x86/platform/UV: Create per cpu info structs to replace per hub info structs
[linux-2.6-block.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
5f40f7d9 8 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
9 */
10
05e4d316
PA
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
952cf6d7 13
bc5d9940 14#ifdef CONFIG_X86_64
952cf6d7
JS
15#include <linux/numa.h>
16#include <linux/percpu.h>
c08b6acc 17#include <linux/timer.h>
8dc579e8 18#include <linux/io.h>
952cf6d7
JS
19#include <asm/types.h>
20#include <asm/percpu.h>
66666e50 21#include <asm/uv/uv_mmrs.h>
02dd0a06
RH
22#include <asm/irq_vectors.h>
23#include <asm/io_apic.h>
952cf6d7
JS
24
25
26/*
27 * Addressing Terminology
28 *
9f5314fb
JS
29 * M - The low M bits of a physical address represent the offset
30 * into the blade local memory. RAM memory on a blade is physically
31 * contiguous (although various IO spaces may punch holes in
32 * it)..
952cf6d7 33 *
39d30770
MT
34 * N - Number of bits in the node portion of a socket physical
35 * address.
9f5314fb 36 *
39d30770
MT
37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
38 * routers always have low bit of 1, C/MBricks have low bit
39 * equal to 0. Most addressing macros that target UV hub chips
40 * right shift the NASID by 1 to exclude the always-zero bit.
41 * NASIDs contain up to 15 bits.
9f5314fb
JS
42 *
43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 * of nasids.
45 *
39d30770
MT
46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
47 * of the nasid for socket usage.
9f5314fb 48 *
6a469e46
JS
49 * GPA - (global physical address) a socket physical address converted
50 * so that it can be used by the GRU as a global address. Socket
51 * physical addresses 1) need additional NASID (node) bits added
52 * to the high end of the address, and 2) unaliased if the
53 * partition does not have a physical address 0. In addition, on
54 * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
55 *
9f5314fb
JS
56 *
57 * NumaLink Global Physical Address Format:
58 * +--------------------------------+---------------------+
59 * |00..000| GNODE | NodeOffset |
60 * +--------------------------------+---------------------+
61 * |<-------53 - M bits --->|<--------M bits ----->
62 *
63 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
64 *
65 *
66 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
67 * +----------------+---------------+---------------------+
68 * |00..000000000000| PNODE | NodeOffset |
69 * +----------------+---------------+---------------------+
70 * <--- N bits --->|<--------M bits ----->
952cf6d7 71 *
9f5314fb
JS
72 * M - number of node offset bits (35 .. 40)
73 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
74 *
75 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
76 * The actual values are configuration dependent and are set at
9f5314fb
JS
77 * boot time. M & N values are set by the hardware/BIOS at boot.
78 *
952cf6d7
JS
79 *
80 * APICID format
39d30770
MT
81 * NOTE!!!!!! This is the current format of the APICID. However, code
82 * should assume that this will change in the future. Use functions
83 * in this file for all APICID bit manipulations and conversion.
952cf6d7 84 *
39d30770
MT
85 * 1111110000000000
86 * 5432109876543210
2a919596
JS
87 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
88 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
89 * pppppppppppcccch SandyBridge (15 bits in hdw reg)
952cf6d7
JS
90 * sssssssssss
91 *
9f5314fb 92 * p = pnode bits
952cf6d7
JS
93 * l = socket number on board
94 * c = core
95 * h = hyperthread
9f5314fb 96 * s = bits that are in the SOCKET_ID CSR
952cf6d7 97 *
2a919596 98 * Note: Processor may support fewer bits in the APICID register. The ACPI
952cf6d7
JS
99 * tables hold all 16 bits. Software needs to be aware of this.
100 *
39d30770
MT
101 * Unless otherwise specified, all references to APICID refer to
102 * the FULL value contained in ACPI tables, not the subset in the
103 * processor APICID register.
952cf6d7
JS
104 */
105
106
107/*
108 * Maximum number of bricks in all partitions and in all coherency domains.
109 * This is the total number of bricks accessible in the numalink fabric. It
110 * includes all C & M bricks. Routers are NOT included.
111 *
112 * This value is also the value of the maximum number of non-router NASIDs
113 * in the numalink fabric.
114 *
9f5314fb 115 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
116 */
117#define UV_MAX_NUMALINK_BLADES 16384
118
119/*
120 * Maximum number of C/Mbricks within a software SSI (hardware may support
121 * more).
122 */
123#define UV_MAX_SSI_BLADES 256
124
125/*
126 * The largest possible NASID of a C or M brick (+ 2)
127 */
1d21e6e3 128#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
952cf6d7 129
7f1baa06
MT
130struct uv_scir_s {
131 struct timer_list timer;
132 unsigned long offset;
133 unsigned long last;
134 unsigned long idle_on;
135 unsigned long idle_off;
136 unsigned char state;
137 unsigned char enabled;
138};
139
952cf6d7
JS
140/*
141 * The following defines attributes of the HUB chip. These attributes are
0045ddd2
MT
142 * frequently referenced and are kept in a common per hub struct.
143 * After setup, the struct is read only, so it should be readily
144 * available in the L3 cache on the cpu socket for the node.
952cf6d7
JS
145 */
146struct uv_hub_info_s {
69a72a0e
MT
147 unsigned long global_mmr_base;
148 unsigned long gpa_mask;
c4ed3f04 149 unsigned int gnode_extra;
2a919596
JS
150 unsigned char hub_revision;
151 unsigned char apic_pnode_shift;
6a469e46
JS
152 unsigned char m_shift;
153 unsigned char n_lshift;
69a72a0e
MT
154 unsigned long gnode_upper;
155 unsigned long lowmem_remap_top;
156 unsigned long lowmem_remap_base;
157 unsigned short pnode;
158 unsigned short pnode_mask;
159 unsigned short coherency_domain_number;
160 unsigned short numa_blade_id;
161 unsigned char blade_processor_id;
162 unsigned char m_val;
163 unsigned char n_val;
164 struct uv_scir_s scir;
952cf6d7 165};
7f1baa06 166
952cf6d7 167DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
89cbc767 168#define uv_hub_info this_cpu_ptr(&__uv_hub_info)
952cf6d7
JS
169#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
170
0045ddd2
MT
171/* CPU specific info with a pointer to the hub common info struct */
172struct uv_cpu_info_s {
173 void *p_uv_hub_info;
174 unsigned char blade_cpu_id;
175 struct uv_scir_s scir;
176};
177DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
178
179#define uv_cpu_info this_cpu_ptr(&__uv_cpu_info)
180#define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu))
181
2a919596 182/*
0045ddd2 183 * HUB revision ranges for each UV HUB architecture.
2a919596
JS
184 * This is a software convention - NOT the hardware revision numbers in
185 * the hub chip.
186 */
187#define UV1_HUB_REVISION_BASE 1
188#define UV2_HUB_REVISION_BASE 3
6edbd471 189#define UV3_HUB_REVISION_BASE 5
eb1e3461 190#define UV4_HUB_REVISION_BASE 7
2a919596 191
e0ee1c97 192#ifdef UV1_HUB_IS_SUPPORTED
2a919596
JS
193static inline int is_uv1_hub(void)
194{
195 return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
196}
e0ee1c97
MT
197#else
198static inline int is_uv1_hub(void)
199{
200 return 0;
201}
202#endif
2a919596 203
e0ee1c97 204#ifdef UV2_HUB_IS_SUPPORTED
2a919596 205static inline int is_uv2_hub(void)
6edbd471
MT
206{
207 return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
208 (uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
209}
e0ee1c97
MT
210#else
211static inline int is_uv2_hub(void)
212{
213 return 0;
214}
215#endif
6edbd471 216
e0ee1c97 217#ifdef UV3_HUB_IS_SUPPORTED
6edbd471
MT
218static inline int is_uv3_hub(void)
219{
eb1e3461
MT
220 return ((uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE) &&
221 (uv_hub_info->hub_revision < UV4_HUB_REVISION_BASE));
6edbd471 222}
e0ee1c97
MT
223#else
224static inline int is_uv3_hub(void)
225{
226 return 0;
227}
228#endif
6edbd471 229
eb1e3461
MT
230#ifdef UV4_HUB_IS_SUPPORTED
231static inline int is_uv4_hub(void)
232{
233 return uv_hub_info->hub_revision >= UV4_HUB_REVISION_BASE;
234}
235#else
236static inline int is_uv4_hub(void)
237{
238 return 0;
239}
240#endif
241
e0ee1c97 242static inline int is_uvx_hub(void)
6edbd471 243{
e0ee1c97
MT
244 if (uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE)
245 return uv_hub_info->hub_revision;
246
247 return 0;
6edbd471
MT
248}
249
e0ee1c97 250static inline int is_uv_hub(void)
2a919596 251{
e0ee1c97
MT
252#ifdef UV1_HUB_IS_SUPPORTED
253 return uv_hub_info->hub_revision;
254#endif
255 return is_uvx_hub();
2a919596
JS
256}
257
c8f730b1
RA
258union uvh_apicid {
259 unsigned long v;
260 struct uvh_apicid_s {
261 unsigned long local_apic_mask : 24;
262 unsigned long local_apic_shift : 5;
263 unsigned long unused1 : 3;
264 unsigned long pnode_mask : 24;
265 unsigned long pnode_shift : 5;
266 unsigned long unused2 : 3;
267 } s;
268};
269
952cf6d7
JS
270/*
271 * Local & Global MMR space macros.
39d30770
MT
272 * Note: macros are intended to be used ONLY by inline functions
273 * in this file - not by other kernel code.
274 * n - NASID (full 15-bit global nasid)
275 * g - GNODE (full 15-bit global nasid, right shifted 1)
276 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 277 */
9f5314fb 278#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
c4ed3f04
JS
279#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
280#define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
952cf6d7 281
2a919596
JS
282#define UV1_LOCAL_MMR_BASE 0xf4000000UL
283#define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
284#define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
285#define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
286
287#define UV2_LOCAL_MMR_BASE 0xfa000000UL
288#define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
289#define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
290#define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
291
6edbd471
MT
292#define UV3_LOCAL_MMR_BASE 0xfa000000UL
293#define UV3_GLOBAL_MMR32_BASE 0xfc000000UL
294#define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
295#define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
296
eb1e3461
MT
297#define UV4_LOCAL_MMR_BASE 0xfa000000UL
298#define UV4_GLOBAL_MMR32_BASE 0xfc000000UL
299#define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
300#define UV4_GLOBAL_MMR32_SIZE (16UL * 1024 * 1024)
301
302#define UV_LOCAL_MMR_BASE ( \
303 is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
304 is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
305 is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
306 /*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
307
308#define UV_GLOBAL_MMR32_BASE ( \
309 is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
310 is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
311 is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
312 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
313
314#define UV_LOCAL_MMR_SIZE ( \
315 is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
316 is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
317 is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
318 /*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
319
320#define UV_GLOBAL_MMR32_SIZE ( \
321 is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
322 is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
323 is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
324 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
325
952cf6d7
JS
326#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
327
56abcf24
JS
328#define UV_GLOBAL_GRU_MMR_BASE 0x4000000
329
9f5314fb
JS
330#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
331#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
952cf6d7 332
9f5314fb 333#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 334
9f5314fb 335#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
67e83f30 336 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
9f5314fb 337
c8f730b1 338#define UVH_APICID 0x002D0E00L
9f5314fb
JS
339#define UV_APIC_PNODE_SHIFT 6
340
8191c9f6
DS
341#define UV_APICID_HIBIT_MASK 0xffff0000
342
7f1baa06
MT
343/* Local Bus from cpu's perspective */
344#define LOCAL_BUS_BASE 0x1c00000
345#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
346
347/*
348 * System Controller Interface Reg
349 *
350 * Note there are NO leds on a UV system. This register is only
351 * used by the system controller to monitor system-wide operation.
352 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
353 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
354 * a node.
355 *
356 * The window is located at top of ACPI MMR space
357 */
358#define SCIR_WINDOW_COUNT 64
359#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
360 LOCAL_BUS_SIZE - \
361 SCIR_WINDOW_COUNT)
362
363#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
364#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
365#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
366
8661984f
DS
367/* Loop through all installed blades */
368#define for_each_possible_blade(bid) \
369 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
370
9f5314fb
JS
371/*
372 * Macros for converting between kernel virtual addresses, socket local physical
373 * addresses, and UV global physical addresses.
39d30770
MT
374 * Note: use the standard __pa() & __va() macros for converting
375 * between socket virtual and socket physical addresses.
9f5314fb
JS
376 */
377
378/* socket phys RAM --> UV global physical address */
379static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
380{
381 if (paddr < uv_hub_info->lowmem_remap_top)
189f67c4 382 paddr |= uv_hub_info->lowmem_remap_base;
6a469e46
JS
383 paddr |= uv_hub_info->gnode_upper;
384 paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
385 ((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
386 return paddr;
9f5314fb
JS
387}
388
389
390/* socket virtual --> UV global physical address */
391static inline unsigned long uv_gpa(void *v)
392{
189f67c4 393 return uv_soc_phys_ram_to_gpa(__pa(v));
9f5314fb 394}
1d21e6e3 395
fae419f2
RH
396/* Top two bits indicate the requested address is in MMR space. */
397static inline int
398uv_gpa_in_mmr_space(unsigned long gpa)
399{
400 return (gpa >> 62) == 0x3UL;
401}
402
729d69e6
RH
403/* UV global physical address --> socket phys RAM */
404static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
405{
5a51467b 406 unsigned long paddr;
729d69e6
RH
407 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
408 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
409
6a469e46
JS
410 gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
411 ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
5a51467b 412 paddr = gpa & uv_hub_info->gpa_mask;
729d69e6
RH
413 if (paddr >= remap_base && paddr < remap_base + remap_top)
414 paddr -= remap_base;
415 return paddr;
416}
417
418
6a469e46 419/* gpa -> pnode */
1d21e6e3
RH
420static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
421{
6a469e46 422 return gpa >> uv_hub_info->n_lshift;
1d21e6e3
RH
423}
424
425/* gpa -> pnode */
426static inline int uv_gpa_to_pnode(unsigned long gpa)
427{
428 unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
429
430 return uv_gpa_to_gnode(gpa) & n_mask;
431}
9f5314fb 432
6a469e46
JS
433/* gpa -> node offset*/
434static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
435{
436 return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
437}
438
9f5314fb
JS
439/* pnode, offset --> socket virtual */
440static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
441{
442 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
443}
952cf6d7 444
952cf6d7
JS
445
446/*
9f5314fb 447 * Extract a PNODE from an APICID (full apicid, not processor subset)
952cf6d7 448 */
9f5314fb 449static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 450{
c8f730b1 451 return (apicid >> uv_hub_info->apic_pnode_shift);
952cf6d7
JS
452}
453
2a919596
JS
454/*
455 * Convert an apicid to the socket number on the blade
456 */
457static inline int uv_apicid_to_socket(int apicid)
458{
459 if (is_uv1_hub())
460 return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
461 else
462 return 0;
463}
464
952cf6d7
JS
465/*
466 * Access global MMRs using the low memory MMR32 space. This region supports
467 * faster MMR access but not all MMRs are accessible in this space.
468 */
39d30770 469static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
952cf6d7
JS
470{
471 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 472 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
473}
474
39d30770 475static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
952cf6d7 476{
8dc579e8 477 writeq(val, uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
478}
479
39d30770 480static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
952cf6d7 481{
8dc579e8 482 return readq(uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
483}
484
485/*
486 * Access Global MMR space using the MMR space located at the top of physical
487 * memory.
488 */
a289cc7c 489static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
952cf6d7
JS
490{
491 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 492 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
493}
494
39d30770 495static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
952cf6d7 496{
8dc579e8 497 writeq(val, uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
498}
499
39d30770 500static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
952cf6d7 501{
8dc579e8 502 return readq(uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
503}
504
56abcf24
JS
505/*
506 * Global MMR space addresses when referenced by the GRU. (GRU does
507 * NOT use socket addressing).
508 */
509static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
510{
e1e0138d
JS
511 return UV_GLOBAL_GRU_MMR_BASE | offset |
512 ((unsigned long)pnode << uv_hub_info->m_val);
56abcf24
JS
513}
514
39d30770
MT
515static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
516{
517 writeb(val, uv_global_mmr64_address(pnode, offset));
518}
519
520static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
521{
522 return readb(uv_global_mmr64_address(pnode, offset));
523}
524
952cf6d7 525/*
9f5314fb 526 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
527 * are accessible.
528 */
529static inline unsigned long *uv_local_mmr_address(unsigned long offset)
530{
531 return __va(UV_LOCAL_MMR_BASE | offset);
532}
533
534static inline unsigned long uv_read_local_mmr(unsigned long offset)
535{
8dc579e8 536 return readq(uv_local_mmr_address(offset));
952cf6d7
JS
537}
538
539static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
540{
8dc579e8 541 writeq(val, uv_local_mmr_address(offset));
952cf6d7
JS
542}
543
7f1baa06
MT
544static inline unsigned char uv_read_local_mmr8(unsigned long offset)
545{
8dc579e8 546 return readb(uv_local_mmr_address(offset));
7f1baa06
MT
547}
548
549static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
550{
8dc579e8 551 writeb(val, uv_local_mmr_address(offset));
7f1baa06
MT
552}
553
8400def8 554/*
9f5314fb 555 * Structures and definitions for converting between cpu, node, pnode, and blade
8400def8
JS
556 * numbers.
557 */
558struct uv_blade_info {
9f5314fb 559 unsigned short nr_possible_cpus;
8400def8 560 unsigned short nr_online_cpus;
9f5314fb 561 unsigned short pnode;
6c7184b7 562 short memory_nid;
8400def8 563};
9f5314fb 564extern struct uv_blade_info *uv_blade_info;
8400def8
JS
565extern short *uv_node_to_blade;
566extern short *uv_cpu_to_blade;
567extern short uv_possible_blades;
568
569/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
570static inline int uv_blade_processor_id(void)
571{
572 return uv_hub_info->blade_processor_id;
573}
574
575/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
576static inline int uv_numa_blade_id(void)
577{
578 return uv_hub_info->numa_blade_id;
579}
580
581/* Convert a cpu number to the the UV blade number */
582static inline int uv_cpu_to_blade_id(int cpu)
583{
584 return uv_cpu_to_blade[cpu];
585}
586
587/* Convert linux node number to the UV blade number */
588static inline int uv_node_to_blade_id(int nid)
589{
590 return uv_node_to_blade[nid];
591}
592
9f5314fb
JS
593/* Convert a blade id to the PNODE of the blade */
594static inline int uv_blade_to_pnode(int bid)
8400def8 595{
9f5314fb 596 return uv_blade_info[bid].pnode;
8400def8
JS
597}
598
6c7184b7
JS
599/* Nid of memory node on blade. -1 if no blade-local memory */
600static inline int uv_blade_to_memory_nid(int bid)
601{
602 return uv_blade_info[bid].memory_nid;
603}
604
8400def8
JS
605/* Determine the number of possible cpus on a blade */
606static inline int uv_blade_nr_possible_cpus(int bid)
607{
9f5314fb 608 return uv_blade_info[bid].nr_possible_cpus;
8400def8
JS
609}
610
611/* Determine the number of online cpus on a blade */
612static inline int uv_blade_nr_online_cpus(int bid)
613{
614 return uv_blade_info[bid].nr_online_cpus;
615}
616
9f5314fb
JS
617/* Convert a cpu id to the PNODE of the blade containing the cpu */
618static inline int uv_cpu_to_pnode(int cpu)
8400def8 619{
9f5314fb 620 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
8400def8
JS
621}
622
9f5314fb
JS
623/* Convert a linux node number to the PNODE of the blade */
624static inline int uv_node_to_pnode(int nid)
8400def8 625{
9f5314fb 626 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
8400def8
JS
627}
628
629/* Maximum possible number of blades */
630static inline int uv_num_possible_blades(void)
631{
632 return uv_possible_blades;
633}
634
0d12ef0c
MT
635/* Per Hub NMI support */
636extern void uv_nmi_setup(void);
637
638/* BMC sets a bit this MMR non-zero before sending an NMI */
639#define UVH_NMI_MMR UVH_SCRATCH5
640#define UVH_NMI_MMR_CLEAR UVH_SCRATCH5_ALIAS
641#define UVH_NMI_MMR_SHIFT 63
642#define UVH_NMI_MMR_TYPE "SCRATCH5"
643
644/* Newer SMM NMI handler, not present in all systems */
645#define UVH_NMI_MMRX UVH_EVENT_OCCURRED0
646#define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS
c443c03d 647#define UVH_NMI_MMRX_SHIFT UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
0d12ef0c
MT
648#define UVH_NMI_MMRX_TYPE "EXTIO_INT0"
649
650/* Non-zero indicates newer SMM NMI handler present */
651#define UVH_NMI_MMRX_SUPPORTED UVH_EXTIO_INT0_BROADCAST
652
653/* Indicates to BIOS that we want to use the newer SMM NMI handler */
654#define UVH_NMI_MMRX_REQ UVH_SCRATCH5_ALIAS_2
655#define UVH_NMI_MMRX_REQ_SHIFT 62
656
657struct uv_hub_nmi_s {
658 raw_spinlock_t nmi_lock;
659 atomic_t in_nmi; /* flag this node in UV NMI IRQ */
660 atomic_t cpu_owner; /* last locker of this struct */
661 atomic_t read_mmr_count; /* count of MMR reads */
662 atomic_t nmi_count; /* count of true UV NMIs */
663 unsigned long nmi_value; /* last value read from NMI MMR */
664};
665
666struct uv_cpu_nmi_s {
667 struct uv_hub_nmi_s *hub;
e1632170
CL
668 int state;
669 int pinging;
0d12ef0c
MT
670 int queries;
671 int pings;
672};
673
e1632170
CL
674DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
675
7c52198b 676#define uv_hub_nmi this_cpu_read(uv_cpu_nmi.hub)
e1632170 677#define uv_cpu_nmi_per(cpu) (per_cpu(uv_cpu_nmi, cpu))
0d12ef0c
MT
678#define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub)
679
680/* uv_cpu_nmi_states */
681#define UV_NMI_STATE_OUT 0
682#define UV_NMI_STATE_IN 1
683#define UV_NMI_STATE_DUMP 2
684#define UV_NMI_STATE_DUMP_DONE 3
685
7f1baa06
MT
686/* Update SCIR state */
687static inline void uv_set_scir_bits(unsigned char value)
688{
689 if (uv_hub_info->scir.state != value) {
690 uv_hub_info->scir.state = value;
691 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
692 }
693}
66666e50 694
39d30770
MT
695static inline unsigned long uv_scir_offset(int apicid)
696{
697 return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
698}
699
7f1baa06
MT
700static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
701{
702 if (uv_cpu_hub_info(cpu)->scir.state != value) {
39d30770
MT
703 uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
704 uv_cpu_hub_info(cpu)->scir.offset, value);
7f1baa06 705 uv_cpu_hub_info(cpu)->scir.state = value;
7f1baa06
MT
706 }
707}
952cf6d7 708
8191c9f6 709extern unsigned int uv_apicid_hibits;
56abcf24
JS
710static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
711{
8191c9f6 712 apicid |= uv_apicid_hibits;
56abcf24
JS
713 return (1UL << UVH_IPI_INT_SEND_SHFT) |
714 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
715 (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
716 (vector << UVH_IPI_INT_VECTOR_SHFT);
717}
718
66666e50
JS
719static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
720{
721 unsigned long val;
02dd0a06
RH
722 unsigned long dmode = dest_Fixed;
723
724 if (vector == NMI_VECTOR)
725 dmode = dest_NMI;
66666e50 726
56abcf24 727 val = uv_hub_ipi_value(apicid, vector, dmode);
66666e50
JS
728 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
729}
730
7a1110e8
JS
731/*
732 * Get the minimum revision number of the hub chips within the partition.
eb1e3461 733 * (See UVx_HUB_REVISION_BASE above for specific values.)
7a1110e8
JS
734 */
735static inline int uv_get_min_hub_revision_id(void)
736{
2a919596 737 return uv_hub_info->hub_revision;
7a1110e8
JS
738}
739
bc5d9940 740#endif /* CONFIG_X86_64 */
7f1baa06 741#endif /* _ASM_X86_UV_UV_HUB_H */