x86, uv, uv3: Update ACPI Check to include SGI UV3
[linux-2.6-block.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
c8f730b1 8 * Copyright (C) 2007-2010 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
9 */
10
05e4d316
PA
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
952cf6d7 13
bc5d9940 14#ifdef CONFIG_X86_64
952cf6d7
JS
15#include <linux/numa.h>
16#include <linux/percpu.h>
c08b6acc 17#include <linux/timer.h>
8dc579e8 18#include <linux/io.h>
952cf6d7
JS
19#include <asm/types.h>
20#include <asm/percpu.h>
66666e50 21#include <asm/uv/uv_mmrs.h>
02dd0a06
RH
22#include <asm/irq_vectors.h>
23#include <asm/io_apic.h>
952cf6d7
JS
24
25
26/*
27 * Addressing Terminology
28 *
9f5314fb
JS
29 * M - The low M bits of a physical address represent the offset
30 * into the blade local memory. RAM memory on a blade is physically
31 * contiguous (although various IO spaces may punch holes in
32 * it)..
952cf6d7 33 *
39d30770
MT
34 * N - Number of bits in the node portion of a socket physical
35 * address.
9f5314fb 36 *
39d30770
MT
37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
38 * routers always have low bit of 1, C/MBricks have low bit
39 * equal to 0. Most addressing macros that target UV hub chips
40 * right shift the NASID by 1 to exclude the always-zero bit.
41 * NASIDs contain up to 15 bits.
9f5314fb
JS
42 *
43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 * of nasids.
45 *
39d30770
MT
46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
47 * of the nasid for socket usage.
9f5314fb 48 *
6a469e46
JS
49 * GPA - (global physical address) a socket physical address converted
50 * so that it can be used by the GRU as a global address. Socket
51 * physical addresses 1) need additional NASID (node) bits added
52 * to the high end of the address, and 2) unaliased if the
53 * partition does not have a physical address 0. In addition, on
54 * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
55 *
9f5314fb
JS
56 *
57 * NumaLink Global Physical Address Format:
58 * +--------------------------------+---------------------+
59 * |00..000| GNODE | NodeOffset |
60 * +--------------------------------+---------------------+
61 * |<-------53 - M bits --->|<--------M bits ----->
62 *
63 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
64 *
65 *
66 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
67 * +----------------+---------------+---------------------+
68 * |00..000000000000| PNODE | NodeOffset |
69 * +----------------+---------------+---------------------+
70 * <--- N bits --->|<--------M bits ----->
952cf6d7 71 *
9f5314fb
JS
72 * M - number of node offset bits (35 .. 40)
73 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
74 *
75 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
76 * The actual values are configuration dependent and are set at
9f5314fb
JS
77 * boot time. M & N values are set by the hardware/BIOS at boot.
78 *
952cf6d7
JS
79 *
80 * APICID format
39d30770
MT
81 * NOTE!!!!!! This is the current format of the APICID. However, code
82 * should assume that this will change in the future. Use functions
83 * in this file for all APICID bit manipulations and conversion.
952cf6d7 84 *
39d30770
MT
85 * 1111110000000000
86 * 5432109876543210
2a919596
JS
87 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
88 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
89 * pppppppppppcccch SandyBridge (15 bits in hdw reg)
952cf6d7
JS
90 * sssssssssss
91 *
9f5314fb 92 * p = pnode bits
952cf6d7
JS
93 * l = socket number on board
94 * c = core
95 * h = hyperthread
9f5314fb 96 * s = bits that are in the SOCKET_ID CSR
952cf6d7 97 *
2a919596 98 * Note: Processor may support fewer bits in the APICID register. The ACPI
952cf6d7
JS
99 * tables hold all 16 bits. Software needs to be aware of this.
100 *
39d30770
MT
101 * Unless otherwise specified, all references to APICID refer to
102 * the FULL value contained in ACPI tables, not the subset in the
103 * processor APICID register.
952cf6d7
JS
104 */
105
106
107/*
108 * Maximum number of bricks in all partitions and in all coherency domains.
109 * This is the total number of bricks accessible in the numalink fabric. It
110 * includes all C & M bricks. Routers are NOT included.
111 *
112 * This value is also the value of the maximum number of non-router NASIDs
113 * in the numalink fabric.
114 *
9f5314fb 115 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
116 */
117#define UV_MAX_NUMALINK_BLADES 16384
118
119/*
120 * Maximum number of C/Mbricks within a software SSI (hardware may support
121 * more).
122 */
123#define UV_MAX_SSI_BLADES 256
124
125/*
126 * The largest possible NASID of a C or M brick (+ 2)
127 */
1d21e6e3 128#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
952cf6d7 129
7f1baa06
MT
130struct uv_scir_s {
131 struct timer_list timer;
132 unsigned long offset;
133 unsigned long last;
134 unsigned long idle_on;
135 unsigned long idle_off;
136 unsigned char state;
137 unsigned char enabled;
138};
139
952cf6d7
JS
140/*
141 * The following defines attributes of the HUB chip. These attributes are
142 * frequently referenced and are kept in the per-cpu data areas of each cpu.
143 * They are kept together in a struct to minimize cache misses.
144 */
145struct uv_hub_info_s {
69a72a0e
MT
146 unsigned long global_mmr_base;
147 unsigned long gpa_mask;
c4ed3f04 148 unsigned int gnode_extra;
2a919596
JS
149 unsigned char hub_revision;
150 unsigned char apic_pnode_shift;
6a469e46
JS
151 unsigned char m_shift;
152 unsigned char n_lshift;
69a72a0e
MT
153 unsigned long gnode_upper;
154 unsigned long lowmem_remap_top;
155 unsigned long lowmem_remap_base;
156 unsigned short pnode;
157 unsigned short pnode_mask;
158 unsigned short coherency_domain_number;
159 unsigned short numa_blade_id;
160 unsigned char blade_processor_id;
161 unsigned char m_val;
162 unsigned char n_val;
163 struct uv_scir_s scir;
952cf6d7 164};
7f1baa06 165
952cf6d7 166DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
39d30770 167#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
952cf6d7
JS
168#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
169
2a919596
JS
170/*
171 * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
172 * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
173 * This is a software convention - NOT the hardware revision numbers in
174 * the hub chip.
175 */
176#define UV1_HUB_REVISION_BASE 1
177#define UV2_HUB_REVISION_BASE 3
178
179static inline int is_uv1_hub(void)
180{
181 return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
182}
183
184static inline int is_uv2_hub(void)
185{
186 return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
187}
188
6a469e46
JS
189static inline int is_uv2_1_hub(void)
190{
191 return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE;
192}
193
194static inline int is_uv2_2_hub(void)
195{
196 return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE + 1;
197}
198
c8f730b1
RA
199union uvh_apicid {
200 unsigned long v;
201 struct uvh_apicid_s {
202 unsigned long local_apic_mask : 24;
203 unsigned long local_apic_shift : 5;
204 unsigned long unused1 : 3;
205 unsigned long pnode_mask : 24;
206 unsigned long pnode_shift : 5;
207 unsigned long unused2 : 3;
208 } s;
209};
210
952cf6d7
JS
211/*
212 * Local & Global MMR space macros.
39d30770
MT
213 * Note: macros are intended to be used ONLY by inline functions
214 * in this file - not by other kernel code.
215 * n - NASID (full 15-bit global nasid)
216 * g - GNODE (full 15-bit global nasid, right shifted 1)
217 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 218 */
9f5314fb 219#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
c4ed3f04
JS
220#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
221#define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
952cf6d7 222
2a919596
JS
223#define UV1_LOCAL_MMR_BASE 0xf4000000UL
224#define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
225#define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
226#define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
227
228#define UV2_LOCAL_MMR_BASE 0xfa000000UL
229#define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
230#define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
231#define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
232
233#define UV_LOCAL_MMR_BASE (is_uv1_hub() ? UV1_LOCAL_MMR_BASE \
234 : UV2_LOCAL_MMR_BASE)
235#define UV_GLOBAL_MMR32_BASE (is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE \
236 : UV2_GLOBAL_MMR32_BASE)
237#define UV_LOCAL_MMR_SIZE (is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
238 UV2_LOCAL_MMR_SIZE)
239#define UV_GLOBAL_MMR32_SIZE (is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
240 UV2_GLOBAL_MMR32_SIZE)
952cf6d7
JS
241#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
242
56abcf24
JS
243#define UV_GLOBAL_GRU_MMR_BASE 0x4000000
244
9f5314fb
JS
245#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
246#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
952cf6d7 247
9f5314fb 248#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 249
9f5314fb 250#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
67e83f30 251 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
9f5314fb 252
c8f730b1 253#define UVH_APICID 0x002D0E00L
9f5314fb
JS
254#define UV_APIC_PNODE_SHIFT 6
255
8191c9f6
DS
256#define UV_APICID_HIBIT_MASK 0xffff0000
257
7f1baa06
MT
258/* Local Bus from cpu's perspective */
259#define LOCAL_BUS_BASE 0x1c00000
260#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
261
262/*
263 * System Controller Interface Reg
264 *
265 * Note there are NO leds on a UV system. This register is only
266 * used by the system controller to monitor system-wide operation.
267 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
268 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
269 * a node.
270 *
271 * The window is located at top of ACPI MMR space
272 */
273#define SCIR_WINDOW_COUNT 64
274#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
275 LOCAL_BUS_SIZE - \
276 SCIR_WINDOW_COUNT)
277
278#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
279#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
280#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
281
8661984f
DS
282/* Loop through all installed blades */
283#define for_each_possible_blade(bid) \
284 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
285
9f5314fb
JS
286/*
287 * Macros for converting between kernel virtual addresses, socket local physical
288 * addresses, and UV global physical addresses.
39d30770
MT
289 * Note: use the standard __pa() & __va() macros for converting
290 * between socket virtual and socket physical addresses.
9f5314fb
JS
291 */
292
293/* socket phys RAM --> UV global physical address */
294static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
295{
296 if (paddr < uv_hub_info->lowmem_remap_top)
189f67c4 297 paddr |= uv_hub_info->lowmem_remap_base;
6a469e46
JS
298 paddr |= uv_hub_info->gnode_upper;
299 paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
300 ((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
301 return paddr;
9f5314fb
JS
302}
303
304
305/* socket virtual --> UV global physical address */
306static inline unsigned long uv_gpa(void *v)
307{
189f67c4 308 return uv_soc_phys_ram_to_gpa(__pa(v));
9f5314fb 309}
1d21e6e3 310
fae419f2
RH
311/* Top two bits indicate the requested address is in MMR space. */
312static inline int
313uv_gpa_in_mmr_space(unsigned long gpa)
314{
315 return (gpa >> 62) == 0x3UL;
316}
317
729d69e6
RH
318/* UV global physical address --> socket phys RAM */
319static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
320{
5a51467b 321 unsigned long paddr;
729d69e6
RH
322 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
323 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
324
6a469e46
JS
325 gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
326 ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
5a51467b 327 paddr = gpa & uv_hub_info->gpa_mask;
729d69e6
RH
328 if (paddr >= remap_base && paddr < remap_base + remap_top)
329 paddr -= remap_base;
330 return paddr;
331}
332
333
6a469e46 334/* gpa -> pnode */
1d21e6e3
RH
335static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
336{
6a469e46 337 return gpa >> uv_hub_info->n_lshift;
1d21e6e3
RH
338}
339
340/* gpa -> pnode */
341static inline int uv_gpa_to_pnode(unsigned long gpa)
342{
343 unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
344
345 return uv_gpa_to_gnode(gpa) & n_mask;
346}
9f5314fb 347
6a469e46
JS
348/* gpa -> node offset*/
349static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
350{
351 return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
352}
353
9f5314fb
JS
354/* pnode, offset --> socket virtual */
355static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
356{
357 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
358}
952cf6d7 359
952cf6d7
JS
360
361/*
9f5314fb 362 * Extract a PNODE from an APICID (full apicid, not processor subset)
952cf6d7 363 */
9f5314fb 364static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 365{
c8f730b1 366 return (apicid >> uv_hub_info->apic_pnode_shift);
952cf6d7
JS
367}
368
2a919596
JS
369/*
370 * Convert an apicid to the socket number on the blade
371 */
372static inline int uv_apicid_to_socket(int apicid)
373{
374 if (is_uv1_hub())
375 return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
376 else
377 return 0;
378}
379
952cf6d7
JS
380/*
381 * Access global MMRs using the low memory MMR32 space. This region supports
382 * faster MMR access but not all MMRs are accessible in this space.
383 */
39d30770 384static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
952cf6d7
JS
385{
386 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 387 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
388}
389
39d30770 390static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
952cf6d7 391{
8dc579e8 392 writeq(val, uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
393}
394
39d30770 395static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
952cf6d7 396{
8dc579e8 397 return readq(uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
398}
399
400/*
401 * Access Global MMR space using the MMR space located at the top of physical
402 * memory.
403 */
a289cc7c 404static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
952cf6d7
JS
405{
406 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 407 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
408}
409
39d30770 410static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
952cf6d7 411{
8dc579e8 412 writeq(val, uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
413}
414
39d30770 415static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
952cf6d7 416{
8dc579e8 417 return readq(uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
418}
419
56abcf24
JS
420/*
421 * Global MMR space addresses when referenced by the GRU. (GRU does
422 * NOT use socket addressing).
423 */
424static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
425{
e1e0138d
JS
426 return UV_GLOBAL_GRU_MMR_BASE | offset |
427 ((unsigned long)pnode << uv_hub_info->m_val);
56abcf24
JS
428}
429
39d30770
MT
430static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
431{
432 writeb(val, uv_global_mmr64_address(pnode, offset));
433}
434
435static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
436{
437 return readb(uv_global_mmr64_address(pnode, offset));
438}
439
952cf6d7 440/*
9f5314fb 441 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
442 * are accessible.
443 */
444static inline unsigned long *uv_local_mmr_address(unsigned long offset)
445{
446 return __va(UV_LOCAL_MMR_BASE | offset);
447}
448
449static inline unsigned long uv_read_local_mmr(unsigned long offset)
450{
8dc579e8 451 return readq(uv_local_mmr_address(offset));
952cf6d7
JS
452}
453
454static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
455{
8dc579e8 456 writeq(val, uv_local_mmr_address(offset));
952cf6d7
JS
457}
458
7f1baa06
MT
459static inline unsigned char uv_read_local_mmr8(unsigned long offset)
460{
8dc579e8 461 return readb(uv_local_mmr_address(offset));
7f1baa06
MT
462}
463
464static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
465{
8dc579e8 466 writeb(val, uv_local_mmr_address(offset));
7f1baa06
MT
467}
468
8400def8 469/*
9f5314fb 470 * Structures and definitions for converting between cpu, node, pnode, and blade
8400def8
JS
471 * numbers.
472 */
473struct uv_blade_info {
9f5314fb 474 unsigned short nr_possible_cpus;
8400def8 475 unsigned short nr_online_cpus;
9f5314fb 476 unsigned short pnode;
6c7184b7 477 short memory_nid;
1d44e828
JS
478 spinlock_t nmi_lock;
479 unsigned long nmi_count;
8400def8 480};
9f5314fb 481extern struct uv_blade_info *uv_blade_info;
8400def8
JS
482extern short *uv_node_to_blade;
483extern short *uv_cpu_to_blade;
484extern short uv_possible_blades;
485
486/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
487static inline int uv_blade_processor_id(void)
488{
489 return uv_hub_info->blade_processor_id;
490}
491
492/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
493static inline int uv_numa_blade_id(void)
494{
495 return uv_hub_info->numa_blade_id;
496}
497
498/* Convert a cpu number to the the UV blade number */
499static inline int uv_cpu_to_blade_id(int cpu)
500{
501 return uv_cpu_to_blade[cpu];
502}
503
504/* Convert linux node number to the UV blade number */
505static inline int uv_node_to_blade_id(int nid)
506{
507 return uv_node_to_blade[nid];
508}
509
9f5314fb
JS
510/* Convert a blade id to the PNODE of the blade */
511static inline int uv_blade_to_pnode(int bid)
8400def8 512{
9f5314fb 513 return uv_blade_info[bid].pnode;
8400def8
JS
514}
515
6c7184b7
JS
516/* Nid of memory node on blade. -1 if no blade-local memory */
517static inline int uv_blade_to_memory_nid(int bid)
518{
519 return uv_blade_info[bid].memory_nid;
520}
521
8400def8
JS
522/* Determine the number of possible cpus on a blade */
523static inline int uv_blade_nr_possible_cpus(int bid)
524{
9f5314fb 525 return uv_blade_info[bid].nr_possible_cpus;
8400def8
JS
526}
527
528/* Determine the number of online cpus on a blade */
529static inline int uv_blade_nr_online_cpus(int bid)
530{
531 return uv_blade_info[bid].nr_online_cpus;
532}
533
9f5314fb
JS
534/* Convert a cpu id to the PNODE of the blade containing the cpu */
535static inline int uv_cpu_to_pnode(int cpu)
8400def8 536{
9f5314fb 537 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
8400def8
JS
538}
539
9f5314fb
JS
540/* Convert a linux node number to the PNODE of the blade */
541static inline int uv_node_to_pnode(int nid)
8400def8 542{
9f5314fb 543 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
8400def8
JS
544}
545
546/* Maximum possible number of blades */
547static inline int uv_num_possible_blades(void)
548{
549 return uv_possible_blades;
550}
551
7f1baa06
MT
552/* Update SCIR state */
553static inline void uv_set_scir_bits(unsigned char value)
554{
555 if (uv_hub_info->scir.state != value) {
556 uv_hub_info->scir.state = value;
557 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
558 }
559}
66666e50 560
39d30770
MT
561static inline unsigned long uv_scir_offset(int apicid)
562{
563 return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
564}
565
7f1baa06
MT
566static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
567{
568 if (uv_cpu_hub_info(cpu)->scir.state != value) {
39d30770
MT
569 uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
570 uv_cpu_hub_info(cpu)->scir.offset, value);
7f1baa06 571 uv_cpu_hub_info(cpu)->scir.state = value;
7f1baa06
MT
572 }
573}
952cf6d7 574
8191c9f6 575extern unsigned int uv_apicid_hibits;
56abcf24
JS
576static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
577{
8191c9f6 578 apicid |= uv_apicid_hibits;
56abcf24
JS
579 return (1UL << UVH_IPI_INT_SEND_SHFT) |
580 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
581 (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
582 (vector << UVH_IPI_INT_VECTOR_SHFT);
583}
584
66666e50
JS
585static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
586{
587 unsigned long val;
02dd0a06
RH
588 unsigned long dmode = dest_Fixed;
589
590 if (vector == NMI_VECTOR)
591 dmode = dest_NMI;
66666e50 592
56abcf24 593 val = uv_hub_ipi_value(apicid, vector, dmode);
66666e50
JS
594 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
595}
596
7a1110e8
JS
597/*
598 * Get the minimum revision number of the hub chips within the partition.
2a919596
JS
599 * 1 - UV1 rev 1.0 initial silicon
600 * 2 - UV1 rev 2.0 production silicon
601 * 3 - UV2 rev 1.0 initial silicon
7a1110e8
JS
602 */
603static inline int uv_get_min_hub_revision_id(void)
604{
2a919596 605 return uv_hub_info->hub_revision;
7a1110e8
JS
606}
607
bc5d9940 608#endif /* CONFIG_X86_64 */
7f1baa06 609#endif /* _ASM_X86_UV_UV_HUB_H */