mm/core, x86/mm/pkeys: Differentiate instruction fetches
[linux-2.6-block.git] / arch / x86 / include / asm / mmu_context.h
CommitLineData
1965aae3
PA
1#ifndef _ASM_X86_MMU_CONTEXT_H
2#define _ASM_X86_MMU_CONTEXT_H
c3c2fee3
JF
3
4#include <asm/desc.h>
60063497 5#include <linux/atomic.h>
d17d8f9d
DH
6#include <linux/mm_types.h>
7
8#include <trace/events/tlb.h>
9
c3c2fee3
JF
10#include <asm/pgalloc.h>
11#include <asm/tlbflush.h>
12#include <asm/paravirt.h>
fe3d197f 13#include <asm/mpx.h>
c3c2fee3 14#ifndef CONFIG_PARAVIRT
c3c2fee3
JF
15static inline void paravirt_activate_mm(struct mm_struct *prev,
16 struct mm_struct *next)
17{
18}
19#endif /* !CONFIG_PARAVIRT */
20
7911d3f7 21#ifdef CONFIG_PERF_EVENTS
a6673429
AL
22extern struct static_key rdpmc_always_available;
23
7911d3f7
AL
24static inline void load_mm_cr4(struct mm_struct *mm)
25{
a833581e 26 if (static_key_false(&rdpmc_always_available) ||
a6673429 27 atomic_read(&mm->context.perf_rdpmc_allowed))
7911d3f7
AL
28 cr4_set_bits(X86_CR4_PCE);
29 else
30 cr4_clear_bits(X86_CR4_PCE);
31}
32#else
33static inline void load_mm_cr4(struct mm_struct *mm) {}
34#endif
35
a5b9e5a2 36#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
37/*
38 * ldt_structs can be allocated, used, and freed, but they are never
39 * modified while live.
40 */
41struct ldt_struct {
42 /*
43 * Xen requires page-aligned LDTs with special permissions. This is
44 * needed to prevent us from installing evil descriptors such as
45 * call gates. On native, we could merge the ldt_struct and LDT
46 * allocations, but it's not worth trying to optimize.
47 */
48 struct desc_struct *entries;
49 int size;
50};
51
a5b9e5a2
AL
52/*
53 * Used for LDT copy/destruction.
54 */
55int init_new_context(struct task_struct *tsk, struct mm_struct *mm);
56void destroy_context(struct mm_struct *mm);
57#else /* CONFIG_MODIFY_LDT_SYSCALL */
58static inline int init_new_context(struct task_struct *tsk,
59 struct mm_struct *mm)
60{
61 return 0;
62}
63static inline void destroy_context(struct mm_struct *mm) {}
64#endif
65
37868fe1
AL
66static inline void load_mm_ldt(struct mm_struct *mm)
67{
a5b9e5a2 68#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
69 struct ldt_struct *ldt;
70
71 /* lockless_dereference synchronizes with smp_store_release */
72 ldt = lockless_dereference(mm->context.ldt);
73
74 /*
75 * Any change to mm->context.ldt is followed by an IPI to all
76 * CPUs with the mm active. The LDT will not be freed until
77 * after the IPI is handled by all such CPUs. This means that,
78 * if the ldt_struct changes before we return, the values we see
79 * will be safe, and the new values will be loaded before we run
80 * any user code.
81 *
82 * NB: don't try to convert this to use RCU without extreme care.
83 * We would still need IRQs off, because we don't want to change
84 * the local LDT after an IPI loaded a newer value than the one
85 * that we can see.
86 */
87
88 if (unlikely(ldt))
89 set_ldt(ldt->entries, ldt->size);
90 else
91 clear_LDT();
a5b9e5a2
AL
92#else
93 clear_LDT();
94#endif
37868fe1
AL
95
96 DEBUG_LOCKS_WARN_ON(preemptible());
97}
98
6826c8ff
BG
99static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
100{
101#ifdef CONFIG_SMP
c6ae41e7
AS
102 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
103 this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
6826c8ff
BG
104#endif
105}
106
107static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
108 struct task_struct *tsk)
109{
110 unsigned cpu = smp_processor_id();
111
112 if (likely(prev != next)) {
6826c8ff 113#ifdef CONFIG_SMP
c6ae41e7
AS
114 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
115 this_cpu_write(cpu_tlbstate.active_mm, next);
96a388de 116#endif
78f1c4d6 117 cpumask_set_cpu(cpu, mm_cpumask(next));
6826c8ff 118
71b3c126
AL
119 /*
120 * Re-load page tables.
121 *
122 * This logic has an ordering constraint:
123 *
124 * CPU 0: Write to a PTE for 'next'
125 * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI.
126 * CPU 1: set bit 1 in next's mm_cpumask
127 * CPU 1: load from the PTE that CPU 0 writes (implicit)
128 *
129 * We need to prevent an outcome in which CPU 1 observes
130 * the new PTE value and CPU 0 observes bit 1 clear in
131 * mm_cpumask. (If that occurs, then the IPI will never
132 * be sent, and CPU 0's TLB will contain a stale entry.)
133 *
134 * The bad outcome can occur if either CPU's load is
4eaffdd5 135 * reordered before that CPU's store, so both CPUs must
71b3c126
AL
136 * execute full barriers to prevent this from happening.
137 *
138 * Thus, switch_mm needs a full barrier between the
139 * store to mm_cpumask and any operation that could load
4eaffdd5
AL
140 * from next->pgd. TLB fills are special and can happen
141 * due to instruction fetches or for no reason at all,
142 * and neither LOCK nor MFENCE orders them.
143 * Fortunately, load_cr3() is serializing and gives the
144 * ordering guarantee we need.
71b3c126
AL
145 *
146 */
6826c8ff 147 load_cr3(next->pgd);
71b3c126 148
d17d8f9d 149 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
6826c8ff 150
8f898fbb 151 /* Stop flush ipis for the previous mm */
831d52bc
SS
152 cpumask_clear_cpu(cpu, mm_cpumask(prev));
153
7911d3f7
AL
154 /* Load per-mm CR4 state */
155 load_mm_cr4(next);
156
a5b9e5a2 157#ifdef CONFIG_MODIFY_LDT_SYSCALL
c4a7bba2
AL
158 /*
159 * Load the LDT, if the LDT is different.
160 *
22c4bd9f
AL
161 * It's possible that prev->context.ldt doesn't match
162 * the LDT register. This can happen if leave_mm(prev)
163 * was called and then modify_ldt changed
164 * prev->context.ldt but suppressed an IPI to this CPU.
165 * In this case, prev->context.ldt != NULL, because we
37868fe1
AL
166 * never set context.ldt to NULL while the mm still
167 * exists. That means that next->context.ldt !=
168 * prev->context.ldt, because mms never share an LDT.
c4a7bba2 169 */
6826c8ff 170 if (unlikely(prev->context.ldt != next->context.ldt))
37868fe1 171 load_mm_ldt(next);
a5b9e5a2 172#endif
6826c8ff
BG
173 }
174#ifdef CONFIG_SMP
8f898fbb 175 else {
c6ae41e7
AS
176 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
177 BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
6826c8ff 178
8f898fbb
RR
179 if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
180 /*
181 * On established mms, the mm_cpumask is only changed
182 * from irq context, from ptep_clear_flush() while in
183 * lazy tlb mode, and here. Irqs are blocked during
184 * schedule, protecting us from simultaneous changes.
185 */
186 cpumask_set_cpu(cpu, mm_cpumask(next));
71b3c126 187
8f898fbb
RR
188 /*
189 * We were in lazy tlb mode and leave_mm disabled
6826c8ff
BG
190 * tlb flush IPI delivery. We must reload CR3
191 * to make sure to use no freed page tables.
71b3c126 192 *
4eaffdd5
AL
193 * As above, load_cr3() is serializing and orders TLB
194 * fills with respect to the mm_cpumask write.
6826c8ff
BG
195 */
196 load_cr3(next->pgd);
d17d8f9d 197 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
7911d3f7 198 load_mm_cr4(next);
37868fe1 199 load_mm_ldt(next);
6826c8ff
BG
200 }
201 }
202#endif
203}
c3c2fee3
JF
204
205#define activate_mm(prev, next) \
206do { \
207 paravirt_activate_mm((prev), (next)); \
208 switch_mm((prev), (next), NULL); \
209} while (0);
210
6826c8ff
BG
211#ifdef CONFIG_X86_32
212#define deactivate_mm(tsk, mm) \
213do { \
ccbeed3a 214 lazy_load_gs(0); \
6826c8ff
BG
215} while (0)
216#else
217#define deactivate_mm(tsk, mm) \
218do { \
219 load_gs_index(0); \
220 loadsegment(fs, 0); \
221} while (0)
222#endif
c3c2fee3 223
a1ea1c03
DH
224static inline void arch_dup_mmap(struct mm_struct *oldmm,
225 struct mm_struct *mm)
226{
227 paravirt_arch_dup_mmap(oldmm, mm);
228}
229
230static inline void arch_exit_mmap(struct mm_struct *mm)
231{
232 paravirt_arch_exit_mmap(mm);
233}
234
b0e9b09b
DH
235#ifdef CONFIG_X86_64
236static inline bool is_64bit_mm(struct mm_struct *mm)
237{
238 return !config_enabled(CONFIG_IA32_EMULATION) ||
239 !(mm->context.ia32_compat == TIF_IA32);
240}
241#else
242static inline bool is_64bit_mm(struct mm_struct *mm)
243{
244 return false;
245}
246#endif
247
fe3d197f
DH
248static inline void arch_bprm_mm_init(struct mm_struct *mm,
249 struct vm_area_struct *vma)
250{
251 mpx_mm_init(mm);
252}
253
1de4fa14
DH
254static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
255 unsigned long start, unsigned long end)
256{
c922228e
DH
257 /*
258 * mpx_notify_unmap() goes and reads a rarely-hot
259 * cacheline in the mm_struct. That can be expensive
260 * enough to be seen in profiles.
261 *
262 * The mpx_notify_unmap() call and its contents have been
263 * observed to affect munmap() performance on hardware
264 * where MPX is not present.
265 *
266 * The unlikely() optimizes for the fast case: no MPX
267 * in the CPU, or no MPX use in the process. Even if
268 * we get this wrong (in the unlikely event that MPX
269 * is widely enabled on some system) the overhead of
270 * MPX itself (reading bounds tables) is expected to
271 * overwhelm the overhead of getting this unlikely()
272 * consistently wrong.
273 */
274 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
275 mpx_notify_unmap(mm, vma, start, end);
1de4fa14
DH
276}
277
8f62c883
DH
278static inline int vma_pkey(struct vm_area_struct *vma)
279{
280 u16 pkey = 0;
281#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
282 unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
283 VM_PKEY_BIT2 | VM_PKEY_BIT3;
284 pkey = (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
285#endif
286 return pkey;
287}
288
33a709b2
DH
289static inline bool __pkru_allows_pkey(u16 pkey, bool write)
290{
291 u32 pkru = read_pkru();
292
293 if (!__pkru_allows_read(pkru, pkey))
294 return false;
295 if (write && !__pkru_allows_write(pkru, pkey))
296 return false;
297
298 return true;
299}
300
301/*
302 * We only want to enforce protection keys on the current process
303 * because we effectively have no access to PKRU for other
304 * processes or any way to tell *which * PKRU in a threaded
305 * process we could use.
306 *
307 * So do not enforce things if the VMA is not from the current
308 * mm, or if we are in a kernel thread.
309 */
310static inline bool vma_is_foreign(struct vm_area_struct *vma)
311{
312 if (!current->mm)
313 return true;
314 /*
315 * Should PKRU be enforced on the access to this VMA? If
316 * the VMA is from another process, then PKRU has no
317 * relevance and should not be enforced.
318 */
319 if (current->mm != vma->vm_mm)
320 return true;
321
322 return false;
323}
324
1b2ee126 325static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
d61172b4 326 bool write, bool execute, bool foreign)
33a709b2 327{
d61172b4
DH
328 /* pkeys never affect instruction fetches */
329 if (execute)
330 return true;
33a709b2 331 /* allow access if the VMA is not one from this process */
1b2ee126 332 if (foreign || vma_is_foreign(vma))
33a709b2
DH
333 return true;
334 return __pkru_allows_pkey(vma_pkey(vma), write);
335}
336
337static inline bool arch_pte_access_permitted(pte_t pte, bool write)
338{
339 return __pkru_allows_pkey(pte_flags_pkey(pte_flags(pte)), write);
340}
341
1965aae3 342#endif /* _ASM_X86_MMU_CONTEXT_H */