Merge tag 'char-misc-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-2.6-block.git] / arch / x86 / include / asm / bitops.h
CommitLineData
1965aae3
PA
1#ifndef _ASM_X86_BITOPS_H
2#define _ASM_X86_BITOPS_H
1c54d770
JF
3
4/*
5 * Copyright 1992, Linus Torvalds.
c8399943
AK
6 *
7 * Note: inlines with more than a single statement should be marked
8 * __always_inline to avoid problems with older gcc's inlining heuristics.
1c54d770
JF
9 */
10
11#ifndef _LINUX_BITOPS_H
12#error only <linux/bitops.h> can be included directly
13#endif
14
15#include <linux/compiler.h>
16#include <asm/alternative.h>
0c44c2d0 17#include <asm/rmwcc.h>
d00a5692 18#include <asm/barrier.h>
1c54d770 19
9b710506
PA
20#if BITS_PER_LONG == 32
21# define _BITOPS_LONG_SHIFT 5
22#elif BITS_PER_LONG == 64
23# define _BITOPS_LONG_SHIFT 6
24#else
25# error "Unexpected BITS_PER_LONG"
26#endif
27
e8f380e0
BP
28#define BIT_64(n) (U64_C(1) << (n))
29
1c54d770
JF
30/*
31 * These have to be done with inline assembly: that way the bit-setting
32 * is guaranteed to be atomic. All bit operations return 0 if the bit
33 * was cleared before the operation and != 0 if it was not.
34 *
35 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
36 */
37
38#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
39/* Technically wrong, but this avoids compilation errors on some gcc
40 versions. */
1a750e0c 41#define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
1c54d770 42#else
1a750e0c 43#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
1c54d770
JF
44#endif
45
7dbceaf9 46#define ADDR BITOP_ADDR(addr)
1a750e0c
LT
47
48/*
49 * We do the locked ops that don't return the old value as
50 * a mask operation on a byte.
51 */
7dbceaf9
IM
52#define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
53#define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))
54#define CONST_MASK(nr) (1 << ((nr) & 7))
1a750e0c 55
1c54d770
JF
56/**
57 * set_bit - Atomically set a bit in memory
58 * @nr: the bit to set
59 * @addr: the address to start counting from
60 *
61 * This function is atomic and may not be reordered. See __set_bit()
62 * if you do not require the atomic guarantees.
63 *
64 * Note: there are no guarantees that this function will not be reordered
65 * on non x86 architectures, so if you are writing portable code,
66 * make sure not to rely on its reordering guarantees.
67 *
68 * Note that @nr may be almost arbitrarily large; this function is not
69 * restricted to acting on a single-word quantity.
70 */
c8399943 71static __always_inline void
9b710506 72set_bit(long nr, volatile unsigned long *addr)
1c54d770 73{
7dbceaf9
IM
74 if (IS_IMMEDIATE(nr)) {
75 asm volatile(LOCK_PREFIX "orb %1,%0"
76 : CONST_MASK_ADDR(nr, addr)
437a0a54 77 : "iq" ((u8)CONST_MASK(nr))
7dbceaf9
IM
78 : "memory");
79 } else {
80 asm volatile(LOCK_PREFIX "bts %1,%0"
81 : BITOP_ADDR(addr) : "Ir" (nr) : "memory");
82 }
1c54d770
JF
83}
84
85/**
86 * __set_bit - Set a bit in memory
87 * @nr: the bit to set
88 * @addr: the address to start counting from
89 *
90 * Unlike set_bit(), this function is non-atomic and may be reordered.
91 * If it's called on the same region of memory simultaneously, the effect
92 * may be that only one operation succeeds.
93 */
8dd5032d 94static __always_inline void __set_bit(long nr, volatile unsigned long *addr)
1c54d770 95{
f19dcf4a 96 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
1c54d770
JF
97}
98
1c54d770
JF
99/**
100 * clear_bit - Clears a bit in memory
101 * @nr: Bit to clear
102 * @addr: Address to start counting from
103 *
104 * clear_bit() is atomic and may not be reordered. However, it does
105 * not contain a memory barrier, so if it is used for locking purposes,
d00a5692 106 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
1c54d770
JF
107 * in order to ensure changes are visible on other processors.
108 */
c8399943 109static __always_inline void
9b710506 110clear_bit(long nr, volatile unsigned long *addr)
1c54d770 111{
7dbceaf9
IM
112 if (IS_IMMEDIATE(nr)) {
113 asm volatile(LOCK_PREFIX "andb %1,%0"
114 : CONST_MASK_ADDR(nr, addr)
437a0a54 115 : "iq" ((u8)~CONST_MASK(nr)));
7dbceaf9
IM
116 } else {
117 asm volatile(LOCK_PREFIX "btr %1,%0"
118 : BITOP_ADDR(addr)
119 : "Ir" (nr));
120 }
1c54d770
JF
121}
122
123/*
124 * clear_bit_unlock - Clears a bit in memory
125 * @nr: Bit to clear
126 * @addr: Address to start counting from
127 *
128 * clear_bit() is atomic and implies release semantics before the memory
129 * operation. It can be used for an unlock.
130 */
8dd5032d 131static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
1c54d770
JF
132{
133 barrier();
134 clear_bit(nr, addr);
135}
136
8dd5032d 137static __always_inline void __clear_bit(long nr, volatile unsigned long *addr)
1c54d770 138{
eb2b4e68 139 asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
1c54d770
JF
140}
141
142/*
143 * __clear_bit_unlock - Clears a bit in memory
144 * @nr: Bit to clear
145 * @addr: Address to start counting from
146 *
147 * __clear_bit() is non-atomic and implies release semantics before the memory
148 * operation. It can be used for an unlock if no other CPUs can concurrently
149 * modify other bits in the word.
150 *
151 * No memory barrier is required here, because x86 cannot reorder stores past
152 * older loads. Same principle as spin_unlock.
153 */
8dd5032d 154static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
1c54d770
JF
155{
156 barrier();
157 __clear_bit(nr, addr);
158}
159
1c54d770
JF
160/**
161 * __change_bit - Toggle a bit in memory
162 * @nr: the bit to change
163 * @addr: the address to start counting from
164 *
165 * Unlike change_bit(), this function is non-atomic and may be reordered.
166 * If it's called on the same region of memory simultaneously, the effect
167 * may be that only one operation succeeds.
168 */
8dd5032d 169static __always_inline void __change_bit(long nr, volatile unsigned long *addr)
1c54d770 170{
eb2b4e68 171 asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
1c54d770
JF
172}
173
174/**
175 * change_bit - Toggle a bit in memory
176 * @nr: Bit to change
177 * @addr: Address to start counting from
178 *
179 * change_bit() is atomic and may not be reordered.
180 * Note that @nr may be almost arbitrarily large; this function is not
181 * restricted to acting on a single-word quantity.
182 */
8dd5032d 183static __always_inline void change_bit(long nr, volatile unsigned long *addr)
1c54d770 184{
838e8bb7
UB
185 if (IS_IMMEDIATE(nr)) {
186 asm volatile(LOCK_PREFIX "xorb %1,%0"
187 : CONST_MASK_ADDR(nr, addr)
188 : "iq" ((u8)CONST_MASK(nr)));
189 } else {
190 asm volatile(LOCK_PREFIX "btc %1,%0"
191 : BITOP_ADDR(addr)
192 : "Ir" (nr));
193 }
1c54d770
JF
194}
195
196/**
197 * test_and_set_bit - Set a bit and return its old value
198 * @nr: Bit to set
199 * @addr: Address to count from
200 *
201 * This operation is atomic and cannot be reordered.
202 * It also implies a memory barrier.
203 */
8dd5032d 204static __always_inline int test_and_set_bit(long nr, volatile unsigned long *addr)
1c54d770 205{
e0f6dec3 206 GEN_BINARY_RMWcc(LOCK_PREFIX "bts", *addr, "Ir", nr, "%0", "c");
1c54d770
JF
207}
208
209/**
210 * test_and_set_bit_lock - Set a bit and return its old value for lock
211 * @nr: Bit to set
212 * @addr: Address to count from
213 *
214 * This is the same as test_and_set_bit on x86.
215 */
c8399943 216static __always_inline int
9b710506 217test_and_set_bit_lock(long nr, volatile unsigned long *addr)
1c54d770
JF
218{
219 return test_and_set_bit(nr, addr);
220}
221
222/**
223 * __test_and_set_bit - Set a bit and return its old value
224 * @nr: Bit to set
225 * @addr: Address to count from
226 *
227 * This operation is non-atomic and can be reordered.
228 * If two examples of this operation race, one can appear to succeed
229 * but actually fail. You must protect multiple accesses with a lock.
230 */
8dd5032d 231static __always_inline int __test_and_set_bit(long nr, volatile unsigned long *addr)
1c54d770
JF
232{
233 int oldbit;
234
eb2b4e68
SHT
235 asm("bts %2,%1\n\t"
236 "sbb %0,%0"
237 : "=r" (oldbit), ADDR
238 : "Ir" (nr));
1c54d770
JF
239 return oldbit;
240}
241
242/**
243 * test_and_clear_bit - Clear a bit and return its old value
244 * @nr: Bit to clear
245 * @addr: Address to count from
246 *
247 * This operation is atomic and cannot be reordered.
248 * It also implies a memory barrier.
249 */
8dd5032d 250static __always_inline int test_and_clear_bit(long nr, volatile unsigned long *addr)
1c54d770 251{
e0f6dec3 252 GEN_BINARY_RMWcc(LOCK_PREFIX "btr", *addr, "Ir", nr, "%0", "c");
1c54d770
JF
253}
254
255/**
256 * __test_and_clear_bit - Clear a bit and return its old value
257 * @nr: Bit to clear
258 * @addr: Address to count from
259 *
260 * This operation is non-atomic and can be reordered.
261 * If two examples of this operation race, one can appear to succeed
262 * but actually fail. You must protect multiple accesses with a lock.
d0a69d63
MT
263 *
264 * Note: the operation is performed atomically with respect to
265 * the local CPU, but not other CPUs. Portable code should not
266 * rely on this behaviour.
267 * KVM relies on this behaviour on x86 for modifying memory that is also
268 * accessed from a hypervisor on the same CPU if running in a VM: don't change
269 * this without also updating arch/x86/kernel/kvm.c
1c54d770 270 */
8dd5032d 271static __always_inline int __test_and_clear_bit(long nr, volatile unsigned long *addr)
1c54d770
JF
272{
273 int oldbit;
274
eb2b4e68 275 asm volatile("btr %2,%1\n\t"
1c54d770 276 "sbb %0,%0"
eb2b4e68
SHT
277 : "=r" (oldbit), ADDR
278 : "Ir" (nr));
1c54d770
JF
279 return oldbit;
280}
281
282/* WARNING: non atomic and it can be reordered! */
8dd5032d 283static __always_inline int __test_and_change_bit(long nr, volatile unsigned long *addr)
1c54d770
JF
284{
285 int oldbit;
286
eb2b4e68 287 asm volatile("btc %2,%1\n\t"
1c54d770 288 "sbb %0,%0"
eb2b4e68
SHT
289 : "=r" (oldbit), ADDR
290 : "Ir" (nr) : "memory");
1c54d770
JF
291
292 return oldbit;
293}
294
295/**
296 * test_and_change_bit - Change a bit and return its old value
297 * @nr: Bit to change
298 * @addr: Address to count from
299 *
300 * This operation is atomic and cannot be reordered.
301 * It also implies a memory barrier.
302 */
8dd5032d 303static __always_inline int test_and_change_bit(long nr, volatile unsigned long *addr)
1c54d770 304{
e0f6dec3 305 GEN_BINARY_RMWcc(LOCK_PREFIX "btc", *addr, "Ir", nr, "%0", "c");
1c54d770
JF
306}
307
9b710506 308static __always_inline int constant_test_bit(long nr, const volatile unsigned long *addr)
1c54d770 309{
9b710506
PA
310 return ((1UL << (nr & (BITS_PER_LONG-1))) &
311 (addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
1c54d770
JF
312}
313
8dd5032d 314static __always_inline int variable_test_bit(long nr, volatile const unsigned long *addr)
1c54d770
JF
315{
316 int oldbit;
317
eb2b4e68 318 asm volatile("bt %2,%1\n\t"
1c54d770
JF
319 "sbb %0,%0"
320 : "=r" (oldbit)
eb2b4e68 321 : "m" (*(unsigned long *)addr), "Ir" (nr));
1c54d770
JF
322
323 return oldbit;
324}
325
326#if 0 /* Fool kernel-doc since it doesn't do macros yet */
327/**
328 * test_bit - Determine whether a bit is set
329 * @nr: bit number to test
330 * @addr: Address to start counting from
331 */
332static int test_bit(int nr, const volatile unsigned long *addr);
333#endif
334
f19dcf4a
JP
335#define test_bit(nr, addr) \
336 (__builtin_constant_p((nr)) \
337 ? constant_test_bit((nr), (addr)) \
338 : variable_test_bit((nr), (addr)))
1c54d770 339
12d9c842
AH
340/**
341 * __ffs - find first set bit in word
342 * @word: The word to search
343 *
344 * Undefined if no bit exists, so code should check against 0 first.
345 */
8dd5032d 346static __always_inline unsigned long __ffs(unsigned long word)
12d9c842 347{
e26a44a2 348 asm("rep; bsf %1,%0"
f19dcf4a
JP
349 : "=r" (word)
350 : "rm" (word));
12d9c842
AH
351 return word;
352}
353
354/**
355 * ffz - find first zero bit in word
356 * @word: The word to search
357 *
358 * Undefined if no zero exists, so code should check against ~0UL first.
359 */
8dd5032d 360static __always_inline unsigned long ffz(unsigned long word)
12d9c842 361{
e26a44a2 362 asm("rep; bsf %1,%0"
f19dcf4a
JP
363 : "=r" (word)
364 : "r" (~word));
12d9c842
AH
365 return word;
366}
367
368/*
369 * __fls: find last set bit in word
370 * @word: The word to search
371 *
8450e853 372 * Undefined if no set bit exists, so code should check against 0 first.
12d9c842 373 */
8dd5032d 374static __always_inline unsigned long __fls(unsigned long word)
12d9c842 375{
f19dcf4a
JP
376 asm("bsr %1,%0"
377 : "=r" (word)
378 : "rm" (word));
12d9c842
AH
379 return word;
380}
381
83d99df7
PA
382#undef ADDR
383
12d9c842
AH
384#ifdef __KERNEL__
385/**
386 * ffs - find first set bit in word
387 * @x: the word to search
388 *
389 * This is defined the same way as the libc and compiler builtin ffs
390 * routines, therefore differs in spirit from the other bitops.
391 *
392 * ffs(value) returns 0 if value is 0 or the position of the first
393 * set bit if value is nonzero. The first (least significant) bit
394 * is at position 1.
395 */
8dd5032d 396static __always_inline int ffs(int x)
12d9c842
AH
397{
398 int r;
ca3d30cc
DH
399
400#ifdef CONFIG_X86_64
401 /*
402 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
403 * dest reg is undefined if x==0, but their CPU architect says its
404 * value is written to set it to the same as before, except that the
405 * top 32 bits will be cleared.
406 *
407 * We cannot do this on 32 bits because at the very least some
408 * 486 CPUs did not behave this way.
409 */
ca3d30cc
DH
410 asm("bsfl %1,%0"
411 : "=r" (r)
1edfbb41 412 : "rm" (x), "0" (-1));
ca3d30cc 413#elif defined(CONFIG_X86_CMOV)
f19dcf4a
JP
414 asm("bsfl %1,%0\n\t"
415 "cmovzl %2,%0"
ca3d30cc 416 : "=&r" (r) : "rm" (x), "r" (-1));
12d9c842 417#else
f19dcf4a
JP
418 asm("bsfl %1,%0\n\t"
419 "jnz 1f\n\t"
420 "movl $-1,%0\n"
421 "1:" : "=r" (r) : "rm" (x));
12d9c842
AH
422#endif
423 return r + 1;
424}
425
426/**
427 * fls - find last set bit in word
428 * @x: the word to search
429 *
430 * This is defined in a similar way as the libc and compiler builtin
431 * ffs, but returns the position of the most significant set bit.
432 *
433 * fls(value) returns 0 if value is 0 or the position of the last
434 * set bit if value is nonzero. The last (most significant) bit is
435 * at position 32.
436 */
8dd5032d 437static __always_inline int fls(int x)
12d9c842
AH
438{
439 int r;
ca3d30cc
DH
440
441#ifdef CONFIG_X86_64
442 /*
443 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
444 * dest reg is undefined if x==0, but their CPU architect says its
445 * value is written to set it to the same as before, except that the
446 * top 32 bits will be cleared.
447 *
448 * We cannot do this on 32 bits because at the very least some
449 * 486 CPUs did not behave this way.
450 */
ca3d30cc
DH
451 asm("bsrl %1,%0"
452 : "=r" (r)
1edfbb41 453 : "rm" (x), "0" (-1));
ca3d30cc 454#elif defined(CONFIG_X86_CMOV)
f19dcf4a
JP
455 asm("bsrl %1,%0\n\t"
456 "cmovzl %2,%0"
457 : "=&r" (r) : "rm" (x), "rm" (-1));
12d9c842 458#else
f19dcf4a
JP
459 asm("bsrl %1,%0\n\t"
460 "jnz 1f\n\t"
461 "movl $-1,%0\n"
462 "1:" : "=r" (r) : "rm" (x));
12d9c842
AH
463#endif
464 return r + 1;
465}
d66462f5 466
ca3d30cc
DH
467/**
468 * fls64 - find last set bit in a 64-bit word
469 * @x: the word to search
470 *
471 * This is defined in a similar way as the libc and compiler builtin
472 * ffsll, but returns the position of the most significant set bit.
473 *
474 * fls64(value) returns 0 if value is 0 or the position of the last
475 * set bit if value is nonzero. The last (most significant) bit is
476 * at position 64.
477 */
478#ifdef CONFIG_X86_64
479static __always_inline int fls64(__u64 x)
480{
1edfbb41 481 int bitpos = -1;
ca3d30cc
DH
482 /*
483 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
484 * dest reg is undefined if x==0, but their CPU architect says its
485 * value is written to set it to the same as before.
486 */
1edfbb41 487 asm("bsrq %1,%q0"
ca3d30cc
DH
488 : "+r" (bitpos)
489 : "rm" (x));
490 return bitpos + 1;
491}
492#else
493#include <asm-generic/bitops/fls64.h>
494#endif
495
708ff2a0
AM
496#include <asm-generic/bitops/find.h>
497
d66462f5
AH
498#include <asm-generic/bitops/sched.h>
499
d61931d8
BP
500#include <asm/arch_hweight.h>
501
502#include <asm-generic/bitops/const_hweight.h>
1c54d770 503
861b5ae7 504#include <asm-generic/bitops/le.h>
d66462f5 505
148817ba 506#include <asm-generic/bitops/ext2-atomic-setbit.h>
d66462f5 507
d66462f5 508#endif /* __KERNEL__ */
1965aae3 509#endif /* _ASM_X86_BITOPS_H */