv_hub_info->apic_pnode_shift);
952cf6d7
JS
454}
455
2a919596
JS
456/*
457 * Convert an apicid to the socket number on the blade
458 */
459static inline int uv_apicid_to_socket(int apicid)
460{
461 if (is_uv1_hub())
462 return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
463 else
464 return 0;
465}
466
952cf6d7
JS
467/*
468 * Access global MMRs using the low memory MMR32 space. This region supports
469 * faster MMR access but not all MMRs are accessible in this space.
470 */
39d30770 471static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
952cf6d7
JS
472{
473 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 474 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
475}
476
39d30770 477static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
952cf6d7 478{
8dc579e8 479 writeq(val, uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
480}
481
39d30770 482static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
952cf6d7 483{
8dc579e8 484 return readq(uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
485}
486
487/*
488 * Access Global MMR space using the MMR space located at the top of physical
489 * memory.
490 */
a289cc7c 491static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
952cf6d7
JS
492{
493 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 494 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
495}
496
39d30770 497static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
952cf6d7 498{
8dc579e8 499 writeq(val, uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
500}
501
39d30770 502static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
952cf6d7 503{
8dc579e8 504 return readq(uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
505}
506
56abcf24
JS
507/*
508 * Global MMR space addresses when referenced by the GRU. (GRU does
509 * NOT use socket addressing).
510 */
511static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
512{
e1e0138d
JS
513 return UV_GLOBAL_GRU_MMR_BASE | offset |
514 ((unsigned long)pnode << uv_hub_info->m_val);
56abcf24
JS
515}
516
39d30770
MT
517static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
518{
519 writeb(val, uv_global_mmr64_address(pnode, offset));
520}
521
522static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
523{
524 return readb(uv_global_mmr64_address(pnode, offset));
525}
526
952cf6d7 527/*
9f5314fb 528 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
529 * are accessible.
530 */
531static inline unsigned long *uv_local_mmr_address(unsigned long offset)
532{
533 return __va(UV_LOCAL_MMR_BASE | offset);
534}
535
536static inline unsigned long uv_read_local_mmr(unsigned long offset)
537{
8dc579e8 538 return readq(uv_local_mmr_address(offset));
952cf6d7
JS
539}
540
541static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
542{
8dc579e8 543 writeq(val, uv_local_mmr_address(offset));
952cf6d7
JS
544}
545
7f1baa06
MT
546static inline unsigned char uv_read_local_mmr8(unsigned long offset)
547{
8dc579e8 548 return readb(uv_local_mmr_address(offset));
7f1baa06
MT
549}
550
551static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
552{
8dc579e8 553 writeb(val, uv_local_mmr_address(offset));
7f1baa06
MT
554}
555
8400def8 556/*
9f5314fb 557 * Structures and definitions for converting between cpu, node, pnode, and blade
8400def8
JS
558 * numbers.
559 */
560struct uv_blade_info {
9f5314fb 561 unsigned short nr_possible_cpus;
8400def8 562 unsigned short nr_online_cpus;
9f5314fb 563 unsigned short pnode;
6c7184b7 564 short memory_nid;
8400def8 565};
9f5314fb 566extern struct uv_blade_info *uv_blade_info;
8400def8
JS
567extern short *uv_node_to_blade;
568extern short *uv_cpu_to_blade;
569extern short uv_possible_blades;
570
571/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
572static inline int uv_blade_processor_id(void)
573{
5627a825 574 return uv_cpu_info->blade_cpu_id;
8400def8
JS
575}
576
5627a825
MT
577/* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
578static inline int uv_cpu_blade_processor_id(int cpu)
579{
580 return uv_cpu_info_per(cpu)->blade_cpu_id;
581}
582#define _uv_cpu_blade_processor_id 1 /* indicate function available */
583
8400def8
JS
584/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
585static inline int uv_numa_blade_id(void)
586{
587 return uv_hub_info->numa_blade_id;
588}
589
590/* Convert a cpu number to the the UV blade number */
591static inline int uv_cpu_to_blade_id(int cpu)
592{
593 return uv_cpu_to_blade[cpu];
594}
595
596/* Convert linux node number to the UV blade number */
597static inline int uv_node_to_blade_id(int nid)
598{
599 return uv_node_to_blade[nid];
600}
601
9f5314fb
JS
602/* Convert a blade id to the PNODE of the blade */
603static inline int uv_blade_to_pnode(int bid)
8400def8 604{
9f5314fb 605 return uv_blade_info[bid].pnode;
8400def8
JS
606}
607
6c7184b7
JS
608/* Nid of memory node on blade. -1 if no blade-local memory */
609static inline int uv_blade_to_memory_nid(int bid)
610{
611 return uv_blade_info[bid].memory_nid;
612}
613
8400def8
JS
614/* Determine the number of possible cpus on a blade */
615static inline int uv_blade_nr_possible_cpus(int bid)
616{
9f5314fb 617 return uv_blade_info[bid].nr_possible_cpus;
8400def8
JS
618}
619
620/* Determine the number of online cpus on a blade */
621static inline int uv_blade_nr_online_cpus(int bid)
622{
623 return uv_blade_info[bid].nr_online_cpus;
624}
625
9f5314fb
JS
626/* Convert a cpu id to the PNODE of the blade containing the cpu */
627static inline int uv_cpu_to_pnode(int cpu)
8400def8 628{
9f5314fb 629 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
8400def8
JS
630}
631
9f5314fb
JS
632/* Convert a linux node number to the PNODE of the blade */
633static inline int uv_node_to_pnode(int nid)
8400def8 634{
9f5314fb 635 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
8400def8
JS
636}
637
638/* Maximum possible number of blades */
639static inline int uv_num_possible_blades(void)
640{
641 return uv_possible_blades;
642}
643
0d12ef0c
MT
644/* Per Hub NMI support */
645extern void uv_nmi_setup(void);
646
647/* BMC sets a bit this MMR non-zero before sending an NMI */
648#define UVH_NMI_MMR UVH_SCRATCH5
649#define UVH_NMI_MMR_CLEAR UVH_SCRATCH5_ALIAS
650#define UVH_NMI_MMR_SHIFT 63
651#define UVH_NMI_MMR_TYPE "SCRATCH5"
652
653/* Newer SMM NMI handler, not present in all systems */
654#define UVH_NMI_MMRX UVH_EVENT_OCCURRED0
655#define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS
c443c03d 656#define UVH_NMI_MMRX_SHIFT UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
0d12ef0c
MT
657#define UVH_NMI_MMRX_TYPE "EXTIO_INT0"
658
659/* Non-zero indicates newer SMM NMI handler present */
660#define UVH_NMI_MMRX_SUPPORTED UVH_EXTIO_INT0_BROADCAST
661
662/* Indicates to BIOS that we want to use the newer SMM NMI handler */
663#define UVH_NMI_MMRX_REQ UVH_SCRATCH5_ALIAS_2
664#define UVH_NMI_MMRX_REQ_SHIFT 62
665
666struct uv_hub_nmi_s {
667 raw_spinlock_t nmi_lock;
668 atomic_t in_nmi; /* flag this node in UV NMI IRQ */
669 atomic_t cpu_owner; /* last locker of this struct */
670 atomic_t read_mmr_count; /* count of MMR reads */
671 atomic_t nmi_count; /* count of true UV NMIs */
672 unsigned long nmi_value; /* last value read from NMI MMR */
673};
674
675struct uv_cpu_nmi_s {
676 struct uv_hub_nmi_s *hub;
e1632170
CL
677 int state;
678 int pinging;
0d12ef0c
MT
679 int queries;
680 int pings;
681};
682
e1632170
CL
683DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
684
7c52198b 685#define uv_hub_nmi this_cpu_read(uv_cpu_nmi.hub)
e1632170 686#define uv_cpu_nmi_per(cpu) (per_cpu(uv_cpu_nmi, cpu))
0d12ef0c
MT
687#define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub)
688
689/* uv_cpu_nmi_states */
690#define UV_NMI_STATE_OUT 0
691#define UV_NMI_STATE_IN 1
692#define UV_NMI_STATE_DUMP 2
693#define UV_NMI_STATE_DUMP_DONE 3
694
7f1baa06
MT
695/* Update SCIR state */
696static inline void uv_set_scir_bits(unsigned char value)
697{
d38bb135
MT
698 if (uv_scir_info->state != value) {
699 uv_scir_info->state = value;
700 uv_write_local_mmr8(uv_scir_info->offset, value);
7f1baa06
MT
701 }
702}
66666e50 703
39d30770
MT
704static inline unsigned long uv_scir_offset(int apicid)
705{
706 return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
707}
708
7f1baa06
MT
709static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
710{
d38bb135 711 if (uv_cpu_scir_info(cpu)->state != value) {
39d30770 712 uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
d38bb135
MT
713 uv_cpu_scir_info(cpu)->offset, value);
714 uv_cpu_scir_info(cpu)->state = value;
7f1baa06
MT
715 }
716}
952cf6d7 717
8191c9f6 718extern unsigned int uv_apicid_hibits;
56abcf24
JS
719static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
720{
8191c9f6 721 apicid |= uv_apicid_hibits;
56abcf24
JS
722 return (1UL << UVH_IPI_INT_SEND_SHFT) |
723 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
724 (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
725 (vector << UVH_IPI_INT_VECTOR_SHFT);
726}
727
66666e50
JS
728static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
729{
730 unsigned long val;
02dd0a06
RH
731 unsigned long dmode = dest_Fixed;
732
733 if (vector == NMI_VECTOR)
734 dmode = dest_NMI;
66666e50 735
56abcf24 736 val = uv_hub_ipi_value(apicid, vector, dmode);
66666e50
JS
737 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
738}
739
7a1110e8
JS
740/*
741 * Get the minimum revision number of the hub chips within the partition.
eb1e3461 742 * (See UVx_HUB_REVISION_BASE above for specific values.)
7a1110e8
JS
743 */
744static inline int uv_get_min_hub_revision_id(void)
745{
2a919596 746 return uv_hub_info->hub_revision;
7a1110e8
JS
747}
748
bc5d9940 749#endif /* CONFIG_X86_64 */
7f1baa06 750#endif /* _ASM_X86_UV_UV_HUB_H */