x86/asm/32: Add ENDs to some functions and relabel with SYM_CODE_*
[linux-2.6-block.git] / arch / x86 / entry / entry_32.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4 2/*
a49976d1 3 * Copyright (C) 1991,1992 Linus Torvalds
1da177e4 4 *
a49976d1 5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
1da177e4 6 *
39e8701f 7 * Stack layout while running C code:
a49976d1
IM
8 * ptrace needs to have all registers on the stack.
9 * If the order here is changed, it needs to be
10 * updated in fork.c:copy_process(), signal.c:do_signal(),
1da177e4
LT
11 * ptrace.c and ptrace.h
12 *
13 * 0(%esp) - %ebx
14 * 4(%esp) - %ecx
15 * 8(%esp) - %edx
9b47feb7 16 * C(%esp) - %esi
1da177e4
LT
17 * 10(%esp) - %edi
18 * 14(%esp) - %ebp
19 * 18(%esp) - %eax
20 * 1C(%esp) - %ds
21 * 20(%esp) - %es
464d1a78 22 * 24(%esp) - %fs
ccbeed3a
TH
23 * 28(%esp) - %gs saved iff !CONFIG_X86_32_LAZY_GS
24 * 2C(%esp) - orig_eax
25 * 30(%esp) - %eip
26 * 34(%esp) - %cs
27 * 38(%esp) - %eflags
28 * 3C(%esp) - %oldesp
29 * 40(%esp) - %oldss
1da177e4
LT
30 */
31
1da177e4 32#include <linux/linkage.h>
d7e7528b 33#include <linux/err.h>
1da177e4 34#include <asm/thread_info.h>
55f327fa 35#include <asm/irqflags.h>
1da177e4
LT
36#include <asm/errno.h>
37#include <asm/segment.h>
38#include <asm/smp.h>
be44d2aa 39#include <asm/percpu.h>
ab68ed98 40#include <asm/processor-flags.h>
9b7dc567 41#include <asm/irq_vectors.h>
cd4d09ec 42#include <asm/cpufeatures.h>
b4ca46e4 43#include <asm/alternative-asm.h>
6837a54d 44#include <asm/asm.h>
e59d1b0a 45#include <asm/smap.h>
4d516f41 46#include <asm/frame.h>
2641f08b 47#include <asm/nospec-branch.h>
1da177e4 48
afaef01c
AP
49#include "calling.h"
50
ea714547
JO
51 .section .entry.text, "ax"
52
139ec7c4
RR
53/*
54 * We use macros for low-level operations which need to be overridden
55 * for paravirtualization. The following will never clobber any registers:
56 * INTERRUPT_RETURN (aka. "iret")
57 * GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
d75cd22f 58 * ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
139ec7c4
RR
59 *
60 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
61 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
62 * Allowing a register to be clobbered can shrink the paravirt replacement
63 * enough to patch inline, increasing performance.
64 */
65
48593975 66#ifdef CONFIG_PREEMPTION
a49976d1 67# define preempt_stop(clobbers) DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
1da177e4 68#else
a49976d1 69# define preempt_stop(clobbers)
1da177e4
LT
70#endif
71
55f327fa
IM
72.macro TRACE_IRQS_IRET
73#ifdef CONFIG_TRACE_IRQFLAGS
a49976d1
IM
74 testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off?
75 jz 1f
55f327fa
IM
76 TRACE_IRQS_ON
771:
78#endif
79.endm
80
e464fb9f
JR
81#define PTI_SWITCH_MASK (1 << PAGE_SHIFT)
82
ccbeed3a
TH
83/*
84 * User gs save/restore
85 *
86 * %gs is used for userland TLS and kernel only uses it for stack
87 * canary which is required to be at %gs:20 by gcc. Read the comment
88 * at the top of stackprotector.h for more info.
89 *
90 * Local labels 98 and 99 are used.
91 */
92#ifdef CONFIG_X86_32_LAZY_GS
93
94 /* unfortunately push/pop can't be no-op */
95.macro PUSH_GS
a49976d1 96 pushl $0
ccbeed3a
TH
97.endm
98.macro POP_GS pop=0
a49976d1 99 addl $(4 + \pop), %esp
ccbeed3a
TH
100.endm
101.macro POP_GS_EX
102.endm
103
104 /* all the rest are no-op */
105.macro PTGS_TO_GS
106.endm
107.macro PTGS_TO_GS_EX
108.endm
109.macro GS_TO_REG reg
110.endm
111.macro REG_TO_PTGS reg
112.endm
113.macro SET_KERNEL_GS reg
114.endm
115
116#else /* CONFIG_X86_32_LAZY_GS */
117
118.macro PUSH_GS
a49976d1 119 pushl %gs
ccbeed3a
TH
120.endm
121
122.macro POP_GS pop=0
a49976d1 12398: popl %gs
ccbeed3a 124 .if \pop <> 0
9b47feb7 125 add $\pop, %esp
ccbeed3a
TH
126 .endif
127.endm
128.macro POP_GS_EX
129.pushsection .fixup, "ax"
a49976d1
IM
13099: movl $0, (%esp)
131 jmp 98b
ccbeed3a 132.popsection
a49976d1 133 _ASM_EXTABLE(98b, 99b)
ccbeed3a
TH
134.endm
135
136.macro PTGS_TO_GS
a49976d1 13798: mov PT_GS(%esp), %gs
ccbeed3a
TH
138.endm
139.macro PTGS_TO_GS_EX
140.pushsection .fixup, "ax"
a49976d1
IM
14199: movl $0, PT_GS(%esp)
142 jmp 98b
ccbeed3a 143.popsection
a49976d1 144 _ASM_EXTABLE(98b, 99b)
ccbeed3a
TH
145.endm
146
147.macro GS_TO_REG reg
a49976d1 148 movl %gs, \reg
ccbeed3a
TH
149.endm
150.macro REG_TO_PTGS reg
a49976d1 151 movl \reg, PT_GS(%esp)
ccbeed3a
TH
152.endm
153.macro SET_KERNEL_GS reg
a49976d1
IM
154 movl $(__KERNEL_STACK_CANARY), \reg
155 movl \reg, %gs
ccbeed3a
TH
156.endm
157
a49976d1 158#endif /* CONFIG_X86_32_LAZY_GS */
ccbeed3a 159
e464fb9f
JR
160/* Unconditionally switch to user cr3 */
161.macro SWITCH_TO_USER_CR3 scratch_reg:req
162 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
163
164 movl %cr3, \scratch_reg
165 orl $PTI_SWITCH_MASK, \scratch_reg
166 movl \scratch_reg, %cr3
167.Lend_\@:
168.endm
169
97193702
JR
170.macro BUG_IF_WRONG_CR3 no_user_check=0
171#ifdef CONFIG_DEBUG_ENTRY
172 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
173 .if \no_user_check == 0
174 /* coming from usermode? */
175 testl $SEGMENT_RPL_MASK, PT_CS(%esp)
176 jz .Lend_\@
177 .endif
178 /* On user-cr3? */
179 movl %cr3, %eax
180 testl $PTI_SWITCH_MASK, %eax
181 jnz .Lend_\@
182 /* From userspace with kernel cr3 - BUG */
183 ud2
184.Lend_\@:
185#endif
186.endm
187
e464fb9f
JR
188/*
189 * Switch to kernel cr3 if not already loaded and return current cr3 in
190 * \scratch_reg
191 */
192.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
193 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
194 movl %cr3, \scratch_reg
195 /* Test if we are already on kernel CR3 */
196 testl $PTI_SWITCH_MASK, \scratch_reg
197 jz .Lend_\@
198 andl $(~PTI_SWITCH_MASK), \scratch_reg
199 movl \scratch_reg, %cr3
200 /* Return original CR3 in \scratch_reg */
201 orl $PTI_SWITCH_MASK, \scratch_reg
202.Lend_\@:
203.endm
204
3c88c692
PZ
205#define CS_FROM_ENTRY_STACK (1 << 31)
206#define CS_FROM_USER_CR3 (1 << 30)
207#define CS_FROM_KERNEL (1 << 29)
208
209.macro FIXUP_FRAME
210 /*
211 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
212 * Clear them in case hardware didn't do this for us.
213 */
214 andl $0x0000ffff, 3*4(%esp)
215
216#ifdef CONFIG_VM86
217 testl $X86_EFLAGS_VM, 4*4(%esp)
218 jnz .Lfrom_usermode_no_fixup_\@
219#endif
220 testl $SEGMENT_RPL_MASK, 3*4(%esp)
221 jnz .Lfrom_usermode_no_fixup_\@
222
223 orl $CS_FROM_KERNEL, 3*4(%esp)
224
225 /*
226 * When we're here from kernel mode; the (exception) stack looks like:
227 *
228 * 5*4(%esp) - <previous context>
229 * 4*4(%esp) - flags
230 * 3*4(%esp) - cs
231 * 2*4(%esp) - ip
232 * 1*4(%esp) - orig_eax
233 * 0*4(%esp) - gs / function
234 *
235 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
236 * is complete and in particular regs->sp is correct. This gives us
237 * the original 5 enties as gap:
238 *
239 * 12*4(%esp) - <previous context>
240 * 11*4(%esp) - gap / flags
241 * 10*4(%esp) - gap / cs
242 * 9*4(%esp) - gap / ip
243 * 8*4(%esp) - gap / orig_eax
244 * 7*4(%esp) - gap / gs / function
245 * 6*4(%esp) - ss
246 * 5*4(%esp) - sp
247 * 4*4(%esp) - flags
248 * 3*4(%esp) - cs
249 * 2*4(%esp) - ip
250 * 1*4(%esp) - orig_eax
251 * 0*4(%esp) - gs / function
252 */
253
254 pushl %ss # ss
255 pushl %esp # sp (points at ss)
256 addl $6*4, (%esp) # point sp back at the previous context
257 pushl 6*4(%esp) # flags
258 pushl 6*4(%esp) # cs
259 pushl 6*4(%esp) # ip
260 pushl 6*4(%esp) # orig_eax
261 pushl 6*4(%esp) # gs / function
262.Lfrom_usermode_no_fixup_\@:
263.endm
264
265.macro IRET_FRAME
266 testl $CS_FROM_KERNEL, 1*4(%esp)
267 jz .Lfinished_frame_\@
268
269 /*
270 * Reconstruct the 3 entry IRET frame right after the (modified)
271 * regs->sp without lowering %esp in between, such that an NMI in the
272 * middle doesn't scribble our stack.
273 */
274 pushl %eax
275 pushl %ecx
276 movl 5*4(%esp), %eax # (modified) regs->sp
277
278 movl 4*4(%esp), %ecx # flags
279 movl %ecx, -4(%eax)
280
281 movl 3*4(%esp), %ecx # cs
282 andl $0x0000ffff, %ecx
283 movl %ecx, -8(%eax)
284
285 movl 2*4(%esp), %ecx # ip
286 movl %ecx, -12(%eax)
287
288 movl 1*4(%esp), %ecx # eax
289 movl %ecx, -16(%eax)
290
291 popl %ecx
292 lea -16(%eax), %esp
293 popl %eax
294.Lfinished_frame_\@:
295.endm
296
e67f1c11 297.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0
f0d96110 298 cld
e67f1c11 299.if \skip_gs == 0
ccbeed3a 300 PUSH_GS
e67f1c11 301.endif
3c88c692 302 FIXUP_FRAME
a49976d1
IM
303 pushl %fs
304 pushl %es
305 pushl %ds
150ac78d 306 pushl \pt_regs_ax
a49976d1
IM
307 pushl %ebp
308 pushl %edi
309 pushl %esi
310 pushl %edx
311 pushl %ecx
312 pushl %ebx
313 movl $(__USER_DS), %edx
314 movl %edx, %ds
315 movl %edx, %es
316 movl $(__KERNEL_PERCPU), %edx
317 movl %edx, %fs
e67f1c11 318.if \skip_gs == 0
ccbeed3a 319 SET_KERNEL_GS %edx
e67f1c11 320.endif
45d7b255
JR
321 /* Switch to kernel stack if necessary */
322.if \switch_stacks > 0
323 SWITCH_TO_KERNEL_STACK
324.endif
f0d96110 325.endm
1da177e4 326
b65bef40 327.macro SAVE_ALL_NMI cr3_reg:req
8b376fae 328 SAVE_ALL
b65bef40 329
97193702
JR
330 BUG_IF_WRONG_CR3
331
b65bef40
JR
332 /*
333 * Now switch the CR3 when PTI is enabled.
334 *
335 * We can enter with either user or kernel cr3, the code will
336 * store the old cr3 in \cr3_reg and switches to the kernel cr3
337 * if necessary.
338 */
339 SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
340
341.Lend_\@:
8b376fae 342.endm
97193702 343
f0d96110 344.macro RESTORE_INT_REGS
a49976d1
IM
345 popl %ebx
346 popl %ecx
347 popl %edx
348 popl %esi
349 popl %edi
350 popl %ebp
351 popl %eax
f0d96110 352.endm
1da177e4 353
ccbeed3a 354.macro RESTORE_REGS pop=0
f0d96110 355 RESTORE_INT_REGS
a49976d1
IM
3561: popl %ds
3572: popl %es
3583: popl %fs
ccbeed3a 359 POP_GS \pop
f0d96110 360.pushsection .fixup, "ax"
a49976d1
IM
3614: movl $0, (%esp)
362 jmp 1b
3635: movl $0, (%esp)
364 jmp 2b
3656: movl $0, (%esp)
366 jmp 3b
f95d47ca 367.popsection
a49976d1
IM
368 _ASM_EXTABLE(1b, 4b)
369 _ASM_EXTABLE(2b, 5b)
370 _ASM_EXTABLE(3b, 6b)
ccbeed3a 371 POP_GS_EX
f0d96110 372.endm
1da177e4 373
b65bef40
JR
374.macro RESTORE_ALL_NMI cr3_reg:req pop=0
375 /*
376 * Now switch the CR3 when PTI is enabled.
377 *
378 * We enter with kernel cr3 and switch the cr3 to the value
379 * stored on \cr3_reg, which is either a user or a kernel cr3.
380 */
381 ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
382
383 testl $PTI_SWITCH_MASK, \cr3_reg
384 jz .Lswitched_\@
385
386 /* User cr3 in \cr3_reg - write it to hardware cr3 */
387 movl \cr3_reg, %cr3
388
389.Lswitched_\@:
390
97193702
JR
391 BUG_IF_WRONG_CR3
392
8b376fae
JR
393 RESTORE_REGS pop=\pop
394.endm
395
46eabca2
JR
396.macro CHECK_AND_APPLY_ESPFIX
397#ifdef CONFIG_X86_ESPFIX32
398#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8)
399
400 ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX
401
402 movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS
403 /*
404 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
405 * are returning to the kernel.
406 * See comments in process.c:copy_thread() for details.
407 */
408 movb PT_OLDSS(%esp), %ah
409 movb PT_CS(%esp), %al
410 andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
411 cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax
412 jne .Lend_\@ # returning to user-space with LDT SS
413
414 /*
415 * Setup and switch to ESPFIX stack
416 *
417 * We're returning to userspace with a 16 bit stack. The CPU will not
418 * restore the high word of ESP for us on executing iret... This is an
419 * "official" bug of all the x86-compatible CPUs, which we can work
420 * around to make dosemu and wine happy. We do this by preloading the
421 * high word of ESP with the high word of the userspace ESP while
422 * compensating for the offset by changing to the ESPFIX segment with
423 * a base address that matches for the difference.
424 */
425 mov %esp, %edx /* load kernel esp */
426 mov PT_OLDESP(%esp), %eax /* load userspace esp */
427 mov %dx, %ax /* eax: new kernel esp */
428 sub %eax, %edx /* offset (low word is 0) */
429 shr $16, %edx
430 mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */
431 mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */
432 pushl $__ESPFIX_SS
433 pushl %eax /* new kernel esp */
434 /*
435 * Disable interrupts, but do not irqtrace this section: we
436 * will soon execute iret and the tracer was already set to
437 * the irqstate after the IRET:
438 */
439 DISABLE_INTERRUPTS(CLBR_ANY)
440 lss (%esp), %esp /* switch to espfix segment */
441.Lend_\@:
442#endif /* CONFIG_X86_ESPFIX32 */
443.endm
45d7b255 444
45d7b255
JR
445/*
446 * Called with pt_regs fully populated and kernel segments loaded,
447 * so we can access PER_CPU and use the integer registers.
448 *
449 * We need to be very careful here with the %esp switch, because an NMI
450 * can happen everywhere. If the NMI handler finds itself on the
451 * entry-stack, it will overwrite the task-stack and everything we
452 * copied there. So allocate the stack-frame on the task-stack and
453 * switch to it before we do any copying.
454 */
b92a165d 455
45d7b255
JR
456.macro SWITCH_TO_KERNEL_STACK
457
458 ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV
459
97193702
JR
460 BUG_IF_WRONG_CR3
461
e464fb9f
JR
462 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
463
464 /*
465 * %eax now contains the entry cr3 and we carry it forward in
466 * that register for the time this macro runs
467 */
468
45d7b255
JR
469 /* Are we on the entry stack? Bail out if not! */
470 movl PER_CPU_VAR(cpu_entry_area), %ecx
471 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
472 subl %esp, %ecx /* ecx = (end of entry_stack) - esp */
473 cmpl $SIZEOF_entry_stack, %ecx
474 jae .Lend_\@
475
476 /* Load stack pointer into %esi and %edi */
477 movl %esp, %esi
478 movl %esi, %edi
479
480 /* Move %edi to the top of the entry stack */
481 andl $(MASK_entry_stack), %edi
482 addl $(SIZEOF_entry_stack), %edi
483
484 /* Load top of task-stack into %edi */
485 movl TSS_entry2task_stack(%edi), %edi
486
b92a165d 487 /* Special case - entry from kernel mode via entry stack */
d5e84c21
JR
488#ifdef CONFIG_VM86
489 movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS
490 movb PT_CS(%esp), %cl
491 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
492#else
493 movl PT_CS(%esp), %ecx
494 andl $SEGMENT_RPL_MASK, %ecx
495#endif
496 cmpl $USER_RPL, %ecx
497 jb .Lentry_from_kernel_\@
b92a165d 498
45d7b255
JR
499 /* Bytes to copy */
500 movl $PTREGS_SIZE, %ecx
501
502#ifdef CONFIG_VM86
503 testl $X86_EFLAGS_VM, PT_EFLAGS(%esi)
504 jz .Lcopy_pt_regs_\@
505
506 /*
507 * Stack-frame contains 4 additional segment registers when
508 * coming from VM86 mode
509 */
510 addl $(4 * 4), %ecx
511
45d7b255 512#endif
b92a165d 513.Lcopy_pt_regs_\@:
45d7b255
JR
514
515 /* Allocate frame on task-stack */
516 subl %ecx, %edi
517
518 /* Switch to task-stack */
519 movl %edi, %esp
520
521 /*
522 * We are now on the task-stack and can safely copy over the
523 * stack-frame
524 */
525 shrl $2, %ecx
526 cld
527 rep movsl
528
b92a165d
JR
529 jmp .Lend_\@
530
531.Lentry_from_kernel_\@:
532
533 /*
534 * This handles the case when we enter the kernel from
535 * kernel-mode and %esp points to the entry-stack. When this
536 * happens we need to switch to the task-stack to run C code,
537 * but switch back to the entry-stack again when we approach
538 * iret and return to the interrupted code-path. This usually
539 * happens when we hit an exception while restoring user-space
e464fb9f
JR
540 * segment registers on the way back to user-space or when the
541 * sysenter handler runs with eflags.tf set.
b92a165d
JR
542 *
543 * When we switch to the task-stack here, we can't trust the
544 * contents of the entry-stack anymore, as the exception handler
545 * might be scheduled out or moved to another CPU. Therefore we
546 * copy the complete entry-stack to the task-stack and set a
547 * marker in the iret-frame (bit 31 of the CS dword) to detect
548 * what we've done on the iret path.
549 *
550 * On the iret path we copy everything back and switch to the
551 * entry-stack, so that the interrupted kernel code-path
552 * continues on the same stack it was interrupted with.
553 *
554 * Be aware that an NMI can happen anytime in this code.
555 *
556 * %esi: Entry-Stack pointer (same as %esp)
557 * %edi: Top of the task stack
e464fb9f 558 * %eax: CR3 on kernel entry
b92a165d
JR
559 */
560
561 /* Calculate number of bytes on the entry stack in %ecx */
562 movl %esi, %ecx
563
564 /* %ecx to the top of entry-stack */
565 andl $(MASK_entry_stack), %ecx
566 addl $(SIZEOF_entry_stack), %ecx
567
568 /* Number of bytes on the entry stack to %ecx */
569 sub %esi, %ecx
570
571 /* Mark stackframe as coming from entry stack */
572 orl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
573
e464fb9f
JR
574 /*
575 * Test the cr3 used to enter the kernel and add a marker
576 * so that we can switch back to it before iret.
577 */
578 testl $PTI_SWITCH_MASK, %eax
579 jz .Lcopy_pt_regs_\@
580 orl $CS_FROM_USER_CR3, PT_CS(%esp)
581
b92a165d
JR
582 /*
583 * %esi and %edi are unchanged, %ecx contains the number of
584 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
585 * the stack-frame on task-stack and copy everything over
586 */
587 jmp .Lcopy_pt_regs_\@
588
45d7b255
JR
589.Lend_\@:
590.endm
591
e5862d05
JR
592/*
593 * Switch back from the kernel stack to the entry stack.
594 *
595 * The %esp register must point to pt_regs on the task stack. It will
596 * first calculate the size of the stack-frame to copy, depending on
597 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
598 * to copy the contents of the stack over to the entry stack.
599 *
600 * We must be very careful here, as we can't trust the contents of the
601 * task-stack once we switched to the entry-stack. When an NMI happens
602 * while on the entry-stack, the NMI handler will switch back to the top
603 * of the task stack, overwriting our stack-frame we are about to copy.
604 * Therefore we switch the stack only after everything is copied over.
605 */
606.macro SWITCH_TO_ENTRY_STACK
607
608 ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV
609
610 /* Bytes to copy */
611 movl $PTREGS_SIZE, %ecx
612
613#ifdef CONFIG_VM86
614 testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp)
615 jz .Lcopy_pt_regs_\@
616
617 /* Additional 4 registers to copy when returning to VM86 mode */
618 addl $(4 * 4), %ecx
619
620.Lcopy_pt_regs_\@:
621#endif
622
623 /* Initialize source and destination for movsl */
624 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
625 subl %ecx, %edi
626 movl %esp, %esi
627
628 /* Save future stack pointer in %ebx */
629 movl %edi, %ebx
630
631 /* Copy over the stack-frame */
632 shrl $2, %ecx
633 cld
634 rep movsl
635
636 /*
637 * Switch to entry-stack - needs to happen after everything is
638 * copied because the NMI handler will overwrite the task-stack
639 * when on entry-stack
640 */
641 movl %ebx, %esp
642
643.Lend_\@:
644.endm
645
b92a165d
JR
646/*
647 * This macro handles the case when we return to kernel-mode on the iret
e464fb9f 648 * path and have to switch back to the entry stack and/or user-cr3
b92a165d
JR
649 *
650 * See the comments below the .Lentry_from_kernel_\@ label in the
651 * SWITCH_TO_KERNEL_STACK macro for more details.
652 */
653.macro PARANOID_EXIT_TO_KERNEL_MODE
654
655 /*
656 * Test if we entered the kernel with the entry-stack. Most
657 * likely we did not, because this code only runs on the
658 * return-to-kernel path.
659 */
660 testl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
661 jz .Lend_\@
662
663 /* Unlikely slow-path */
664
665 /* Clear marker from stack-frame */
666 andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
667
668 /* Copy the remaining task-stack contents to entry-stack */
669 movl %esp, %esi
670 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
671
672 /* Bytes on the task-stack to ecx */
673 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
674 subl %esi, %ecx
675
676 /* Allocate stack-frame on entry-stack */
677 subl %ecx, %edi
678
679 /*
680 * Save future stack-pointer, we must not switch until the
681 * copy is done, otherwise the NMI handler could destroy the
682 * contents of the task-stack we are about to copy.
683 */
684 movl %edi, %ebx
685
686 /* Do the copy */
687 shrl $2, %ecx
688 cld
689 rep movsl
690
691 /* Safe to switch to entry-stack now */
692 movl %ebx, %esp
693
e464fb9f
JR
694 /*
695 * We came from entry-stack and need to check if we also need to
696 * switch back to user cr3.
697 */
698 testl $CS_FROM_USER_CR3, PT_CS(%esp)
699 jz .Lend_\@
700
701 /* Clear marker from stack-frame */
702 andl $(~CS_FROM_USER_CR3), PT_CS(%esp)
703
704 SWITCH_TO_USER_CR3 scratch_reg=%eax
705
b92a165d
JR
706.Lend_\@:
707.endm
0100301b
BG
708/*
709 * %eax: prev task
710 * %edx: next task
711 */
712ENTRY(__switch_to_asm)
713 /*
714 * Save callee-saved registers
715 * This must match the order in struct inactive_task_frame
716 */
717 pushl %ebp
718 pushl %ebx
719 pushl %edi
720 pushl %esi
6690e86b 721 pushfl
0100301b
BG
722
723 /* switch stack */
724 movl %esp, TASK_threadsp(%eax)
725 movl TASK_threadsp(%edx), %esp
726
050e9baa 727#ifdef CONFIG_STACKPROTECTOR
0100301b
BG
728 movl TASK_stack_canary(%edx), %ebx
729 movl %ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
730#endif
731
c995efd5
DW
732#ifdef CONFIG_RETPOLINE
733 /*
734 * When switching from a shallower to a deeper call stack
735 * the RSB may either underflow or use entries populated
736 * with userspace addresses. On CPUs where those concerns
737 * exist, overwrite the RSB with entries which capture
738 * speculative execution to prevent attack.
739 */
d1c99108 740 FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
c995efd5
DW
741#endif
742
0100301b 743 /* restore callee-saved registers */
6690e86b 744 popfl
0100301b
BG
745 popl %esi
746 popl %edi
747 popl %ebx
748 popl %ebp
749
750 jmp __switch_to
751END(__switch_to_asm)
752
ebd57499
JP
753/*
754 * The unwinder expects the last frame on the stack to always be at the same
755 * offset from the end of the page, which allows it to validate the stack.
756 * Calling schedule_tail() directly would break that convention because its an
757 * asmlinkage function so its argument has to be pushed on the stack. This
758 * wrapper creates a proper "end of stack" frame header before the call.
759 */
760ENTRY(schedule_tail_wrapper)
761 FRAME_BEGIN
762
763 pushl %eax
764 call schedule_tail
765 popl %eax
766
767 FRAME_END
768 ret
769ENDPROC(schedule_tail_wrapper)
0100301b
BG
770/*
771 * A newly forked process directly context switches into this address.
772 *
773 * eax: prev task we switched from
616d2483
BG
774 * ebx: kernel thread func (NULL for user thread)
775 * edi: kernel thread arg
0100301b 776 */
1da177e4 777ENTRY(ret_from_fork)
ebd57499 778 call schedule_tail_wrapper
39e8701f 779
616d2483
BG
780 testl %ebx, %ebx
781 jnz 1f /* kernel threads are uncommon */
782
7832:
39e8701f 784 /* When we fork, we trace the syscall return in the child, too. */
ebd57499 785 movl %esp, %eax
39e8701f 786 call syscall_return_slowpath
afaef01c 787 STACKLEAK_ERASE
39e8701f 788 jmp restore_all
39e8701f 789
616d2483
BG
790 /* kernel thread */
7911: movl %edi, %eax
2641f08b 792 CALL_NOSPEC %ebx
39e8701f 793 /*
616d2483
BG
794 * A kernel thread is allowed to return here after successfully
795 * calling do_execve(). Exit to userspace to complete the execve()
796 * syscall.
39e8701f 797 */
616d2483
BG
798 movl $0, PT_EAX(%esp)
799 jmp 2b
800END(ret_from_fork)
6783eaa2 801
1da177e4
LT
802/*
803 * Return to user mode is not as complex as all this looks,
804 * but we want the default path for a system call return to
805 * go as quickly as possible which is why some of this is
806 * less clear than it otherwise should be.
807 */
808
809 # userspace resumption stub bypassing syscall exit tracing
cc66936e 810SYM_CODE_START_LOCAL(ret_from_exception)
139ec7c4 811 preempt_stop(CLBR_ANY)
1da177e4 812ret_from_intr:
29a2e283 813#ifdef CONFIG_VM86
a49976d1
IM
814 movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS
815 movb PT_CS(%esp), %al
816 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
29a2e283
DA
817#else
818 /*
6783eaa2 819 * We can be coming here from child spawned by kernel_thread().
29a2e283 820 */
a49976d1
IM
821 movl PT_CS(%esp), %eax
822 andl $SEGMENT_RPL_MASK, %eax
29a2e283 823#endif
a49976d1 824 cmpl $USER_RPL, %eax
5e1246ff 825 jb restore_all_kernel # not returning to v8086 or userspace
f95d47ca 826
cc66936e 827SYM_INNER_LABEL_ALIGN(resume_userspace, SYM_L_LOCAL)
5d73fc70 828 DISABLE_INTERRUPTS(CLBR_ANY)
e32e58a9 829 TRACE_IRQS_OFF
5d73fc70
AL
830 movl %esp, %eax
831 call prepare_exit_to_usermode
a49976d1 832 jmp restore_all
cc66936e 833SYM_CODE_END(ret_from_exception)
1da177e4 834
b4edca15 835SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
f2b37575
AL
836/*
837 * All code from here through __end_SYSENTER_singlestep_region is subject
838 * to being single-stepped if a user program sets TF and executes SYSENTER.
839 * There is absolutely nothing that we can do to prevent this from happening
840 * (thanks Intel!). To keep our handling of this situation as simple as
841 * possible, we handle TF just like AC and NT, except that our #DB handler
842 * will ignore all of the single-step traps generated in this range.
843 */
844
28c11b0f 845#ifdef CONFIG_XEN_PV
f2b37575
AL
846/*
847 * Xen doesn't set %esp to be precisely what the normal SYSENTER
848 * entry point expects, so fix it up before using the normal path.
849 */
78762b0e 850SYM_CODE_START(xen_sysenter_target)
f2b37575 851 addl $5*4, %esp /* remove xen-provided frame */
1b00255f 852 jmp .Lsysenter_past_esp
78762b0e 853SYM_CODE_END(xen_sysenter_target)
f2b37575
AL
854#endif
855
fda57b22
AL
856/*
857 * 32-bit SYSENTER entry.
858 *
859 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
860 * if X86_FEATURE_SEP is available. This is the preferred system call
861 * entry on 32-bit systems.
862 *
863 * The SYSENTER instruction, in principle, should *only* occur in the
864 * vDSO. In practice, a small number of Android devices were shipped
865 * with a copy of Bionic that inlined a SYSENTER instruction. This
866 * never happened in any of Google's Bionic versions -- it only happened
867 * in a narrow range of Intel-provided versions.
868 *
869 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
870 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
871 * SYSENTER does not save anything on the stack,
872 * and does not save old EIP (!!!), ESP, or EFLAGS.
873 *
874 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
875 * user and/or vm86 state), we explicitly disable the SYSENTER
876 * instruction in vm86 mode by reprogramming the MSRs.
877 *
878 * Arguments:
879 * eax system call number
880 * ebx arg1
881 * ecx arg2
882 * edx arg3
883 * esi arg4
884 * edi arg5
885 * ebp user stack
886 * 0(%ebp) arg6
887 */
4c8cd0c5 888ENTRY(entry_SYSENTER_32)
e464fb9f
JR
889 /*
890 * On entry-stack with all userspace-regs live - save and
891 * restore eflags and %eax to use it as scratch-reg for the cr3
892 * switch.
893 */
894 pushfl
895 pushl %eax
97193702 896 BUG_IF_WRONG_CR3 no_user_check=1
e464fb9f
JR
897 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
898 popl %eax
899 popfl
900
901 /* Stack empty again, switch to task stack */
ae2e565b 902 movl TSS_entry2task_stack(%esp), %esp
e464fb9f 903
1b00255f 904.Lsysenter_past_esp:
5f310f73 905 pushl $__USER_DS /* pt_regs->ss */
30bfa7b3 906 pushl %ebp /* pt_regs->sp (stashed in bp) */
5f310f73
AL
907 pushfl /* pt_regs->flags (except IF = 0) */
908 orl $X86_EFLAGS_IF, (%esp) /* Fix IF */
909 pushl $__USER_CS /* pt_regs->cs */
910 pushl $0 /* pt_regs->ip = 0 (placeholder) */
911 pushl %eax /* pt_regs->orig_ax */
45d7b255 912 SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */
5f310f73 913
67f590e8 914 /*
f2b37575
AL
915 * SYSENTER doesn't filter flags, so we need to clear NT, AC
916 * and TF ourselves. To save a few cycles, we can check whether
67f590e8
AL
917 * either was set instead of doing an unconditional popfq.
918 * This needs to happen before enabling interrupts so that
919 * we don't get preempted with NT set.
920 *
f2b37575
AL
921 * If TF is set, we will single-step all the way to here -- do_debug
922 * will ignore all the traps. (Yes, this is slow, but so is
923 * single-stepping in general. This allows us to avoid having
924 * a more complicated code to handle the case where a user program
925 * forces us to single-step through the SYSENTER entry code.)
926 *
67f590e8
AL
927 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
928 * out-of-line as an optimization: NT is unlikely to be set in the
929 * majority of the cases and instead of polluting the I$ unnecessarily,
930 * we're keeping that code behind a branch which will predict as
931 * not-taken and therefore its instructions won't be fetched.
932 */
f2b37575 933 testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
67f590e8
AL
934 jnz .Lsysenter_fix_flags
935.Lsysenter_flags_fixed:
936
55f327fa 937 /*
5f310f73
AL
938 * User mode is traced as though IRQs are on, and SYSENTER
939 * turned them off.
e6e5494c 940 */
55f327fa 941 TRACE_IRQS_OFF
5f310f73
AL
942
943 movl %esp, %eax
944 call do_fast_syscall_32
91e2eea9
BO
945 /* XEN PV guests always use IRET path */
946 ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
947 "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
5f310f73 948
afaef01c
AP
949 STACKLEAK_ERASE
950
5f310f73
AL
951/* Opportunistic SYSEXIT */
952 TRACE_IRQS_ON /* User mode traces as IRQs on. */
e5862d05
JR
953
954 /*
955 * Setup entry stack - we keep the pointer in %eax and do the
956 * switch after almost all user-state is restored.
957 */
958
959 /* Load entry stack pointer and allocate frame for eflags/eax */
960 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
961 subl $(2*4), %eax
962
963 /* Copy eflags and eax to entry stack */
964 movl PT_EFLAGS(%esp), %edi
965 movl PT_EAX(%esp), %esi
966 movl %edi, (%eax)
967 movl %esi, 4(%eax)
968
969 /* Restore user registers and segments */
5f310f73
AL
970 movl PT_EIP(%esp), %edx /* pt_regs->ip */
971 movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */
3bd29515
AL
9721: mov PT_FS(%esp), %fs
973 PTGS_TO_GS
e5862d05 974
5f310f73
AL
975 popl %ebx /* pt_regs->bx */
976 addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */
977 popl %esi /* pt_regs->si */
978 popl %edi /* pt_regs->di */
979 popl %ebp /* pt_regs->bp */
e5862d05
JR
980
981 /* Switch to entry stack */
982 movl %eax, %esp
5f310f73 983
e464fb9f
JR
984 /* Now ready to switch the cr3 */
985 SWITCH_TO_USER_CR3 scratch_reg=%eax
986
c2c9b52f
AL
987 /*
988 * Restore all flags except IF. (We restore IF separately because
989 * STI gives a one-instruction window in which we won't be interrupted,
990 * whereas POPF does not.)
991 */
236f0cd2 992 btrl $X86_EFLAGS_IF_BIT, (%esp)
97193702 993 BUG_IF_WRONG_CR3 no_user_check=1
c2c9b52f 994 popfl
e5862d05 995 popl %eax
c2c9b52f 996
5f310f73
AL
997 /*
998 * Return back to the vDSO, which will pop ecx and edx.
999 * Don't bother with DS and ES (they already contain __USER_DS).
1000 */
88c15ec9
BO
1001 sti
1002 sysexit
af0575bb 1003
a49976d1
IM
1004.pushsection .fixup, "ax"
10052: movl $0, PT_FS(%esp)
1006 jmp 1b
f95d47ca 1007.popsection
a49976d1 1008 _ASM_EXTABLE(1b, 2b)
ccbeed3a 1009 PTGS_TO_GS_EX
67f590e8
AL
1010
1011.Lsysenter_fix_flags:
1012 pushl $X86_EFLAGS_FIXED
1013 popfl
1014 jmp .Lsysenter_flags_fixed
b4edca15 1015SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
4c8cd0c5 1016ENDPROC(entry_SYSENTER_32)
1da177e4 1017
fda57b22
AL
1018/*
1019 * 32-bit legacy system call entry.
1020 *
1021 * 32-bit x86 Linux system calls traditionally used the INT $0x80
1022 * instruction. INT $0x80 lands here.
1023 *
1024 * This entry point can be used by any 32-bit perform system calls.
1025 * Instances of INT $0x80 can be found inline in various programs and
1026 * libraries. It is also used by the vDSO's __kernel_vsyscall
1027 * fallback for hardware that doesn't support a faster entry method.
1028 * Restarted 32-bit system calls also fall back to INT $0x80
1029 * regardless of what instruction was originally used to do the system
1030 * call. (64-bit programs can use INT $0x80 as well, but they can
1031 * only run on 64-bit kernels and therefore land in
1032 * entry_INT80_compat.)
1033 *
1034 * This is considered a slow path. It is not used by most libc
1035 * implementations on modern hardware except during process startup.
1036 *
1037 * Arguments:
1038 * eax system call number
1039 * ebx arg1
1040 * ecx arg2
1041 * edx arg3
1042 * esi arg4
1043 * edi arg5
1044 * ebp arg6
1045 */
b2502b41 1046ENTRY(entry_INT80_32)
e59d1b0a 1047 ASM_CLAC
150ac78d 1048 pushl %eax /* pt_regs->orig_ax */
45d7b255
JR
1049
1050 SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */
150ac78d
AL
1051
1052 /*
a798f091
AL
1053 * User mode is traced as though IRQs are on, and the interrupt gate
1054 * turned them off.
150ac78d 1055 */
a798f091 1056 TRACE_IRQS_OFF
150ac78d
AL
1057
1058 movl %esp, %eax
a798f091 1059 call do_int80_syscall_32
5f310f73 1060.Lsyscall_32_done:
1da177e4 1061
afaef01c
AP
1062 STACKLEAK_ERASE
1063
1da177e4 1064restore_all:
2e04bc76 1065 TRACE_IRQS_IRET
e5862d05 1066 SWITCH_TO_ENTRY_STACK
1b00255f 1067.Lrestore_all_notrace:
46eabca2 1068 CHECK_AND_APPLY_ESPFIX
1b00255f 1069.Lrestore_nocheck:
e464fb9f
JR
1070 /* Switch back to user CR3 */
1071 SWITCH_TO_USER_CR3 scratch_reg=%eax
1072
97193702
JR
1073 BUG_IF_WRONG_CR3
1074
e464fb9f
JR
1075 /* Restore user state */
1076 RESTORE_REGS pop=4 # skip orig_eax/error_code
1b00255f 1077.Lirq_return:
3c88c692 1078 IRET_FRAME
10bcc80e
MD
1079 /*
1080 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
1081 * when returning from IPI handler and when returning from
1082 * scheduler to user-space.
1083 */
3701d863 1084 INTERRUPT_RETURN
1b00255f 1085
0d2eb73b 1086restore_all_kernel:
48593975 1087#ifdef CONFIG_PREEMPTION
5e1246ff
PZ
1088 DISABLE_INTERRUPTS(CLBR_ANY)
1089 cmpl $0, PER_CPU_VAR(__preempt_count)
1090 jnz .Lno_preempt
1091 testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off (exception path) ?
1092 jz .Lno_preempt
1093 call preempt_schedule_irq
1094.Lno_preempt:
1095#endif
0d2eb73b 1096 TRACE_IRQS_IRET
b92a165d 1097 PARANOID_EXIT_TO_KERNEL_MODE
97193702 1098 BUG_IF_WRONG_CR3
0d2eb73b
JR
1099 RESTORE_REGS 4
1100 jmp .Lirq_return
1101
a49976d1 1102.section .fixup, "ax"
cc66936e 1103SYM_CODE_START(iret_exc)
a49976d1
IM
1104 pushl $0 # no error code
1105 pushl $do_iret_error
97193702
JR
1106
1107#ifdef CONFIG_DEBUG_ENTRY
1108 /*
1109 * The stack-frame here is the one that iret faulted on, so its a
1110 * return-to-user frame. We are on kernel-cr3 because we come here from
1111 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
1112 * as the checker expects it.
1113 */
1114 pushl %eax
1115 SWITCH_TO_USER_CR3 scratch_reg=%eax
1116 popl %eax
1117#endif
1118
7252c4c3 1119 jmp common_exception
cc66936e 1120SYM_CODE_END(iret_exc)
1da177e4 1121.previous
1b00255f 1122 _ASM_EXTABLE(.Lirq_return, iret_exc)
b2502b41 1123ENDPROC(entry_INT80_32)
1da177e4 1124
f0d96110 1125.macro FIXUP_ESPFIX_STACK
dc4c2a0a
AH
1126/*
1127 * Switch back for ESPFIX stack to the normal zerobased stack
1128 *
1129 * We can't call C functions using the ESPFIX stack. This code reads
1130 * the high word of the segment base from the GDT and swiches to the
1131 * normal stack and adjusts ESP with the matching offset.
1132 */
34273f41 1133#ifdef CONFIG_X86_ESPFIX32
dc4c2a0a 1134 /* fixup the stack */
a49976d1
IM
1135 mov GDT_ESPFIX_SS + 4, %al /* bits 16..23 */
1136 mov GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */
9b47feb7 1137 shl $16, %eax
a49976d1
IM
1138 addl %esp, %eax /* the adjusted stack pointer */
1139 pushl $__KERNEL_DS
1140 pushl %eax
1141 lss (%esp), %esp /* switch to the normal stack segment */
34273f41 1142#endif
f0d96110
TH
1143.endm
1144.macro UNWIND_ESPFIX_STACK
34273f41 1145#ifdef CONFIG_X86_ESPFIX32
a49976d1 1146 movl %ss, %eax
f0d96110 1147 /* see if on espfix stack */
a49976d1
IM
1148 cmpw $__ESPFIX_SS, %ax
1149 jne 27f
1150 movl $__KERNEL_DS, %eax
1151 movl %eax, %ds
1152 movl %eax, %es
f0d96110
TH
1153 /* switch to normal stack */
1154 FIXUP_ESPFIX_STACK
115527:
34273f41 1156#endif
f0d96110 1157.endm
1da177e4
LT
1158
1159/*
3304c9c3
DV
1160 * Build the entry stubs with some assembler magic.
1161 * We pack 1 stub into every 8-byte block.
1da177e4 1162 */
3304c9c3 1163 .align 8
1da177e4 1164ENTRY(irq_entries_start)
3304c9c3
DV
1165 vector=FIRST_EXTERNAL_VECTOR
1166 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
a49976d1 1167 pushl $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
1168 vector=vector+1
1169 jmp common_interrupt
3304c9c3
DV
1170 .align 8
1171 .endr
47a55cd7
JB
1172END(irq_entries_start)
1173
f8a8fe61
TG
1174#ifdef CONFIG_X86_LOCAL_APIC
1175 .align 8
1176ENTRY(spurious_entries_start)
1177 vector=FIRST_SYSTEM_VECTOR
1178 .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
1179 pushl $(~vector+0x80) /* Note: always in signed byte range */
1180 vector=vector+1
1181 jmp common_spurious
1182 .align 8
1183 .endr
1184END(spurious_entries_start)
1185
cc66936e 1186SYM_CODE_START_LOCAL(common_spurious)
f8a8fe61
TG
1187 ASM_CLAC
1188 addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */
1189 SAVE_ALL switch_stacks=1
1190 ENCODE_FRAME_POINTER
1191 TRACE_IRQS_OFF
1192 movl %esp, %eax
1193 call smp_spurious_interrupt
1194 jmp ret_from_intr
cc66936e 1195SYM_CODE_END(common_spurious)
f8a8fe61
TG
1196#endif
1197
55f327fa
IM
1198/*
1199 * the CPU automatically disables interrupts when executing an IRQ vector,
1200 * so IRQ-flags tracing has to follow that:
1201 */
b7c6244f 1202 .p2align CONFIG_X86_L1_CACHE_SHIFT
cc66936e 1203SYM_CODE_START_LOCAL(common_interrupt)
e59d1b0a 1204 ASM_CLAC
a49976d1 1205 addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */
45d7b255
JR
1206
1207 SAVE_ALL switch_stacks=1
946c1911 1208 ENCODE_FRAME_POINTER
55f327fa 1209 TRACE_IRQS_OFF
a49976d1
IM
1210 movl %esp, %eax
1211 call do_IRQ
1212 jmp ret_from_intr
cc66936e 1213SYM_CODE_END(common_interrupt)
1da177e4 1214
45d7b255
JR
1215#define BUILD_INTERRUPT3(name, nr, fn) \
1216ENTRY(name) \
1217 ASM_CLAC; \
1218 pushl $~(nr); \
1219 SAVE_ALL switch_stacks=1; \
1220 ENCODE_FRAME_POINTER; \
1221 TRACE_IRQS_OFF \
1222 movl %esp, %eax; \
1223 call fn; \
1224 jmp ret_from_intr; \
47a55cd7 1225ENDPROC(name)
1da177e4 1226
a49976d1
IM
1227#define BUILD_INTERRUPT(name, nr) \
1228 BUILD_INTERRUPT3(name, nr, smp_##name); \
02cf94c3 1229
1da177e4 1230/* The include is where all of the SMP etc. interrupts come from */
1164dd00 1231#include <asm/entry_arch.h>
1da177e4 1232
1da177e4 1233ENTRY(coprocessor_error)
e59d1b0a 1234 ASM_CLAC
a49976d1
IM
1235 pushl $0
1236 pushl $do_coprocessor_error
7252c4c3 1237 jmp common_exception
47a55cd7 1238END(coprocessor_error)
1da177e4
LT
1239
1240ENTRY(simd_coprocessor_error)
e59d1b0a 1241 ASM_CLAC
a49976d1 1242 pushl $0
40d2e763
BG
1243#ifdef CONFIG_X86_INVD_BUG
1244 /* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
a49976d1
IM
1245 ALTERNATIVE "pushl $do_general_protection", \
1246 "pushl $do_simd_coprocessor_error", \
8e65f6e0 1247 X86_FEATURE_XMM
40d2e763 1248#else
a49976d1 1249 pushl $do_simd_coprocessor_error
40d2e763 1250#endif
7252c4c3 1251 jmp common_exception
47a55cd7 1252END(simd_coprocessor_error)
1da177e4
LT
1253
1254ENTRY(device_not_available)
e59d1b0a 1255 ASM_CLAC
a49976d1
IM
1256 pushl $-1 # mark this as an int
1257 pushl $do_device_not_available
7252c4c3 1258 jmp common_exception
47a55cd7 1259END(device_not_available)
1da177e4 1260
d3561b7f
RR
1261#ifdef CONFIG_PARAVIRT
1262ENTRY(native_iret)
3701d863 1263 iret
6837a54d 1264 _ASM_EXTABLE(native_iret, iret_exc)
47a55cd7 1265END(native_iret)
d3561b7f
RR
1266#endif
1267
1da177e4 1268ENTRY(overflow)
e59d1b0a 1269 ASM_CLAC
a49976d1
IM
1270 pushl $0
1271 pushl $do_overflow
7252c4c3 1272 jmp common_exception
47a55cd7 1273END(overflow)
1da177e4
LT
1274
1275ENTRY(bounds)
e59d1b0a 1276 ASM_CLAC
a49976d1
IM
1277 pushl $0
1278 pushl $do_bounds
7252c4c3 1279 jmp common_exception
47a55cd7 1280END(bounds)
1da177e4
LT
1281
1282ENTRY(invalid_op)
e59d1b0a 1283 ASM_CLAC
a49976d1
IM
1284 pushl $0
1285 pushl $do_invalid_op
7252c4c3 1286 jmp common_exception
47a55cd7 1287END(invalid_op)
1da177e4
LT
1288
1289ENTRY(coprocessor_segment_overrun)
e59d1b0a 1290 ASM_CLAC
a49976d1
IM
1291 pushl $0
1292 pushl $do_coprocessor_segment_overrun
7252c4c3 1293 jmp common_exception
47a55cd7 1294END(coprocessor_segment_overrun)
1da177e4
LT
1295
1296ENTRY(invalid_TSS)
e59d1b0a 1297 ASM_CLAC
a49976d1 1298 pushl $do_invalid_TSS
7252c4c3 1299 jmp common_exception
47a55cd7 1300END(invalid_TSS)
1da177e4
LT
1301
1302ENTRY(segment_not_present)
e59d1b0a 1303 ASM_CLAC
a49976d1 1304 pushl $do_segment_not_present
7252c4c3 1305 jmp common_exception
47a55cd7 1306END(segment_not_present)
1da177e4
LT
1307
1308ENTRY(stack_segment)
e59d1b0a 1309 ASM_CLAC
a49976d1 1310 pushl $do_stack_segment
7252c4c3 1311 jmp common_exception
47a55cd7 1312END(stack_segment)
1da177e4 1313
1da177e4 1314ENTRY(alignment_check)
e59d1b0a 1315 ASM_CLAC
a49976d1 1316 pushl $do_alignment_check
7252c4c3 1317 jmp common_exception
47a55cd7 1318END(alignment_check)
1da177e4 1319
d28c4393 1320ENTRY(divide_error)
e59d1b0a 1321 ASM_CLAC
a49976d1
IM
1322 pushl $0 # no error code
1323 pushl $do_divide_error
7252c4c3 1324 jmp common_exception
47a55cd7 1325END(divide_error)
1da177e4
LT
1326
1327#ifdef CONFIG_X86_MCE
1328ENTRY(machine_check)
e59d1b0a 1329 ASM_CLAC
a49976d1
IM
1330 pushl $0
1331 pushl machine_check_vector
7252c4c3 1332 jmp common_exception
47a55cd7 1333END(machine_check)
1da177e4
LT
1334#endif
1335
1336ENTRY(spurious_interrupt_bug)
e59d1b0a 1337 ASM_CLAC
a49976d1
IM
1338 pushl $0
1339 pushl $do_spurious_interrupt_bug
7252c4c3 1340 jmp common_exception
47a55cd7 1341END(spurious_interrupt_bug)
1da177e4 1342
28c11b0f 1343#ifdef CONFIG_XEN_PV
5ead97c8 1344ENTRY(xen_hypervisor_callback)
a49976d1 1345 pushl $-1 /* orig_ax = -1 => not a system call */
5ead97c8 1346 SAVE_ALL
946c1911 1347 ENCODE_FRAME_POINTER
5ead97c8 1348 TRACE_IRQS_OFF
9ec2b804 1349
a49976d1
IM
1350 /*
1351 * Check to see if we got the event in the critical
1352 * region in xen_iret_direct, after we've reenabled
1353 * events and checked for pending events. This simulates
1354 * iret instruction's behaviour where it delivers a
1355 * pending interrupt when enabling interrupts:
1356 */
1357 movl PT_EIP(%esp), %eax
1358 cmpl $xen_iret_start_crit, %eax
1359 jb 1f
1360 cmpl $xen_iret_end_crit, %eax
1361 jae 1f
9ec2b804 1362
a49976d1 1363 jmp xen_iret_crit_fixup
e2a81baf 1364
cc66936e 1365SYM_INNER_LABEL_ALIGN(xen_do_upcall, SYM_L_GLOBAL)
a49976d1
IM
13661: mov %esp, %eax
1367 call xen_evtchn_do_upcall
48593975 1368#ifndef CONFIG_PREEMPTION
a49976d1 1369 call xen_maybe_preempt_hcall
fdfd811d 1370#endif
a49976d1 1371 jmp ret_from_intr
5ead97c8
JF
1372ENDPROC(xen_hypervisor_callback)
1373
a49976d1
IM
1374/*
1375 * Hypervisor uses this for application faults while it executes.
1376 * We get here for two reasons:
1377 * 1. Fault while reloading DS, ES, FS or GS
1378 * 2. Fault while executing IRET
1379 * Category 1 we fix up by reattempting the load, and zeroing the segment
1380 * register if the load fails.
1381 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
1382 * normal Linux return path in this case because if we use the IRET hypercall
1383 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1384 * We distinguish between categories by maintaining a status value in EAX.
1385 */
5ead97c8 1386ENTRY(xen_failsafe_callback)
a49976d1
IM
1387 pushl %eax
1388 movl $1, %eax
13891: mov 4(%esp), %ds
13902: mov 8(%esp), %es
13913: mov 12(%esp), %fs
13924: mov 16(%esp), %gs
a349e23d
DV
1393 /* EAX == 0 => Category 1 (Bad segment)
1394 EAX != 0 => Category 2 (Bad IRET) */
a49976d1
IM
1395 testl %eax, %eax
1396 popl %eax
1397 lea 16(%esp), %esp
1398 jz 5f
1399 jmp iret_exc
14005: pushl $-1 /* orig_ax = -1 => not a system call */
5ead97c8 1401 SAVE_ALL
946c1911 1402 ENCODE_FRAME_POINTER
a49976d1
IM
1403 jmp ret_from_exception
1404
1405.section .fixup, "ax"
14066: xorl %eax, %eax
1407 movl %eax, 4(%esp)
1408 jmp 1b
14097: xorl %eax, %eax
1410 movl %eax, 8(%esp)
1411 jmp 2b
14128: xorl %eax, %eax
1413 movl %eax, 12(%esp)
1414 jmp 3b
14159: xorl %eax, %eax
1416 movl %eax, 16(%esp)
1417 jmp 4b
5ead97c8 1418.previous
a49976d1
IM
1419 _ASM_EXTABLE(1b, 6b)
1420 _ASM_EXTABLE(2b, 7b)
1421 _ASM_EXTABLE(3b, 8b)
1422 _ASM_EXTABLE(4b, 9b)
5ead97c8 1423ENDPROC(xen_failsafe_callback)
28c11b0f 1424#endif /* CONFIG_XEN_PV */
5ead97c8 1425
28c11b0f 1426#ifdef CONFIG_XEN_PVHVM
bc2b0331 1427BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
4b9a8dca 1428 xen_evtchn_do_upcall)
28c11b0f 1429#endif
38e20b07 1430
bc2b0331
S
1431
1432#if IS_ENABLED(CONFIG_HYPERV)
1433
1434BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
4b9a8dca 1435 hyperv_vector_handler)
bc2b0331 1436
93286261
VK
1437BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
1438 hyperv_reenlightenment_intr)
1439
248e742a
MK
1440BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
1441 hv_stimer0_vector_handler)
1442
bc2b0331 1443#endif /* CONFIG_HYPERV */
5ead97c8 1444
d211af05 1445ENTRY(page_fault)
e59d1b0a 1446 ASM_CLAC
b8f70953
MM
1447 pushl $do_page_fault
1448 jmp common_exception_read_cr2
1449END(page_fault)
a0d14b89 1450
cc66936e 1451SYM_CODE_START_LOCAL_NOALIGN(common_exception_read_cr2)
b8f70953 1452 /* the function address is in %gs's slot on the stack */
a0d14b89
PZ
1453 SAVE_ALL switch_stacks=1 skip_gs=1
1454
1455 ENCODE_FRAME_POINTER
1456 UNWIND_ESPFIX_STACK
1457
1458 /* fixup %gs */
1459 GS_TO_REG %ecx
b8f70953 1460 movl PT_GS(%esp), %edi
a0d14b89
PZ
1461 REG_TO_PTGS %ecx
1462 SET_KERNEL_GS %ecx
1463
1464 GET_CR2_INTO(%ecx) # might clobber %eax
1465
1466 /* fixup orig %eax */
1467 movl PT_ORIG_EAX(%esp), %edx # get the error code
1468 movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
1469
1470 TRACE_IRQS_OFF
1471 movl %esp, %eax # pt_regs pointer
b8f70953 1472 CALL_NOSPEC %edi
a0d14b89 1473 jmp ret_from_exception
cc66936e 1474SYM_CODE_END(common_exception_read_cr2)
7252c4c3 1475
cc66936e 1476SYM_CODE_START_LOCAL_NOALIGN(common_exception)
ccbeed3a 1477 /* the function address is in %gs's slot on the stack */
e67f1c11 1478 SAVE_ALL switch_stacks=1 skip_gs=1
946c1911 1479 ENCODE_FRAME_POINTER
d211af05 1480 UNWIND_ESPFIX_STACK
e67f1c11
PZ
1481
1482 /* fixup %gs */
ccbeed3a 1483 GS_TO_REG %ecx
a49976d1 1484 movl PT_GS(%esp), %edi # get the function address
ccbeed3a
TH
1485 REG_TO_PTGS %ecx
1486 SET_KERNEL_GS %ecx
e67f1c11
PZ
1487
1488 /* fixup orig %eax */
1489 movl PT_ORIG_EAX(%esp), %edx # get the error code
1490 movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
1491
d211af05 1492 TRACE_IRQS_OFF
a49976d1 1493 movl %esp, %eax # pt_regs pointer
2641f08b 1494 CALL_NOSPEC %edi
a49976d1 1495 jmp ret_from_exception
cc66936e 1496SYM_CODE_END(common_exception)
d211af05 1497
d211af05 1498ENTRY(debug)
7536656f 1499 /*
929b44eb 1500 * Entry from sysenter is now handled in common_exception
7536656f 1501 */
e59d1b0a 1502 ASM_CLAC
a49976d1 1503 pushl $-1 # mark this as an int
929b44eb
JR
1504 pushl $do_debug
1505 jmp common_exception
d211af05
AH
1506END(debug)
1507
1508/*
7536656f
AL
1509 * NMI is doubly nasty. It can happen on the first instruction of
1510 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1511 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1512 * switched stacks. We handle both conditions by simply checking whether we
1513 * interrupted kernel code running on the SYSENTER stack.
d211af05
AH
1514 */
1515ENTRY(nmi)
e59d1b0a 1516 ASM_CLAC
45d7b255 1517
34273f41 1518#ifdef CONFIG_X86_ESPFIX32
a49976d1
IM
1519 pushl %eax
1520 movl %ss, %eax
1521 cmpw $__ESPFIX_SS, %ax
1522 popl %eax
1b00255f 1523 je .Lnmi_espfix_stack
34273f41 1524#endif
7536656f
AL
1525
1526 pushl %eax # pt_regs->orig_ax
b65bef40 1527 SAVE_ALL_NMI cr3_reg=%edi
946c1911 1528 ENCODE_FRAME_POINTER
a49976d1
IM
1529 xorl %edx, %edx # zero error code
1530 movl %esp, %eax # pt_regs pointer
7536656f
AL
1531
1532 /* Are we currently on the SYSENTER stack? */
72f5e08d 1533 movl PER_CPU_VAR(cpu_entry_area), %ecx
4fe2d8b1
DH
1534 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1535 subl %eax, %ecx /* ecx = (end of entry_stack) - esp */
1536 cmpl $SIZEOF_entry_stack, %ecx
7536656f
AL
1537 jb .Lnmi_from_sysenter_stack
1538
1539 /* Not on SYSENTER stack. */
a49976d1 1540 call do_nmi
8e676ced 1541 jmp .Lnmi_return
d211af05 1542
7536656f
AL
1543.Lnmi_from_sysenter_stack:
1544 /*
1545 * We're on the SYSENTER stack. Switch off. No one (not even debug)
1546 * is using the thread stack right now, so it's safe for us to use it.
1547 */
946c1911 1548 movl %esp, %ebx
7536656f
AL
1549 movl PER_CPU_VAR(cpu_current_top_of_stack), %esp
1550 call do_nmi
946c1911 1551 movl %ebx, %esp
8e676ced
JR
1552
1553.Lnmi_return:
1554 CHECK_AND_APPLY_ESPFIX
b65bef40 1555 RESTORE_ALL_NMI cr3_reg=%edi pop=4
8e676ced 1556 jmp .Lirq_return
d211af05 1557
34273f41 1558#ifdef CONFIG_X86_ESPFIX32
1b00255f 1559.Lnmi_espfix_stack:
131484c8 1560 /*
d211af05
AH
1561 * create the pointer to lss back
1562 */
a49976d1
IM
1563 pushl %ss
1564 pushl %esp
1565 addl $4, (%esp)
d211af05
AH
1566 /* copy the iret frame of 12 bytes */
1567 .rept 3
a49976d1 1568 pushl 16(%esp)
d211af05 1569 .endr
a49976d1 1570 pushl %eax
b65bef40 1571 SAVE_ALL_NMI cr3_reg=%edi
946c1911 1572 ENCODE_FRAME_POINTER
a49976d1
IM
1573 FIXUP_ESPFIX_STACK # %eax == %esp
1574 xorl %edx, %edx # zero error code
1575 call do_nmi
b65bef40 1576 RESTORE_ALL_NMI cr3_reg=%edi
a49976d1 1577 lss 12+4(%esp), %esp # back to espfix stack
1b00255f 1578 jmp .Lirq_return
34273f41 1579#endif
d211af05
AH
1580END(nmi)
1581
1582ENTRY(int3)
e59d1b0a 1583 ASM_CLAC
a49976d1 1584 pushl $-1 # mark this as an int
45d7b255
JR
1585
1586 SAVE_ALL switch_stacks=1
946c1911 1587 ENCODE_FRAME_POINTER
d211af05 1588 TRACE_IRQS_OFF
a49976d1
IM
1589 xorl %edx, %edx # zero error code
1590 movl %esp, %eax # pt_regs pointer
1591 call do_int3
1592 jmp ret_from_exception
d211af05
AH
1593END(int3)
1594
1595ENTRY(general_protection)
a49976d1 1596 pushl $do_general_protection
7252c4c3 1597 jmp common_exception
d211af05
AH
1598END(general_protection)
1599
631bc487
GN
1600#ifdef CONFIG_KVM_GUEST
1601ENTRY(async_page_fault)
e59d1b0a 1602 ASM_CLAC
a49976d1 1603 pushl $do_async_page_fault
b8f70953 1604 jmp common_exception_read_cr2
2ae9d293 1605END(async_page_fault)
631bc487 1606#endif
2deb4be2
AL
1607
1608ENTRY(rewind_stack_do_exit)
1609 /* Prevent any naive code from trying to unwind to our caller. */
1610 xorl %ebp, %ebp
1611
1612 movl PER_CPU_VAR(cpu_current_top_of_stack), %esi
1613 leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1614
1615 call do_exit
16161: jmp 1b
1617END(rewind_stack_do_exit)