arch/tile: Split the icache flush code off to a generic <arch> header.
[linux-2.6-block.git] / arch / tile / kernel / setup.c
CommitLineData
867e359b
CM
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/mmzone.h>
18#include <linux/bootmem.h>
19#include <linux/module.h>
20#include <linux/node.h>
21#include <linux/cpu.h>
22#include <linux/ioport.h>
23#include <linux/kexec.h>
24#include <linux/pci.h>
25#include <linux/initrd.h>
26#include <linux/io.h>
27#include <linux/highmem.h>
28#include <linux/smp.h>
29#include <linux/timex.h>
30#include <asm/setup.h>
31#include <asm/sections.h>
32#include <asm/sections.h>
33#include <asm/cacheflush.h>
34#include <asm/cacheflush.h>
35#include <asm/pgalloc.h>
36#include <asm/mmu_context.h>
37#include <hv/hypervisor.h>
38#include <arch/interrupts.h>
39
40/* <linux/smp.h> doesn't provide this definition. */
41#ifndef CONFIG_SMP
42#define setup_max_cpus 1
43#endif
44
45static inline int ABS(int x) { return x >= 0 ? x : -x; }
46
47/* Chip information */
48char chip_model[64] __write_once;
49
50struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
51EXPORT_SYMBOL(node_data);
52
53/* We only create bootmem data on node 0. */
54static bootmem_data_t __initdata node0_bdata;
55
56/* Information on the NUMA nodes that we compute early */
57unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
58unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
59unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
60unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
61unsigned long __initdata node_free_pfn[MAX_NUMNODES];
62
63#ifdef CONFIG_HIGHMEM
64/* Page frame index of end of lowmem on each controller. */
65unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
66
67/* Number of pages that can be mapped into lowmem. */
68static unsigned long __initdata mappable_physpages;
69#endif
70
71/* Data on which physical memory controller corresponds to which NUMA node */
72int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
73
74#ifdef CONFIG_HIGHMEM
75/* Map information from VAs to PAs */
76unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
77 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
78EXPORT_SYMBOL(pbase_map);
79
80/* Map information from PAs to VAs */
81void *vbase_map[NR_PA_HIGHBIT_VALUES]
82 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
83EXPORT_SYMBOL(vbase_map);
84#endif
85
86/* Node number as a function of the high PA bits */
87int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
88EXPORT_SYMBOL(highbits_to_node);
89
90static unsigned int __initdata maxmem_pfn = -1U;
91static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
92 [0 ... MAX_NUMNODES-1] = -1U
93};
94static nodemask_t __initdata isolnodes;
95
96#ifdef CONFIG_PCI
97enum { DEFAULT_PCI_RESERVE_MB = 64 };
98static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
99unsigned long __initdata pci_reserve_start_pfn = -1U;
100unsigned long __initdata pci_reserve_end_pfn = -1U;
101#endif
102
103static int __init setup_maxmem(char *str)
104{
105 long maxmem_mb;
106 if (str == NULL || strict_strtol(str, 0, &maxmem_mb) != 0 ||
107 maxmem_mb == 0)
108 return -EINVAL;
109
110 maxmem_pfn = (maxmem_mb >> (HPAGE_SHIFT - 20)) <<
111 (HPAGE_SHIFT - PAGE_SHIFT);
112 printk("Forcing RAM used to no more than %dMB\n",
113 maxmem_pfn >> (20 - PAGE_SHIFT));
114 return 0;
115}
116early_param("maxmem", setup_maxmem);
117
118static int __init setup_maxnodemem(char *str)
119{
120 char *endp;
121 long maxnodemem_mb, node;
122
123 node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
124 if (node >= MAX_NUMNODES || *endp != ':' ||
125 strict_strtol(endp+1, 0, &maxnodemem_mb) != 0)
126 return -EINVAL;
127
128 maxnodemem_pfn[node] = (maxnodemem_mb >> (HPAGE_SHIFT - 20)) <<
129 (HPAGE_SHIFT - PAGE_SHIFT);
130 printk("Forcing RAM used on node %ld to no more than %dMB\n",
131 node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
132 return 0;
133}
134early_param("maxnodemem", setup_maxnodemem);
135
136static int __init setup_isolnodes(char *str)
137{
138 char buf[MAX_NUMNODES * 5];
139 if (str == NULL || nodelist_parse(str, isolnodes) != 0)
140 return -EINVAL;
141
142 nodelist_scnprintf(buf, sizeof(buf), isolnodes);
143 printk("Set isolnodes value to '%s'\n", buf);
144 return 0;
145}
146early_param("isolnodes", setup_isolnodes);
147
148#ifdef CONFIG_PCI
149static int __init setup_pci_reserve(char* str)
150{
151 unsigned long mb;
152
153 if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
154 mb > 3 * 1024)
155 return -EINVAL;
156
157 pci_reserve_mb = mb;
158 printk("Reserving %dMB for PCIE root complex mappings\n",
159 pci_reserve_mb);
160 return 0;
161}
162early_param("pci_reserve", setup_pci_reserve);
163#endif
164
165#ifndef __tilegx__
166/*
167 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
168 * This can be used to increase (or decrease) the vmalloc area.
169 */
170static int __init parse_vmalloc(char *arg)
171{
172 if (!arg)
173 return -EINVAL;
174
175 VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
176
177 /* See validate_va() for more on this test. */
178 if ((long)_VMALLOC_START >= 0)
179 early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
180 VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
181
182 return 0;
183}
184early_param("vmalloc", parse_vmalloc);
185#endif
186
187#ifdef CONFIG_HIGHMEM
188/*
189 * Determine for each controller where its lowmem is mapped and how
190 * much of it is mapped there. On controller zero, the first few
191 * megabytes are mapped at 0xfd000000 as code, so in principle we
192 * could start our data mappings higher up, but for now we don't
193 * bother, to avoid additional confusion.
194 *
195 * One question is whether, on systems with more than 768 Mb and
196 * controllers of different sizes, to map in a proportionate amount of
197 * each one, or to try to map the same amount from each controller.
198 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
199 * respectively, do we map 256MB from each, or do we map 128 MB, 512
200 * MB, and 128 MB respectively?) For now we use a proportionate
201 * solution like the latter.
202 *
203 * The VA/PA mapping demands that we align our decisions at 16 MB
204 * boundaries so that we can rapidly convert VA to PA.
205 */
206static void *__init setup_pa_va_mapping(void)
207{
208 unsigned long curr_pages = 0;
209 unsigned long vaddr = PAGE_OFFSET;
210 nodemask_t highonlynodes = isolnodes;
211 int i, j;
212
213 memset(pbase_map, -1, sizeof(pbase_map));
214 memset(vbase_map, -1, sizeof(vbase_map));
215
216 /* Node zero cannot be isolated for LOWMEM purposes. */
217 node_clear(0, highonlynodes);
218
219 /* Count up the number of pages on non-highonlynodes controllers. */
220 mappable_physpages = 0;
221 for_each_online_node(i) {
222 if (!node_isset(i, highonlynodes))
223 mappable_physpages +=
224 node_end_pfn[i] - node_start_pfn[i];
225 }
226
227 for_each_online_node(i) {
228 unsigned long start = node_start_pfn[i];
229 unsigned long end = node_end_pfn[i];
230 unsigned long size = end - start;
231 unsigned long vaddr_end;
232
233 if (node_isset(i, highonlynodes)) {
234 /* Mark this controller as having no lowmem. */
235 node_lowmem_end_pfn[i] = start;
236 continue;
237 }
238
239 curr_pages += size;
240 if (mappable_physpages > MAXMEM_PFN) {
241 vaddr_end = PAGE_OFFSET +
242 (((u64)curr_pages * MAXMEM_PFN /
243 mappable_physpages)
244 << PAGE_SHIFT);
245 } else {
246 vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
247 }
248 for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
249 unsigned long this_pfn =
250 start + (j << HUGETLB_PAGE_ORDER);
251 pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
252 if (vbase_map[__pfn_to_highbits(this_pfn)] ==
253 (void *)-1)
254 vbase_map[__pfn_to_highbits(this_pfn)] =
255 (void *)(vaddr & HPAGE_MASK);
256 }
257 node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
258 BUG_ON(node_lowmem_end_pfn[i] > end);
259 }
260
261 /* Return highest address of any mapped memory. */
262 return (void *)vaddr;
263}
264#endif /* CONFIG_HIGHMEM */
265
266/*
267 * Register our most important memory mappings with the debug stub.
268 *
269 * This is up to 4 mappings for lowmem, one mapping per memory
270 * controller, plus one for our text segment.
271 */
272void __cpuinit store_permanent_mappings(void)
273{
274 int i;
275
276 for_each_online_node(i) {
277 HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
278#ifdef CONFIG_HIGHMEM
279 HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
280#else
281 HV_PhysAddr high_mapped_pa = node_end_pfn[i];
282#endif
283
284 unsigned long pages = high_mapped_pa - node_start_pfn[i];
285 HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
286 hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
287 }
288
289 hv_store_mapping((HV_VirtAddr)_stext,
290 (uint32_t)(_einittext - _stext), 0);
291}
292
293/*
294 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
295 * and node_online_map, doing suitable sanity-checking.
296 * Also set min_low_pfn, max_low_pfn, and max_pfn.
297 */
298static void __init setup_memory(void)
299{
300 int i, j;
301 int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
302#ifdef CONFIG_HIGHMEM
303 long highmem_pages;
304#endif
305#ifndef __tilegx__
306 int cap;
307#endif
308#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
309 long lowmem_pages;
310#endif
311
312 /* We are using a char to hold the cpu_2_node[] mapping */
313 BUG_ON(MAX_NUMNODES > 127);
314
315 /* Discover the ranges of memory available to us */
316 for (i = 0; ; ++i) {
317 unsigned long start, size, end, highbits;
318 HV_PhysAddrRange range = hv_inquire_physical(i);
319 if (range.size == 0)
320 break;
321#ifdef CONFIG_FLATMEM
322 if (i > 0) {
323 printk("Can't use discontiguous PAs: %#llx..%#llx\n",
324 range.size, range.start + range.size);
325 continue;
326 }
327#endif
328#ifndef __tilegx__
329 if ((unsigned long)range.start) {
330 printk("Range not at 4GB multiple: %#llx..%#llx\n",
331 range.start, range.start + range.size);
332 continue;
333 }
334#endif
335 if ((range.start & (HPAGE_SIZE-1)) != 0 ||
336 (range.size & (HPAGE_SIZE-1)) != 0) {
337 unsigned long long start_pa = range.start;
338 unsigned long long size = range.size;
339 range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
340 range.size -= (range.start - start_pa);
341 range.size &= HPAGE_MASK;
342 printk("Range not hugepage-aligned: %#llx..%#llx:"
343 " now %#llx-%#llx\n",
344 start_pa, start_pa + size,
345 range.start, range.start + range.size);
346 }
347 highbits = __pa_to_highbits(range.start);
348 if (highbits >= NR_PA_HIGHBIT_VALUES) {
349 printk("PA high bits too high: %#llx..%#llx\n",
350 range.start, range.start + range.size);
351 continue;
352 }
353 if (highbits_seen[highbits]) {
354 printk("Range overlaps in high bits: %#llx..%#llx\n",
355 range.start, range.start + range.size);
356 continue;
357 }
358 highbits_seen[highbits] = 1;
359 if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
360 int size = maxnodemem_pfn[i];
361 if (size > 0) {
362 printk("Maxnodemem reduced node %d to"
363 " %d pages\n", i, size);
364 range.size = (HV_PhysAddr)size << PAGE_SHIFT;
365 } else {
366 printk("Maxnodemem disabled node %d\n", i);
367 continue;
368 }
369 }
370 if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
371 int size = maxmem_pfn - num_physpages;
372 if (size > 0) {
373 printk("Maxmem reduced node %d to %d pages\n",
374 i, size);
375 range.size = (HV_PhysAddr)size << PAGE_SHIFT;
376 } else {
377 printk("Maxmem disabled node %d\n", i);
378 continue;
379 }
380 }
381 if (i >= MAX_NUMNODES) {
382 printk("Too many PA nodes (#%d): %#llx...%#llx\n",
383 i, range.size, range.size + range.start);
384 continue;
385 }
386
387 start = range.start >> PAGE_SHIFT;
388 size = range.size >> PAGE_SHIFT;
389 end = start + size;
390
391#ifndef __tilegx__
392 if (((HV_PhysAddr)end << PAGE_SHIFT) !=
393 (range.start + range.size)) {
394 printk("PAs too high to represent: %#llx..%#llx\n",
395 range.start, range.start + range.size);
396 continue;
397 }
398#endif
399#ifdef CONFIG_PCI
400 /*
401 * Blocks that overlap the pci reserved region must
402 * have enough space to hold the maximum percpu data
403 * region at the top of the range. If there isn't
404 * enough space above the reserved region, just
405 * truncate the node.
406 */
407 if (start <= pci_reserve_start_pfn &&
408 end > pci_reserve_start_pfn) {
409 unsigned int per_cpu_size =
410 __per_cpu_end - __per_cpu_start;
411 unsigned int percpu_pages =
412 NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
413 if (end < pci_reserve_end_pfn + percpu_pages) {
414 end = pci_reserve_start_pfn;
415 printk("PCI mapping region reduced node %d to"
416 " %ld pages\n", i, end - start);
417 }
418 }
419#endif
420
421 for (j = __pfn_to_highbits(start);
422 j <= __pfn_to_highbits(end - 1); j++)
423 highbits_to_node[j] = i;
424
425 node_start_pfn[i] = start;
426 node_end_pfn[i] = end;
427 node_controller[i] = range.controller;
428 num_physpages += size;
429 max_pfn = end;
430
431 /* Mark node as online */
432 node_set(i, node_online_map);
433 node_set(i, node_possible_map);
434 }
435
436#ifndef __tilegx__
437 /*
438 * For 4KB pages, mem_map "struct page" data is 1% of the size
439 * of the physical memory, so can be quite big (640 MB for
440 * four 16G zones). These structures must be mapped in
441 * lowmem, and since we currently cap out at about 768 MB,
442 * it's impractical to try to use this much address space.
443 * For now, arbitrarily cap the amount of physical memory
444 * we're willing to use at 8 million pages (32GB of 4KB pages).
445 */
446 cap = 8 * 1024 * 1024; /* 8 million pages */
447 if (num_physpages > cap) {
448 int num_nodes = num_online_nodes();
449 int cap_each = cap / num_nodes;
450 unsigned long dropped_pages = 0;
451 for (i = 0; i < num_nodes; ++i) {
452 int size = node_end_pfn[i] - node_start_pfn[i];
453 if (size > cap_each) {
454 dropped_pages += (size - cap_each);
455 node_end_pfn[i] = node_start_pfn[i] + cap_each;
456 }
457 }
458 num_physpages -= dropped_pages;
459 printk(KERN_WARNING "Only using %ldMB memory;"
460 " ignoring %ldMB.\n",
461 num_physpages >> (20 - PAGE_SHIFT),
462 dropped_pages >> (20 - PAGE_SHIFT));
463 printk(KERN_WARNING "Consider using a larger page size.\n");
464 }
465#endif
466
467 /* Heap starts just above the last loaded address. */
468 min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
469
470#ifdef CONFIG_HIGHMEM
471 /* Find where we map lowmem from each controller. */
472 high_memory = setup_pa_va_mapping();
473
474 /* Set max_low_pfn based on what node 0 can directly address. */
475 max_low_pfn = node_lowmem_end_pfn[0];
476
477 lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
478 MAXMEM_PFN : mappable_physpages;
479 highmem_pages = (long) (num_physpages - lowmem_pages);
480
481 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
482 pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
483 printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
484 pages_to_mb(lowmem_pages));
485#else
486 /* Set max_low_pfn based on what node 0 can directly address. */
487 max_low_pfn = node_end_pfn[0];
488
489#ifndef __tilegx__
490 if (node_end_pfn[0] > MAXMEM_PFN) {
491 printk(KERN_WARNING "Only using %ldMB LOWMEM.\n",
492 MAXMEM>>20);
493 printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
494 max_low_pfn = MAXMEM_PFN;
495 max_pfn = MAXMEM_PFN;
496 num_physpages = MAXMEM_PFN;
497 node_end_pfn[0] = MAXMEM_PFN;
498 } else {
499 printk(KERN_NOTICE "%ldMB memory available.\n",
500 pages_to_mb(node_end_pfn[0]));
501 }
502 for (i = 1; i < MAX_NUMNODES; ++i) {
503 node_start_pfn[i] = 0;
504 node_end_pfn[i] = 0;
505 }
506 high_memory = __va(node_end_pfn[0]);
507#else
508 lowmem_pages = 0;
509 for (i = 0; i < MAX_NUMNODES; ++i) {
510 int pages = node_end_pfn[i] - node_start_pfn[i];
511 lowmem_pages += pages;
512 if (pages)
513 high_memory = pfn_to_kaddr(node_end_pfn[i]);
514 }
515 printk(KERN_NOTICE "%ldMB memory available.\n",
516 pages_to_mb(lowmem_pages));
517#endif
518#endif
519}
520
521static void __init setup_bootmem_allocator(void)
522{
523 unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn;
524
525 /* Provide a node 0 bdata. */
526 NODE_DATA(0)->bdata = &node0_bdata;
527
528#ifdef CONFIG_PCI
529 /* Don't let boot memory alias the PCI region. */
530 last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn);
531#else
532 last_alloc_pfn = max_low_pfn;
533#endif
534
535 /*
536 * Initialize the boot-time allocator (with low memory only):
537 * The first argument says where to put the bitmap, and the
538 * second says where the end of allocatable memory is.
539 */
540 bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn);
541
542 /*
543 * Let the bootmem allocator use all the space we've given it
544 * except for its own bitmap.
545 */
546 first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size);
547 if (first_alloc_pfn >= last_alloc_pfn)
548 early_panic("Not enough memory on controller 0 for bootmem\n");
549
550 free_bootmem(PFN_PHYS(first_alloc_pfn),
551 PFN_PHYS(last_alloc_pfn - first_alloc_pfn));
552
553#ifdef CONFIG_KEXEC
554 if (crashk_res.start != crashk_res.end)
555 reserve_bootmem(crashk_res.start,
556 crashk_res.end - crashk_res.start + 1, 0);
557#endif
558
559}
560
561void *__init alloc_remap(int nid, unsigned long size)
562{
563 int pages = node_end_pfn[nid] - node_start_pfn[nid];
564 void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
565 BUG_ON(size != pages * sizeof(struct page));
566 memset(map, 0, size);
567 return map;
568}
569
570static int __init percpu_size(void)
571{
572 int size = ALIGN(__per_cpu_end - __per_cpu_start, PAGE_SIZE);
573#ifdef CONFIG_MODULES
574 if (size < PERCPU_ENOUGH_ROOM)
575 size = PERCPU_ENOUGH_ROOM;
576#endif
577 /* In several places we assume the per-cpu data fits on a huge page. */
578 BUG_ON(kdata_huge && size > HPAGE_SIZE);
579 return size;
580}
581
582static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal)
583{
584 void *kva = __alloc_bootmem(size, PAGE_SIZE, goal);
585 unsigned long pfn = kaddr_to_pfn(kva);
586 BUG_ON(goal && PFN_PHYS(pfn) != goal);
587 return pfn;
588}
589
590static void __init zone_sizes_init(void)
591{
592 unsigned long zones_size[MAX_NR_ZONES] = { 0 };
593 unsigned long node_percpu[MAX_NUMNODES] = { 0 };
594 int size = percpu_size();
595 int num_cpus = smp_height * smp_width;
596 int i;
597
598 for (i = 0; i < num_cpus; ++i)
599 node_percpu[cpu_to_node(i)] += size;
600
601 for_each_online_node(i) {
602 unsigned long start = node_start_pfn[i];
603 unsigned long end = node_end_pfn[i];
604#ifdef CONFIG_HIGHMEM
605 unsigned long lowmem_end = node_lowmem_end_pfn[i];
606#else
607 unsigned long lowmem_end = end;
608#endif
609 int memmap_size = (end - start) * sizeof(struct page);
610 node_free_pfn[i] = start;
611
612 /*
613 * Set aside pages for per-cpu data and the mem_map array.
614 *
615 * Since the per-cpu data requires special homecaching,
616 * if we are in kdata_huge mode, we put it at the end of
617 * the lowmem region. If we're not in kdata_huge mode,
618 * we take the per-cpu pages from the bottom of the
619 * controller, since that avoids fragmenting a huge page
620 * that users might want. We always take the memmap
621 * from the bottom of the controller, since with
622 * kdata_huge that lets it be under a huge TLB entry.
623 *
624 * If the user has requested isolnodes for a controller,
625 * though, there'll be no lowmem, so we just alloc_bootmem
626 * the memmap. There will be no percpu memory either.
627 */
628 if (__pfn_to_highbits(start) == 0) {
629 /* In low PAs, allocate via bootmem. */
630 unsigned long goal = 0;
631 node_memmap_pfn[i] =
632 alloc_bootmem_pfn(memmap_size, goal);
633 if (kdata_huge)
634 goal = PFN_PHYS(lowmem_end) - node_percpu[i];
635 if (node_percpu[i])
636 node_percpu_pfn[i] =
637 alloc_bootmem_pfn(node_percpu[i], goal);
638 } else if (cpu_isset(i, isolnodes)) {
639 node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0);
640 BUG_ON(node_percpu[i] != 0);
641 } else {
642 /* In high PAs, just reserve some pages. */
643 node_memmap_pfn[i] = node_free_pfn[i];
644 node_free_pfn[i] += PFN_UP(memmap_size);
645 if (!kdata_huge) {
646 node_percpu_pfn[i] = node_free_pfn[i];
647 node_free_pfn[i] += PFN_UP(node_percpu[i]);
648 } else {
649 node_percpu_pfn[i] =
650 lowmem_end - PFN_UP(node_percpu[i]);
651 }
652 }
653
654#ifdef CONFIG_HIGHMEM
655 if (start > lowmem_end) {
656 zones_size[ZONE_NORMAL] = 0;
657 zones_size[ZONE_HIGHMEM] = end - start;
658 } else {
659 zones_size[ZONE_NORMAL] = lowmem_end - start;
660 zones_size[ZONE_HIGHMEM] = end - lowmem_end;
661 }
662#else
663 zones_size[ZONE_NORMAL] = end - start;
664#endif
665
666 /*
667 * Everyone shares node 0's bootmem allocator, but
668 * we use alloc_remap(), above, to put the actual
669 * struct page array on the individual controllers,
670 * which is most of the data that we actually care about.
671 * We can't place bootmem allocators on the other
672 * controllers since the bootmem allocator can only
673 * operate on 32-bit physical addresses.
674 */
675 NODE_DATA(i)->bdata = NODE_DATA(0)->bdata;
676
677 free_area_init_node(i, zones_size, start, NULL);
678 printk(KERN_DEBUG " DMA zone: %ld per-cpu pages\n",
679 PFN_UP(node_percpu[i]));
680
681 /* Track the type of memory on each node */
682 if (zones_size[ZONE_NORMAL])
683 node_set_state(i, N_NORMAL_MEMORY);
684#ifdef CONFIG_HIGHMEM
685 if (end != start)
686 node_set_state(i, N_HIGH_MEMORY);
687#endif
688
689 node_set_online(i);
690 }
691}
692
693#ifdef CONFIG_NUMA
694
695/* which logical CPUs are on which nodes */
696struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
697EXPORT_SYMBOL(node_2_cpu_mask);
698
699/* which node each logical CPU is on */
700char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
701EXPORT_SYMBOL(cpu_2_node);
702
703/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
704static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
705{
706 if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
707 return -1;
708 else
709 return cpu_to_node(cpu);
710}
711
712/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
713static int __init node_neighbors(int node, int cpu,
714 struct cpumask *unbound_cpus)
715{
716 int neighbors = 0;
717 int w = smp_width;
718 int h = smp_height;
719 int x = cpu % w;
720 int y = cpu / w;
721 if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
722 ++neighbors;
723 if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
724 ++neighbors;
725 if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
726 ++neighbors;
727 if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
728 ++neighbors;
729 return neighbors;
730}
731
732static void __init setup_numa_mapping(void)
733{
734 int distance[MAX_NUMNODES][NR_CPUS];
735 HV_Coord coord;
736 int cpu, node, cpus, i, x, y;
737 int num_nodes = num_online_nodes();
738 struct cpumask unbound_cpus;
739 nodemask_t default_nodes;
740
741 cpumask_clear(&unbound_cpus);
742
743 /* Get set of nodes we will use for defaults */
744 nodes_andnot(default_nodes, node_online_map, isolnodes);
745 if (nodes_empty(default_nodes)) {
746 BUG_ON(!node_isset(0, node_online_map));
747 printk("Forcing NUMA node zero available as a default node\n");
748 node_set(0, default_nodes);
749 }
750
751 /* Populate the distance[] array */
752 memset(distance, -1, sizeof(distance));
753 cpu = 0;
754 for (coord.y = 0; coord.y < smp_height; ++coord.y) {
755 for (coord.x = 0; coord.x < smp_width;
756 ++coord.x, ++cpu) {
757 BUG_ON(cpu >= nr_cpu_ids);
758 if (!cpu_possible(cpu)) {
759 cpu_2_node[cpu] = -1;
760 continue;
761 }
762 for_each_node_mask(node, default_nodes) {
763 HV_MemoryControllerInfo info =
764 hv_inquire_memory_controller(
765 coord, node_controller[node]);
766 distance[node][cpu] =
767 ABS(info.coord.x) + ABS(info.coord.y);
768 }
769 cpumask_set_cpu(cpu, &unbound_cpus);
770 }
771 }
772 cpus = cpu;
773
774 /*
775 * Round-robin through the NUMA nodes until all the cpus are
776 * assigned. We could be more clever here (e.g. create four
777 * sorted linked lists on the same set of cpu nodes, and pull
778 * off them in round-robin sequence, removing from all four
779 * lists each time) but given the relatively small numbers
780 * involved, O(n^2) seem OK for a one-time cost.
781 */
782 node = first_node(default_nodes);
783 while (!cpumask_empty(&unbound_cpus)) {
784 int best_cpu = -1;
785 int best_distance = INT_MAX;
786 for (cpu = 0; cpu < cpus; ++cpu) {
787 if (cpumask_test_cpu(cpu, &unbound_cpus)) {
788 /*
789 * Compute metric, which is how much
790 * closer the cpu is to this memory
791 * controller than the others, shifted
792 * up, and then the number of
793 * neighbors already in the node as an
794 * epsilon adjustment to try to keep
795 * the nodes compact.
796 */
797 int d = distance[node][cpu] * num_nodes;
798 for_each_node_mask(i, default_nodes) {
799 if (i != node)
800 d -= distance[i][cpu];
801 }
802 d *= 8; /* allow space for epsilon */
803 d -= node_neighbors(node, cpu, &unbound_cpus);
804 if (d < best_distance) {
805 best_cpu = cpu;
806 best_distance = d;
807 }
808 }
809 }
810 BUG_ON(best_cpu < 0);
811 cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
812 cpu_2_node[best_cpu] = node;
813 cpumask_clear_cpu(best_cpu, &unbound_cpus);
814 node = next_node(node, default_nodes);
815 if (node == MAX_NUMNODES)
816 node = first_node(default_nodes);
817 }
818
819 /* Print out node assignments and set defaults for disabled cpus */
820 cpu = 0;
821 for (y = 0; y < smp_height; ++y) {
822 printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
823 for (x = 0; x < smp_width; ++x, ++cpu) {
824 if (cpu_to_node(cpu) < 0) {
825 printk(" -");
826 cpu_2_node[cpu] = first_node(default_nodes);
827 } else {
828 printk(" %d", cpu_to_node(cpu));
829 }
830 }
831 printk("\n");
832 }
833}
834
835static struct cpu cpu_devices[NR_CPUS];
836
837static int __init topology_init(void)
838{
839 int i;
840
841 for_each_online_node(i)
842 register_one_node(i);
843
844 for_each_present_cpu(i)
845 register_cpu(&cpu_devices[i], i);
846
847 return 0;
848}
849
850subsys_initcall(topology_init);
851
852#else /* !CONFIG_NUMA */
853
854#define setup_numa_mapping() do { } while (0)
855
856#endif /* CONFIG_NUMA */
857
858/**
859 * setup_mpls() - Allow the user-space code to access various SPRs.
860 *
861 * Also called from online_secondary().
862 */
863void __cpuinit setup_mpls(void)
864{
865 /* Allow asynchronous TLB interrupts. */
866#if CHIP_HAS_TILE_DMA()
867 raw_local_irq_unmask(INT_DMATLB_MISS);
868 raw_local_irq_unmask(INT_DMATLB_ACCESS);
869#endif
870#if CHIP_HAS_SN_PROC()
871 raw_local_irq_unmask(INT_SNITLB_MISS);
872#endif
873
874 /*
875 * Allow user access to many generic SPRs, like the cycle
876 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
877 */
878 __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
879
880#if CHIP_HAS_SN()
881 /* Static network is not restricted. */
882 __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
883#endif
884#if CHIP_HAS_SN_PROC()
885 __insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
886 __insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
887#endif
888
889 /*
890 * Set the MPL for interrupt control 0 to user level.
891 * This includes access to the SYSTEM_SAVE and EX_CONTEXT SPRs,
892 * as well as the PL 0 interrupt mask.
893 */
894 __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
895}
896
897static int __initdata set_initramfs_file;
898static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
899
900static int __init setup_initramfs_file(char *str)
901{
902 if (str == NULL)
903 return -EINVAL;
904 strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
905 set_initramfs_file = 1;
906
907 return 0;
908}
909early_param("initramfs_file", setup_initramfs_file);
910
911/*
912 * We look for an additional "initramfs.cpio.gz" file in the hvfs.
913 * If there is one, we allocate some memory for it and it will be
914 * unpacked to the initramfs after any built-in initramfs_data.
915 */
916static void __init load_hv_initrd(void)
917{
918 HV_FS_StatInfo stat;
919 int fd, rc;
920 void *initrd;
921
922 fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
923 if (fd == HV_ENOENT) {
924 if (set_initramfs_file)
925 printk("No such hvfs initramfs file '%s'\n",
926 initramfs_file);
927 return;
928 }
929 BUG_ON(fd < 0);
930 stat = hv_fs_fstat(fd);
931 BUG_ON(stat.size < 0);
932 if (stat.flags & HV_FS_ISDIR) {
933 printk("Ignoring hvfs file '%s': it's a directory.\n",
934 initramfs_file);
935 return;
936 }
937 initrd = alloc_bootmem_pages(stat.size);
938 rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
939 if (rc != stat.size) {
940 printk("Error reading %d bytes from hvfs file '%s': %d\n",
941 stat.size, initramfs_file, rc);
942 free_bootmem((unsigned long) initrd, stat.size);
943 return;
944 }
945 initrd_start = (unsigned long) initrd;
946 initrd_end = initrd_start + stat.size;
947}
948
949void __init free_initrd_mem(unsigned long begin, unsigned long end)
950{
951 free_bootmem(begin, end - begin);
952}
953
954static void __init validate_hv(void)
955{
956 /*
957 * It may already be too late, but let's check our built-in
958 * configuration against what the hypervisor is providing.
959 */
960 unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
961 int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
962 int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
963 HV_ASIDRange asid_range;
964
965#ifndef CONFIG_SMP
966 HV_Topology topology = hv_inquire_topology();
967 BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
968 if (topology.width != 1 || topology.height != 1) {
969 printk("Warning: booting UP kernel on %dx%d grid;"
970 " will ignore all but first tile.\n",
971 topology.width, topology.height);
972 }
973#endif
974
975 if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
976 early_panic("Hypervisor glue size %ld is too big!\n",
977 glue_size);
978 if (hv_page_size != PAGE_SIZE)
979 early_panic("Hypervisor page size %#x != our %#lx\n",
980 hv_page_size, PAGE_SIZE);
981 if (hv_hpage_size != HPAGE_SIZE)
982 early_panic("Hypervisor huge page size %#x != our %#lx\n",
983 hv_hpage_size, HPAGE_SIZE);
984
985#ifdef CONFIG_SMP
986 /*
987 * Some hypervisor APIs take a pointer to a bitmap array
988 * whose size is at least the number of cpus on the chip.
989 * We use a struct cpumask for this, so it must be big enough.
990 */
991 if ((smp_height * smp_width) > nr_cpu_ids)
992 early_panic("Hypervisor %d x %d grid too big for Linux"
993 " NR_CPUS %d\n", smp_height, smp_width,
994 nr_cpu_ids);
995#endif
996
997 /*
998 * Check that we're using allowed ASIDs, and initialize the
999 * various asid variables to their appropriate initial states.
1000 */
1001 asid_range = hv_inquire_asid(0);
1002 __get_cpu_var(current_asid) = min_asid = asid_range.start;
1003 max_asid = asid_range.start + asid_range.size - 1;
1004
1005 if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1006 sizeof(chip_model)) < 0) {
1007 printk("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1008 strlcpy(chip_model, "unknown", sizeof(chip_model));
1009 }
1010}
1011
1012static void __init validate_va(void)
1013{
1014#ifndef __tilegx__ /* FIXME: GX: probably some validation relevant here */
1015 /*
1016 * Similarly, make sure we're only using allowed VAs.
1017 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1018 * and 0 .. KERNEL_HIGH_VADDR.
1019 * In addition, make sure we CAN'T use the end of memory, since
1020 * we use the last chunk of each pgd for the pgd_list.
1021 */
1022 int i, fc_fd_ok = 0;
1023 unsigned long max_va = 0;
1024 unsigned long list_va =
1025 ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1026
1027 for (i = 0; ; ++i) {
1028 HV_VirtAddrRange range = hv_inquire_virtual(i);
1029 if (range.size == 0)
1030 break;
1031 if (range.start <= MEM_USER_INTRPT &&
1032 range.start + range.size >= MEM_HV_INTRPT)
1033 fc_fd_ok = 1;
1034 if (range.start == 0)
1035 max_va = range.size;
1036 BUG_ON(range.start + range.size > list_va);
1037 }
1038 if (!fc_fd_ok)
1039 early_panic("Hypervisor not configured for VAs 0xfc/0xfd\n");
1040 if (max_va == 0)
1041 early_panic("Hypervisor not configured for low VAs\n");
1042 if (max_va < KERNEL_HIGH_VADDR)
1043 early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1044 max_va, KERNEL_HIGH_VADDR);
1045
1046 /* Kernel PCs must have their high bit set; see intvec.S. */
1047 if ((long)VMALLOC_START >= 0)
1048 early_panic(
1049 "Linux VMALLOC region below the 2GB line (%#lx)!\n"
1050 "Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1051 "or smaller VMALLOC_RESERVE.\n",
1052 VMALLOC_START);
1053#endif
1054}
1055
1056/*
1057 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1058 * to cache data on at a page level, i.e. what cpus can be placed in
1059 * the LOTAR field of a PTE. It is equivalent to the set of possible
1060 * cpus plus any other cpus that are willing to share their cache.
1061 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1062 */
1063struct cpumask __write_once cpu_lotar_map;
1064EXPORT_SYMBOL(cpu_lotar_map);
1065
1066#if CHIP_HAS_CBOX_HOME_MAP()
1067/*
1068 * hash_for_home_map lists all the tiles that hash-for-home data
1069 * will be cached on. Note that this may includes tiles that are not
1070 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1071 * device is being shared between multiple supervisors).
1072 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1073 */
1074struct cpumask hash_for_home_map;
1075EXPORT_SYMBOL(hash_for_home_map);
1076#endif
1077
1078/*
1079 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1080 * flush on our behalf. It is set to cpu_possible_map OR'ed with
1081 * hash_for_home_map, and it is what should be passed to
1082 * hv_flush_remote() to flush all caches. Note that if there are
1083 * dedicated hypervisor driver tiles that have authorized use of their
1084 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1085 * cpu_cacheable_map, as they are a special case.
1086 */
1087struct cpumask __write_once cpu_cacheable_map;
1088EXPORT_SYMBOL(cpu_cacheable_map);
1089
1090static __initdata struct cpumask disabled_map;
1091
1092static int __init disabled_cpus(char *str)
1093{
1094 int boot_cpu = smp_processor_id();
1095
1096 if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1097 return -EINVAL;
1098 if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1099 printk("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1100 cpumask_clear_cpu(boot_cpu, &disabled_map);
1101 }
1102 return 0;
1103}
1104
1105early_param("disabled_cpus", disabled_cpus);
1106
1107void __init print_disabled_cpus()
1108{
1109 if (!cpumask_empty(&disabled_map)) {
1110 char buf[100];
1111 cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1112 printk(KERN_INFO "CPUs not available for Linux: %s\n", buf);
1113 }
1114}
1115
1116static void __init setup_cpu_maps(void)
1117{
1118 struct cpumask hv_disabled_map, cpu_possible_init;
1119 int boot_cpu = smp_processor_id();
1120 int cpus, i, rc;
1121
1122 /* Learn which cpus are allowed by the hypervisor. */
1123 rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1124 (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1125 sizeof(cpu_cacheable_map));
1126 if (rc < 0)
1127 early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1128 if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1129 early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1130
1131 /* Compute the cpus disabled by the hvconfig file. */
1132 cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1133
1134 /* Include them with the cpus disabled by "disabled_cpus". */
1135 cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1136
1137 /*
1138 * Disable every cpu after "setup_max_cpus". But don't mark
1139 * as disabled the cpus that are outside of our initial rectangle,
1140 * since that turns out to be confusing.
1141 */
1142 cpus = 1; /* this cpu */
1143 cpumask_set_cpu(boot_cpu, &disabled_map); /* ignore this cpu */
1144 for (i = 0; cpus < setup_max_cpus; ++i)
1145 if (!cpumask_test_cpu(i, &disabled_map))
1146 ++cpus;
1147 for (; i < smp_height * smp_width; ++i)
1148 cpumask_set_cpu(i, &disabled_map);
1149 cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1150 for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1151 cpumask_clear_cpu(i, &disabled_map);
1152
1153 /*
1154 * Setup cpu_possible map as every cpu allocated to us, minus
1155 * the results of any "disabled_cpus" settings.
1156 */
1157 cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1158 init_cpu_possible(&cpu_possible_init);
1159
1160 /* Learn which cpus are valid for LOTAR caching. */
1161 rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1162 (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1163 sizeof(cpu_lotar_map));
1164 if (rc < 0) {
1165 printk("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1166 cpu_lotar_map = cpu_possible_map;
1167 }
1168
1169#if CHIP_HAS_CBOX_HOME_MAP()
1170 /* Retrieve set of CPUs used for hash-for-home caching */
1171 rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1172 (HV_VirtAddr) hash_for_home_map.bits,
1173 sizeof(hash_for_home_map));
1174 if (rc < 0)
1175 early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1176 cpumask_or(&cpu_cacheable_map, &cpu_possible_map, &hash_for_home_map);
1177#else
1178 cpu_cacheable_map = cpu_possible_map;
1179#endif
1180}
1181
1182
1183static int __init dataplane(char *str)
1184{
1185 printk("WARNING: dataplane support disabled in this kernel\n");
1186 return 0;
1187}
1188
1189early_param("dataplane", dataplane);
1190
1191#ifdef CONFIG_CMDLINE_BOOL
1192static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1193#endif
1194
1195void __init setup_arch(char **cmdline_p)
1196{
1197 int len;
1198
1199#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1200 len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1201 COMMAND_LINE_SIZE);
1202 if (boot_command_line[0])
1203 printk("WARNING: ignoring dynamic command line \"%s\"\n",
1204 boot_command_line);
1205 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1206#else
1207 char *hv_cmdline;
1208#if defined(CONFIG_CMDLINE_BOOL)
1209 if (builtin_cmdline[0]) {
1210 int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1211 COMMAND_LINE_SIZE);
1212 if (builtin_len < COMMAND_LINE_SIZE-1)
1213 boot_command_line[builtin_len++] = ' ';
1214 hv_cmdline = &boot_command_line[builtin_len];
1215 len = COMMAND_LINE_SIZE - builtin_len;
1216 } else
1217#endif
1218 {
1219 hv_cmdline = boot_command_line;
1220 len = COMMAND_LINE_SIZE;
1221 }
1222 len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1223 if (len < 0 || len > COMMAND_LINE_SIZE)
1224 early_panic("hv_get_command_line failed: %d\n", len);
1225#endif
1226
1227 *cmdline_p = boot_command_line;
1228
1229 /* Set disabled_map and setup_max_cpus very early */
1230 parse_early_param();
1231
1232 /* Make sure the kernel is compatible with the hypervisor. */
1233 validate_hv();
1234 validate_va();
1235
1236 setup_cpu_maps();
1237
1238
1239#ifdef CONFIG_PCI
1240 /*
1241 * Initialize the PCI structures. This is done before memory
1242 * setup so that we know whether or not a pci_reserve region
1243 * is necessary.
1244 */
1245 if (tile_pci_init() == 0)
1246 pci_reserve_mb = 0;
1247
1248 /* PCI systems reserve a region just below 4GB for mapping iomem. */
1249 pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT));
1250 pci_reserve_start_pfn = pci_reserve_end_pfn -
1251 (pci_reserve_mb << (20 - PAGE_SHIFT));
1252#endif
1253
1254 init_mm.start_code = (unsigned long) _text;
1255 init_mm.end_code = (unsigned long) _etext;
1256 init_mm.end_data = (unsigned long) _edata;
1257 init_mm.brk = (unsigned long) _end;
1258
1259 setup_memory();
1260 store_permanent_mappings();
1261 setup_bootmem_allocator();
1262
1263 /*
1264 * NOTE: before this point _nobody_ is allowed to allocate
1265 * any memory using the bootmem allocator.
1266 */
1267
1268 paging_init();
1269 setup_numa_mapping();
1270 zone_sizes_init();
1271 set_page_homes();
1272 setup_mpls();
1273 setup_clock();
1274 load_hv_initrd();
1275}
1276
1277
1278/*
1279 * Set up per-cpu memory.
1280 */
1281
1282unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1283EXPORT_SYMBOL(__per_cpu_offset);
1284
1285static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1286static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1287
1288/*
1289 * As the percpu code allocates pages, we return the pages from the
1290 * end of the node for the specified cpu.
1291 */
1292static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1293{
1294 int nid = cpu_to_node(cpu);
1295 unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1296
1297 BUG_ON(size % PAGE_SIZE != 0);
1298 pfn_offset[nid] += size / PAGE_SIZE;
1299 if (percpu_pfn[cpu] == 0)
1300 percpu_pfn[cpu] = pfn;
1301 return pfn_to_kaddr(pfn);
1302}
1303
1304/*
1305 * Pages reserved for percpu memory are not freeable, and in any case we are
1306 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1307 */
1308static void __init pcpu_fc_free(void *ptr, size_t size)
1309{
1310}
1311
1312/*
1313 * Set up vmalloc page tables using bootmem for the percpu code.
1314 */
1315static void __init pcpu_fc_populate_pte(unsigned long addr)
1316{
1317 pgd_t *pgd;
1318 pud_t *pud;
1319 pmd_t *pmd;
1320 pte_t *pte;
1321
1322 BUG_ON(pgd_addr_invalid(addr));
1323
1324 pgd = swapper_pg_dir + pgd_index(addr);
1325 pud = pud_offset(pgd, addr);
1326 BUG_ON(!pud_present(*pud));
1327 pmd = pmd_offset(pud, addr);
1328 if (pmd_present(*pmd)) {
1329 BUG_ON(pmd_huge_page(*pmd));
1330 } else {
1331 pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1332 HV_PAGE_TABLE_ALIGN, 0);
1333 pmd_populate_kernel(&init_mm, pmd, pte);
1334 }
1335}
1336
1337void __init setup_per_cpu_areas(void)
1338{
1339 struct page *pg;
1340 unsigned long delta, pfn, lowmem_va;
1341 unsigned long size = percpu_size();
1342 char *ptr;
1343 int rc, cpu, i;
1344
1345 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1346 pcpu_fc_free, pcpu_fc_populate_pte);
1347 if (rc < 0)
1348 panic("Cannot initialize percpu area (err=%d)", rc);
1349
1350 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1351 for_each_possible_cpu(cpu) {
1352 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1353
1354 /* finv the copy out of cache so we can change homecache */
1355 ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1356 __finv_buffer(ptr, size);
1357 pfn = percpu_pfn[cpu];
1358
1359 /* Rewrite the page tables to cache on that cpu */
1360 pg = pfn_to_page(pfn);
1361 for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1362
1363 /* Update the vmalloc mapping and page home. */
1364 pte_t *ptep =
1365 virt_to_pte(NULL, (unsigned long)ptr + i);
1366 pte_t pte = *ptep;
1367 BUG_ON(pfn != pte_pfn(pte));
1368 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1369 pte = set_remote_cache_cpu(pte, cpu);
1370 set_pte(ptep, pte);
1371
1372 /* Update the lowmem mapping for consistency. */
1373 lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1374 ptep = virt_to_pte(NULL, lowmem_va);
1375 if (pte_huge(*ptep)) {
1376 printk(KERN_DEBUG "early shatter of huge page"
1377 " at %#lx\n", lowmem_va);
1378 shatter_pmd((pmd_t *)ptep);
1379 ptep = virt_to_pte(NULL, lowmem_va);
1380 BUG_ON(pte_huge(*ptep));
1381 }
1382 BUG_ON(pfn != pte_pfn(*ptep));
1383 set_pte(ptep, pte);
1384 }
1385 }
1386
1387 /* Set our thread pointer appropriately. */
1388 set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1389
1390 /* Make sure the finv's have completed. */
1391 mb_incoherent();
1392
1393 /* Flush the TLB so we reference it properly from here on out. */
1394 local_flush_tlb_all();
1395}
1396
1397static struct resource data_resource = {
1398 .name = "Kernel data",
1399 .start = 0,
1400 .end = 0,
1401 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1402};
1403
1404static struct resource code_resource = {
1405 .name = "Kernel code",
1406 .start = 0,
1407 .end = 0,
1408 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1409};
1410
1411/*
1412 * We reserve all resources above 4GB so that PCI won't try to put
1413 * mappings above 4GB; the standard allows that for some devices but
1414 * the probing code trunates values to 32 bits.
1415 */
1416#ifdef CONFIG_PCI
1417static struct resource* __init
1418insert_non_bus_resource(void)
1419{
1420 struct resource *res =
1421 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1422 res->name = "Non-Bus Physical Address Space";
1423 res->start = (1ULL << 32);
1424 res->end = -1LL;
1425 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1426 if (insert_resource(&iomem_resource, res)) {
1427 kfree(res);
1428 return NULL;
1429 }
1430 return res;
1431}
1432#endif
1433
1434static struct resource* __init
1435insert_ram_resource(u64 start_pfn, u64 end_pfn)
1436{
1437 struct resource *res =
1438 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1439 res->name = "System RAM";
1440 res->start = start_pfn << PAGE_SHIFT;
1441 res->end = (end_pfn << PAGE_SHIFT) - 1;
1442 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1443 if (insert_resource(&iomem_resource, res)) {
1444 kfree(res);
1445 return NULL;
1446 }
1447 return res;
1448}
1449
1450/*
1451 * Request address space for all standard resources
1452 *
1453 * If the system includes PCI root complex drivers, we need to create
1454 * a window just below 4GB where PCI BARs can be mapped.
1455 */
1456static int __init request_standard_resources(void)
1457{
1458 int i;
1459 enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1460
1461 iomem_resource.end = -1LL;
1462#ifdef CONFIG_PCI
1463 insert_non_bus_resource();
1464#endif
1465
1466 for_each_online_node(i) {
1467 u64 start_pfn = node_start_pfn[i];
1468 u64 end_pfn = node_end_pfn[i];
1469
1470#ifdef CONFIG_PCI
1471 if (start_pfn <= pci_reserve_start_pfn &&
1472 end_pfn > pci_reserve_start_pfn) {
1473 if (end_pfn > pci_reserve_end_pfn)
1474 insert_ram_resource(pci_reserve_end_pfn,
1475 end_pfn);
1476 end_pfn = pci_reserve_start_pfn;
1477 }
1478#endif
1479 insert_ram_resource(start_pfn, end_pfn);
1480 }
1481
1482 code_resource.start = __pa(_text - CODE_DELTA);
1483 code_resource.end = __pa(_etext - CODE_DELTA)-1;
1484 data_resource.start = __pa(_sdata);
1485 data_resource.end = __pa(_end)-1;
1486
1487 insert_resource(&iomem_resource, &code_resource);
1488 insert_resource(&iomem_resource, &data_resource);
1489
1490#ifdef CONFIG_KEXEC
1491 insert_resource(&iomem_resource, &crashk_res);
1492#endif
1493
1494 return 0;
1495}
1496
1497subsys_initcall(request_standard_resources);