Merge branch 'x86-asmlinkage-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
6edbd471 8 * Copyright (C) 2007-2013 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
9 */
10
05e4d316
PA
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
952cf6d7 13
bc5d9940 14#ifdef CONFIG_X86_64
952cf6d7
JS
15#include <linux/numa.h>
16#include <linux/percpu.h>
c08b6acc 17#include <linux/timer.h>
8dc579e8 18#include <linux/io.h>
952cf6d7
JS
19#include <asm/types.h>
20#include <asm/percpu.h>
66666e50 21#include <asm/uv/uv_mmrs.h>
02dd0a06
RH
22#include <asm/irq_vectors.h>
23#include <asm/io_apic.h>
952cf6d7
JS
24
25
26/*
27 * Addressing Terminology
28 *
9f5314fb
JS
29 * M - The low M bits of a physical address represent the offset
30 * into the blade local memory. RAM memory on a blade is physically
31 * contiguous (although various IO spaces may punch holes in
32 * it)..
952cf6d7 33 *
39d30770
MT
34 * N - Number of bits in the node portion of a socket physical
35 * address.
9f5314fb 36 *
39d30770
MT
37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
38 * routers always have low bit of 1, C/MBricks have low bit
39 * equal to 0. Most addressing macros that target UV hub chips
40 * right shift the NASID by 1 to exclude the always-zero bit.
41 * NASIDs contain up to 15 bits.
9f5314fb
JS
42 *
43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 * of nasids.
45 *
39d30770
MT
46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
47 * of the nasid for socket usage.
9f5314fb 48 *
6a469e46
JS
49 * GPA - (global physical address) a socket physical address converted
50 * so that it can be used by the GRU as a global address. Socket
51 * physical addresses 1) need additional NASID (node) bits added
52 * to the high end of the address, and 2) unaliased if the
53 * partition does not have a physical address 0. In addition, on
54 * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
55 *
9f5314fb
JS
56 *
57 * NumaLink Global Physical Address Format:
58 * +--------------------------------+---------------------+
59 * |00..000| GNODE | NodeOffset |
60 * +--------------------------------+---------------------+
61 * |<-------53 - M bits --->|<--------M bits ----->
62 *
63 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
64 *
65 *
66 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
67 * +----------------+---------------+---------------------+
68 * |00..000000000000| PNODE | NodeOffset |
69 * +----------------+---------------+---------------------+
70 * <--- N bits --->|<--------M bits ----->
952cf6d7 71 *
9f5314fb
JS
72 * M - number of node offset bits (35 .. 40)
73 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
74 *
75 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
76 * The actual values are configuration dependent and are set at
9f5314fb
JS
77 * boot time. M & N values are set by the hardware/BIOS at boot.
78 *
952cf6d7
JS
79 *
80 * APICID format
39d30770
MT
81 * NOTE!!!!!! This is the current format of the APICID. However, code
82 * should assume that this will change in the future. Use functions
83 * in this file for all APICID bit manipulations and conversion.
952cf6d7 84 *
39d30770
MT
85 * 1111110000000000
86 * 5432109876543210
2a919596
JS
87 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
88 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
89 * pppppppppppcccch SandyBridge (15 bits in hdw reg)
952cf6d7
JS
90 * sssssssssss
91 *
9f5314fb 92 * p = pnode bits
952cf6d7
JS
93 * l = socket number on board
94 * c = core
95 * h = hyperthread
9f5314fb 96 * s = bits that are in the SOCKET_ID CSR
952cf6d7 97 *
2a919596 98 * Note: Processor may support fewer bits in the APICID register. The ACPI
952cf6d7
JS
99 * tables hold all 16 bits. Software needs to be aware of this.
100 *
39d30770
MT
101 * Unless otherwise specified, all references to APICID refer to
102 * the FULL value contained in ACPI tables, not the subset in the
103 * processor APICID register.
952cf6d7
JS
104 */
105
106
107/*
108 * Maximum number of bricks in all partitions and in all coherency domains.
109 * This is the total number of bricks accessible in the numalink fabric. It
110 * includes all C & M bricks. Routers are NOT included.
111 *
112 * This value is also the value of the maximum number of non-router NASIDs
113 * in the numalink fabric.
114 *
9f5314fb 115 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
116 */
117#define UV_MAX_NUMALINK_BLADES 16384
118
119/*
120 * Maximum number of C/Mbricks within a software SSI (hardware may support
121 * more).
122 */
123#define UV_MAX_SSI_BLADES 256
124
125/*
126 * The largest possible NASID of a C or M brick (+ 2)
127 */
1d21e6e3 128#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
952cf6d7 129
7f1baa06
MT
130struct uv_scir_s {
131 struct timer_list timer;
132 unsigned long offset;
133 unsigned long last;
134 unsigned long idle_on;
135 unsigned long idle_off;
136 unsigned char state;
137 unsigned char enabled;
138};
139
952cf6d7
JS
140/*
141 * The following defines attributes of the HUB chip. These attributes are
142 * frequently referenced and are kept in the per-cpu data areas of each cpu.
143 * They are kept together in a struct to minimize cache misses.
144 */
145struct uv_hub_info_s {
69a72a0e
MT
146 unsigned long global_mmr_base;
147 unsigned long gpa_mask;
c4ed3f04 148 unsigned int gnode_extra;
2a919596
JS
149 unsigned char hub_revision;
150 unsigned char apic_pnode_shift;
6a469e46
JS
151 unsigned char m_shift;
152 unsigned char n_lshift;
69a72a0e
MT
153 unsigned long gnode_upper;
154 unsigned long lowmem_remap_top;
155 unsigned long lowmem_remap_base;
156 unsigned short pnode;
157 unsigned short pnode_mask;
158 unsigned short coherency_domain_number;
159 unsigned short numa_blade_id;
160 unsigned char blade_processor_id;
161 unsigned char m_val;
162 unsigned char n_val;
163 struct uv_scir_s scir;
952cf6d7 164};
7f1baa06 165
952cf6d7 166DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
39d30770 167#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
952cf6d7
JS
168#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
169
2a919596
JS
170/*
171 * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
172 * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
173 * This is a software convention - NOT the hardware revision numbers in
174 * the hub chip.
175 */
176#define UV1_HUB_REVISION_BASE 1
177#define UV2_HUB_REVISION_BASE 3
6edbd471 178#define UV3_HUB_REVISION_BASE 5
2a919596
JS
179
180static inline int is_uv1_hub(void)
181{
182 return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
183}
184
185static inline int is_uv2_hub(void)
6edbd471
MT
186{
187 return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
188 (uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
189}
190
191static inline int is_uv3_hub(void)
192{
193 return uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE;
194}
195
196static inline int is_uv_hub(void)
197{
198 return uv_hub_info->hub_revision;
199}
200
201/* code common to uv2 and uv3 only */
202static inline int is_uvx_hub(void)
2a919596
JS
203{
204 return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
205}
206
6a469e46
JS
207static inline int is_uv2_1_hub(void)
208{
209 return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE;
210}
211
212static inline int is_uv2_2_hub(void)
213{
214 return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE + 1;
215}
216
c8f730b1
RA
217union uvh_apicid {
218 unsigned long v;
219 struct uvh_apicid_s {
220 unsigned long local_apic_mask : 24;
221 unsigned long local_apic_shift : 5;
222 unsigned long unused1 : 3;
223 unsigned long pnode_mask : 24;
224 unsigned long pnode_shift : 5;
225 unsigned long unused2 : 3;
226 } s;
227};
228
952cf6d7
JS
229/*
230 * Local & Global MMR space macros.
39d30770
MT
231 * Note: macros are intended to be used ONLY by inline functions
232 * in this file - not by other kernel code.
233 * n - NASID (full 15-bit global nasid)
234 * g - GNODE (full 15-bit global nasid, right shifted 1)
235 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 236 */
9f5314fb 237#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
c4ed3f04
JS
238#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
239#define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
952cf6d7 240
2a919596
JS
241#define UV1_LOCAL_MMR_BASE 0xf4000000UL
242#define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
243#define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
244#define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
245
246#define UV2_LOCAL_MMR_BASE 0xfa000000UL
247#define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
248#define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
249#define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
250
6edbd471
MT
251#define UV3_LOCAL_MMR_BASE 0xfa000000UL
252#define UV3_GLOBAL_MMR32_BASE 0xfc000000UL
253#define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
254#define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
255
256#define UV_LOCAL_MMR_BASE (is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
257 (is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
258 UV3_LOCAL_MMR_BASE))
259#define UV_GLOBAL_MMR32_BASE (is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE :\
260 (is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE :\
261 UV3_GLOBAL_MMR32_BASE))
262#define UV_LOCAL_MMR_SIZE (is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
263 (is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
264 UV3_LOCAL_MMR_SIZE))
2a919596 265#define UV_GLOBAL_MMR32_SIZE (is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
6edbd471
MT
266 (is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE :\
267 UV3_GLOBAL_MMR32_SIZE))
952cf6d7
JS
268#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
269
56abcf24
JS
270#define UV_GLOBAL_GRU_MMR_BASE 0x4000000
271
9f5314fb
JS
272#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
273#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
952cf6d7 274
9f5314fb 275#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 276
9f5314fb 277#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
67e83f30 278 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
9f5314fb 279
c8f730b1 280#define UVH_APICID 0x002D0E00L
9f5314fb
JS
281#define UV_APIC_PNODE_SHIFT 6
282
8191c9f6
DS
283#define UV_APICID_HIBIT_MASK 0xffff0000
284
7f1baa06
MT
285/* Local Bus from cpu's perspective */
286#define LOCAL_BUS_BASE 0x1c00000
287#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
288
289/*
290 * System Controller Interface Reg
291 *
292 * Note there are NO leds on a UV system. This register is only
293 * used by the system controller to monitor system-wide operation.
294 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
295 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
296 * a node.
297 *
298 * The window is located at top of ACPI MMR space
299 */
300#define SCIR_WINDOW_COUNT 64
301#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
302 LOCAL_BUS_SIZE - \
303 SCIR_WINDOW_COUNT)
304
305#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
306#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
307#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
308
8661984f
DS
309/* Loop through all installed blades */
310#define for_each_possible_blade(bid) \
311 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
312
9f5314fb
JS
313/*
314 * Macros for converting between kernel virtual addresses, socket local physical
315 * addresses, and UV global physical addresses.
39d30770
MT
316 * Note: use the standard __pa() & __va() macros for converting
317 * between socket virtual and socket physical addresses.
9f5314fb
JS
318 */
319
320/* socket phys RAM --> UV global physical address */
321static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
322{
323 if (paddr < uv_hub_info->lowmem_remap_top)
189f67c4 324 paddr |= uv_hub_info->lowmem_remap_base;
6a469e46
JS
325 paddr |= uv_hub_info->gnode_upper;
326 paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
327 ((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
328 return paddr;
9f5314fb
JS
329}
330
331
332/* socket virtual --> UV global physical address */
333static inline unsigned long uv_gpa(void *v)
334{
189f67c4 335 return uv_soc_phys_ram_to_gpa(__pa(v));
9f5314fb 336}
1d21e6e3 337
fae419f2
RH
338/* Top two bits indicate the requested address is in MMR space. */
339static inline int
340uv_gpa_in_mmr_space(unsigned long gpa)
341{
342 return (gpa >> 62) == 0x3UL;
343}
344
729d69e6
RH
345/* UV global physical address --> socket phys RAM */
346static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
347{
5a51467b 348 unsigned long paddr;
729d69e6
RH
349 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
350 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
351
6a469e46
JS
352 gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
353 ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
5a51467b 354 paddr = gpa & uv_hub_info->gpa_mask;
729d69e6
RH
355 if (paddr >= remap_base && paddr < remap_base + remap_top)
356 paddr -= remap_base;
357 return paddr;
358}
359
360
6a469e46 361/* gpa -> pnode */
1d21e6e3
RH
362static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
363{
6a469e46 364 return gpa >> uv_hub_info->n_lshift;
1d21e6e3
RH
365}
366
367/* gpa -> pnode */
368static inline int uv_gpa_to_pnode(unsigned long gpa)
369{
370 unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
371
372 return uv_gpa_to_gnode(gpa) & n_mask;
373}
9f5314fb 374
6a469e46
JS
375/* gpa -> node offset*/
376static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
377{
378 return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
379}
380
9f5314fb
JS
381/* pnode, offset --> socket virtual */
382static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
383{
384 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
385}
952cf6d7 386
952cf6d7
JS
387
388/*
9f5314fb 389 * Extract a PNODE from an APICID (full apicid, not processor subset)
952cf6d7 390 */
9f5314fb 391static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 392{
c8f730b1 393 return (apicid >> uv_hub_info->apic_pnode_shift);
952cf6d7
JS
394}
395
2a919596
JS
396/*
397 * Convert an apicid to the socket number on the blade
398 */
399static inline int uv_apicid_to_socket(int apicid)
400{
401 if (is_uv1_hub())
402 return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
403 else
404 return 0;
405}
406
952cf6d7
JS
407/*
408 * Access global MMRs using the low memory MMR32 space. This region supports
409 * faster MMR access but not all MMRs are accessible in this space.
410 */
39d30770 411static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
952cf6d7
JS
412{
413 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 414 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
415}
416
39d30770 417static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
952cf6d7 418{
8dc579e8 419 writeq(val, uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
420}
421
39d30770 422static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
952cf6d7 423{
8dc579e8 424 return readq(uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
425}
426
427/*
428 * Access Global MMR space using the MMR space located at the top of physical
429 * memory.
430 */
a289cc7c 431static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
952cf6d7
JS
432{
433 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 434 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
435}
436
39d30770 437static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
952cf6d7 438{
8dc579e8 439 writeq(val, uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
440}
441
39d30770 442static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
952cf6d7 443{
8dc579e8 444 return readq(uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
445}
446
56abcf24
JS
447/*
448 * Global MMR space addresses when referenced by the GRU. (GRU does
449 * NOT use socket addressing).
450 */
451static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
452{
e1e0138d
JS
453 return UV_GLOBAL_GRU_MMR_BASE | offset |
454 ((unsigned long)pnode << uv_hub_info->m_val);
56abcf24
JS
455}
456
39d30770
MT
457static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
458{
459 writeb(val, uv_global_mmr64_address(pnode, offset));
460}
461
462static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
463{
464 return readb(uv_global_mmr64_address(pnode, offset));
465}
466
952cf6d7 467/*
9f5314fb 468 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
469 * are accessible.
470 */
471static inline unsigned long *uv_local_mmr_address(unsigned long offset)
472{
473 return __va(UV_LOCAL_MMR_BASE | offset);
474}
475
476static inline unsigned long uv_read_local_mmr(unsigned long offset)
477{
8dc579e8 478 return readq(uv_local_mmr_address(offset));
952cf6d7
JS
479}
480
481static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
482{
8dc579e8 483 writeq(val, uv_local_mmr_address(offset));
952cf6d7
JS
484}
485
7f1baa06
MT
486static inline unsigned char uv_read_local_mmr8(unsigned long offset)
487{
8dc579e8 488 return readb(uv_local_mmr_address(offset));
7f1baa06
MT
489}
490
491static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
492{
8dc579e8 493 writeb(val, uv_local_mmr_address(offset));
7f1baa06
MT
494}
495
8400def8 496/*
9f5314fb 497 * Structures and definitions for converting between cpu, node, pnode, and blade
8400def8
JS
498 * numbers.
499 */
500struct uv_blade_info {
9f5314fb 501 unsigned short nr_possible_cpus;
8400def8 502 unsigned short nr_online_cpus;
9f5314fb 503 unsigned short pnode;
6c7184b7 504 short memory_nid;
0d12ef0c
MT
505 spinlock_t nmi_lock; /* obsolete, see uv_hub_nmi */
506 unsigned long nmi_count; /* obsolete, see uv_hub_nmi */
8400def8 507};
9f5314fb 508extern struct uv_blade_info *uv_blade_info;
8400def8
JS
509extern short *uv_node_to_blade;
510extern short *uv_cpu_to_blade;
511extern short uv_possible_blades;
512
513/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
514static inline int uv_blade_processor_id(void)
515{
516 return uv_hub_info->blade_processor_id;
517}
518
519/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
520static inline int uv_numa_blade_id(void)
521{
522 return uv_hub_info->numa_blade_id;
523}
524
525/* Convert a cpu number to the the UV blade number */
526static inline int uv_cpu_to_blade_id(int cpu)
527{
528 return uv_cpu_to_blade[cpu];
529}
530
531/* Convert linux node number to the UV blade number */
532static inline int uv_node_to_blade_id(int nid)
533{
534 return uv_node_to_blade[nid];
535}
536
9f5314fb
JS
537/* Convert a blade id to the PNODE of the blade */
538static inline int uv_blade_to_pnode(int bid)
8400def8 539{
9f5314fb 540 return uv_blade_info[bid].pnode;
8400def8
JS
541}
542
6c7184b7
JS
543/* Nid of memory node on blade. -1 if no blade-local memory */
544static inline int uv_blade_to_memory_nid(int bid)
545{
546 return uv_blade_info[bid].memory_nid;
547}
548
8400def8
JS
549/* Determine the number of possible cpus on a blade */
550static inline int uv_blade_nr_possible_cpus(int bid)
551{
9f5314fb 552 return uv_blade_info[bid].nr_possible_cpus;
8400def8
JS
553}
554
555/* Determine the number of online cpus on a blade */
556static inline int uv_blade_nr_online_cpus(int bid)
557{
558 return uv_blade_info[bid].nr_online_cpus;
559}
560
9f5314fb
JS
561/* Convert a cpu id to the PNODE of the blade containing the cpu */
562static inline int uv_cpu_to_pnode(int cpu)
8400def8 563{
9f5314fb 564 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
8400def8
JS
565}
566
9f5314fb
JS
567/* Convert a linux node number to the PNODE of the blade */
568static inline int uv_node_to_pnode(int nid)
8400def8 569{
9f5314fb 570 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
8400def8
JS
571}
572
573/* Maximum possible number of blades */
574static inline int uv_num_possible_blades(void)
575{
576 return uv_possible_blades;
577}
578
0d12ef0c
MT
579/* Per Hub NMI support */
580extern void uv_nmi_setup(void);
581
582/* BMC sets a bit this MMR non-zero before sending an NMI */
583#define UVH_NMI_MMR UVH_SCRATCH5
584#define UVH_NMI_MMR_CLEAR UVH_SCRATCH5_ALIAS
585#define UVH_NMI_MMR_SHIFT 63
586#define UVH_NMI_MMR_TYPE "SCRATCH5"
587
588/* Newer SMM NMI handler, not present in all systems */
589#define UVH_NMI_MMRX UVH_EVENT_OCCURRED0
590#define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS
591#define UVH_NMI_MMRX_SHIFT (is_uv1_hub() ? \
592 UV1H_EVENT_OCCURRED0_EXTIO_INT0_SHFT :\
593 UVXH_EVENT_OCCURRED0_EXTIO_INT0_SHFT)
594#define UVH_NMI_MMRX_TYPE "EXTIO_INT0"
595
596/* Non-zero indicates newer SMM NMI handler present */
597#define UVH_NMI_MMRX_SUPPORTED UVH_EXTIO_INT0_BROADCAST
598
599/* Indicates to BIOS that we want to use the newer SMM NMI handler */
600#define UVH_NMI_MMRX_REQ UVH_SCRATCH5_ALIAS_2
601#define UVH_NMI_MMRX_REQ_SHIFT 62
602
603struct uv_hub_nmi_s {
604 raw_spinlock_t nmi_lock;
605 atomic_t in_nmi; /* flag this node in UV NMI IRQ */
606 atomic_t cpu_owner; /* last locker of this struct */
607 atomic_t read_mmr_count; /* count of MMR reads */
608 atomic_t nmi_count; /* count of true UV NMIs */
609 unsigned long nmi_value; /* last value read from NMI MMR */
610};
611
612struct uv_cpu_nmi_s {
613 struct uv_hub_nmi_s *hub;
614 atomic_t state;
615 atomic_t pinging;
616 int queries;
617 int pings;
618};
619
620DECLARE_PER_CPU(struct uv_cpu_nmi_s, __uv_cpu_nmi);
621#define uv_cpu_nmi (__get_cpu_var(__uv_cpu_nmi))
622#define uv_hub_nmi (uv_cpu_nmi.hub)
623#define uv_cpu_nmi_per(cpu) (per_cpu(__uv_cpu_nmi, cpu))
624#define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub)
625
626/* uv_cpu_nmi_states */
627#define UV_NMI_STATE_OUT 0
628#define UV_NMI_STATE_IN 1
629#define UV_NMI_STATE_DUMP 2
630#define UV_NMI_STATE_DUMP_DONE 3
631
7f1baa06
MT
632/* Update SCIR state */
633static inline void uv_set_scir_bits(unsigned char value)
634{
635 if (uv_hub_info->scir.state != value) {
636 uv_hub_info->scir.state = value;
637 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
638 }
639}
66666e50 640
39d30770
MT
641static inline unsigned long uv_scir_offset(int apicid)
642{
643 return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
644}
645
7f1baa06
MT
646static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
647{
648 if (uv_cpu_hub_info(cpu)->scir.state != value) {
39d30770
MT
649 uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
650 uv_cpu_hub_info(cpu)->scir.offset, value);
7f1baa06 651 uv_cpu_hub_info(cpu)->scir.state = value;
7f1baa06
MT
652 }
653}
952cf6d7 654
8191c9f6 655extern unsigned int uv_apicid_hibits;
56abcf24
JS
656static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
657{
8191c9f6 658 apicid |= uv_apicid_hibits;
56abcf24
JS
659 return (1UL << UVH_IPI_INT_SEND_SHFT) |
660 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
661 (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
662 (vector << UVH_IPI_INT_VECTOR_SHFT);
663}
664
66666e50
JS
665static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
666{
667 unsigned long val;
02dd0a06
RH
668 unsigned long dmode = dest_Fixed;
669
670 if (vector == NMI_VECTOR)
671 dmode = dest_NMI;
66666e50 672
56abcf24 673 val = uv_hub_ipi_value(apicid, vector, dmode);
66666e50
JS
674 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
675}
676
7a1110e8
JS
677/*
678 * Get the minimum revision number of the hub chips within the partition.
2a919596
JS
679 * 1 - UV1 rev 1.0 initial silicon
680 * 2 - UV1 rev 2.0 production silicon
681 * 3 - UV2 rev 1.0 initial silicon
6edbd471 682 * 5 - UV3 rev 1.0 initial silicon
7a1110e8
JS
683 */
684static inline int uv_get_min_hub_revision_id(void)
685{
2a919596 686 return uv_hub_info->hub_revision;
7a1110e8
JS
687}
688
bc5d9940 689#endif /* CONFIG_X86_64 */
7f1baa06 690#endif /* _ASM_X86_UV_UV_HUB_H */