Merge branch 'for-2.6.28' of git://linux-nfs.org/~bfields/linux
[linux-2.6-block.git] / arch / sparc / mm / srmmu.c
CommitLineData
1da177e4
LT
1/*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
1da177e4
LT
11#include <linux/kernel.h>
12#include <linux/mm.h>
13#include <linux/slab.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/bootmem.h>
19#include <linux/fs.h>
20#include <linux/seq_file.h>
1eeb66a1 21#include <linux/kdebug.h>
1da177e4
LT
22
23#include <asm/bitext.h>
24#include <asm/page.h>
25#include <asm/pgalloc.h>
26#include <asm/pgtable.h>
27#include <asm/io.h>
1da177e4
LT
28#include <asm/vaddrs.h>
29#include <asm/traps.h>
30#include <asm/smp.h>
31#include <asm/mbus.h>
32#include <asm/cache.h>
33#include <asm/oplib.h>
1da177e4
LT
34#include <asm/asi.h>
35#include <asm/msi.h>
1da177e4
LT
36#include <asm/mmu_context.h>
37#include <asm/io-unit.h>
38#include <asm/cacheflush.h>
39#include <asm/tlbflush.h>
40
41/* Now the cpu specific definitions. */
42#include <asm/viking.h>
43#include <asm/mxcc.h>
44#include <asm/ross.h>
45#include <asm/tsunami.h>
46#include <asm/swift.h>
47#include <asm/turbosparc.h>
48
49#include <asm/btfixup.h>
50
51enum mbus_module srmmu_modtype;
50215d65 52static unsigned int hwbug_bitmask;
1da177e4
LT
53int vac_cache_size;
54int vac_line_size;
55
56extern struct resource sparc_iomap;
57
58extern unsigned long last_valid_pfn;
59
60extern unsigned long page_kernel;
61
50215d65 62static pgd_t *srmmu_swapper_pg_dir;
1da177e4
LT
63
64#ifdef CONFIG_SMP
65#define FLUSH_BEGIN(mm)
66#define FLUSH_END
67#else
68#define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
69#define FLUSH_END }
70#endif
71
72BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
73#define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
74
75int flush_page_for_dma_global = 1;
76
77#ifdef CONFIG_SMP
78BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
79#define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
80#endif
81
82char *srmmu_name;
83
84ctxd_t *srmmu_ctx_table_phys;
50215d65 85static ctxd_t *srmmu_context_table;
1da177e4
LT
86
87int viking_mxcc_present;
88static DEFINE_SPINLOCK(srmmu_context_spinlock);
89
50215d65 90static int is_hypersparc;
1da177e4
LT
91
92/*
93 * In general all page table modifications should use the V8 atomic
94 * swap instruction. This insures the mmu and the cpu are in sync
95 * with respect to ref/mod bits in the page tables.
96 */
97static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
98{
99 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
100 return value;
101}
102
103static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
104{
105 srmmu_swap((unsigned long *)ptep, pte_val(pteval));
106}
107
108/* The very generic SRMMU page table operations. */
109static inline int srmmu_device_memory(unsigned long x)
110{
111 return ((x & 0xF0000000) != 0);
112}
113
50215d65 114static int srmmu_cache_pagetables;
1da177e4
LT
115
116/* these will be initialized in srmmu_nocache_calcsize() */
50215d65
AB
117static unsigned long srmmu_nocache_size;
118static unsigned long srmmu_nocache_end;
1da177e4
LT
119
120/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
121#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
122
123/* The context table is a nocache user with the biggest alignment needs. */
124#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
125
126void *srmmu_nocache_pool;
127void *srmmu_nocache_bitmap;
128static struct bit_map srmmu_nocache_map;
129
130static unsigned long srmmu_pte_pfn(pte_t pte)
131{
132 if (srmmu_device_memory(pte_val(pte))) {
133 /* Just return something that will cause
134 * pfn_valid() to return false. This makes
135 * copy_one_pte() to just directly copy to
136 * PTE over.
137 */
138 return ~0UL;
139 }
140 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
141}
142
143static struct page *srmmu_pmd_page(pmd_t pmd)
144{
145
146 if (srmmu_device_memory(pmd_val(pmd)))
147 BUG();
148 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
149}
150
151static inline unsigned long srmmu_pgd_page(pgd_t pgd)
152{ return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
153
154
155static inline int srmmu_pte_none(pte_t pte)
156{ return !(pte_val(pte) & 0xFFFFFFF); }
157
158static inline int srmmu_pte_present(pte_t pte)
159{ return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
160
1da177e4
LT
161static inline void srmmu_pte_clear(pte_t *ptep)
162{ srmmu_set_pte(ptep, __pte(0)); }
163
164static inline int srmmu_pmd_none(pmd_t pmd)
165{ return !(pmd_val(pmd) & 0xFFFFFFF); }
166
167static inline int srmmu_pmd_bad(pmd_t pmd)
168{ return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
169
170static inline int srmmu_pmd_present(pmd_t pmd)
171{ return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
172
173static inline void srmmu_pmd_clear(pmd_t *pmdp) {
174 int i;
175 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
176 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
177}
178
179static inline int srmmu_pgd_none(pgd_t pgd)
180{ return !(pgd_val(pgd) & 0xFFFFFFF); }
181
182static inline int srmmu_pgd_bad(pgd_t pgd)
183{ return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
184
185static inline int srmmu_pgd_present(pgd_t pgd)
186{ return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
187
188static inline void srmmu_pgd_clear(pgd_t * pgdp)
189{ srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
190
191static inline pte_t srmmu_pte_wrprotect(pte_t pte)
192{ return __pte(pte_val(pte) & ~SRMMU_WRITE);}
193
194static inline pte_t srmmu_pte_mkclean(pte_t pte)
195{ return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
196
197static inline pte_t srmmu_pte_mkold(pte_t pte)
198{ return __pte(pte_val(pte) & ~SRMMU_REF);}
199
200static inline pte_t srmmu_pte_mkwrite(pte_t pte)
201{ return __pte(pte_val(pte) | SRMMU_WRITE);}
202
203static inline pte_t srmmu_pte_mkdirty(pte_t pte)
204{ return __pte(pte_val(pte) | SRMMU_DIRTY);}
205
206static inline pte_t srmmu_pte_mkyoung(pte_t pte)
207{ return __pte(pte_val(pte) | SRMMU_REF);}
208
209/*
210 * Conversion functions: convert a page and protection to a page entry,
211 * and a page entry and page directory to the page they refer to.
212 */
213static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
214{ return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
215
216static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
217{ return __pte(((page) >> 4) | pgprot_val(pgprot)); }
218
219static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
220{ return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
221
222/* XXX should we hyper_flush_whole_icache here - Anton */
223static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
224{ srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
225
226static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
227{ srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
228
229static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
230{
231 unsigned long ptp; /* Physical address, shifted right by 4 */
232 int i;
233
234 ptp = __nocache_pa((unsigned long) ptep) >> 4;
235 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
236 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
237 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
238 }
239}
240
241static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
242{
243 unsigned long ptp; /* Physical address, shifted right by 4 */
244 int i;
245
246 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
247 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
248 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
249 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
250 }
251}
252
253static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
254{ return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
255
256/* to find an entry in a top-level page table... */
3115624e 257static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
1da177e4
LT
258{ return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
259
260/* Find an entry in the second-level page table.. */
261static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
262{
263 return (pmd_t *) srmmu_pgd_page(*dir) +
264 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
265}
266
267/* Find an entry in the third-level page table.. */
268static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
269{
270 void *pte;
271
272 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
273 return (pte_t *) pte +
274 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
275}
276
277static unsigned long srmmu_swp_type(swp_entry_t entry)
278{
279 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
280}
281
282static unsigned long srmmu_swp_offset(swp_entry_t entry)
283{
284 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
285}
286
287static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
288{
289 return (swp_entry_t) {
290 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
291 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
292}
293
294/*
295 * size: bytes to allocate in the nocache area.
296 * align: bytes, number to align at.
297 * Returns the virtual address of the allocated area.
298 */
299static unsigned long __srmmu_get_nocache(int size, int align)
300{
301 int offset;
302
303 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
304 printk("Size 0x%x too small for nocache request\n", size);
305 size = SRMMU_NOCACHE_BITMAP_SHIFT;
306 }
307 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
308 printk("Size 0x%x unaligned int nocache request\n", size);
309 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
310 }
311 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
312
313 offset = bit_map_string_get(&srmmu_nocache_map,
314 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
315 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
316 if (offset == -1) {
317 printk("srmmu: out of nocache %d: %d/%d\n",
318 size, (int) srmmu_nocache_size,
319 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
320 return 0;
321 }
322
323 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
324}
325
50215d65 326static unsigned long srmmu_get_nocache(int size, int align)
1da177e4
LT
327{
328 unsigned long tmp;
329
330 tmp = __srmmu_get_nocache(size, align);
331
332 if (tmp)
333 memset((void *)tmp, 0, size);
334
335 return tmp;
336}
337
50215d65 338static void srmmu_free_nocache(unsigned long vaddr, int size)
1da177e4
LT
339{
340 int offset;
341
342 if (vaddr < SRMMU_NOCACHE_VADDR) {
343 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
344 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
345 BUG();
346 }
347 if (vaddr+size > srmmu_nocache_end) {
348 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
349 vaddr, srmmu_nocache_end);
350 BUG();
351 }
352 if (size & (size-1)) {
353 printk("Size 0x%x is not a power of 2\n", size);
354 BUG();
355 }
356 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
357 printk("Size 0x%x is too small\n", size);
358 BUG();
359 }
360 if (vaddr & (size-1)) {
361 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
362 BUG();
363 }
364
365 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
366 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
367
368 bit_map_clear(&srmmu_nocache_map, offset, size);
369}
370
50215d65
AB
371static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
372 unsigned long end);
1da177e4
LT
373
374extern unsigned long probe_memory(void); /* in fault.c */
375
376/*
377 * Reserve nocache dynamically proportionally to the amount of
378 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
379 */
50215d65 380static void srmmu_nocache_calcsize(void)
1da177e4
LT
381{
382 unsigned long sysmemavail = probe_memory() / 1024;
383 int srmmu_nocache_npages;
384
385 srmmu_nocache_npages =
386 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
387
388 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
389 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
390 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
391 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
392
393 /* anything above 1280 blows up */
394 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
395 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
396
397 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
398 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
399}
400
50215d65 401static void __init srmmu_nocache_init(void)
1da177e4
LT
402{
403 unsigned int bitmap_bits;
404 pgd_t *pgd;
405 pmd_t *pmd;
406 pte_t *pte;
407 unsigned long paddr, vaddr;
408 unsigned long pteval;
409
410 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
411
412 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
413 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
414 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
415
416 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
417 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
418
419 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
420 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
421 init_mm.pgd = srmmu_swapper_pg_dir;
422
423 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
424
425 paddr = __pa((unsigned long)srmmu_nocache_pool);
426 vaddr = SRMMU_NOCACHE_VADDR;
427
428 while (vaddr < srmmu_nocache_end) {
429 pgd = pgd_offset_k(vaddr);
430 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
431 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
432
433 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
434
435 if (srmmu_cache_pagetables)
436 pteval |= SRMMU_CACHE;
437
438 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
439
440 vaddr += PAGE_SIZE;
441 paddr += PAGE_SIZE;
442 }
443
444 flush_cache_all();
445 flush_tlb_all();
446}
447
448static inline pgd_t *srmmu_get_pgd_fast(void)
449{
450 pgd_t *pgd = NULL;
451
452 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
453 if (pgd) {
454 pgd_t *init = pgd_offset_k(0);
455 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
456 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
457 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
458 }
459
460 return pgd;
461}
462
463static void srmmu_free_pgd_fast(pgd_t *pgd)
464{
465 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
466}
467
468static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
469{
470 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
471}
472
473static void srmmu_pmd_free(pmd_t * pmd)
474{
475 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
476}
477
478/*
479 * Hardware needs alignment to 256 only, but we align to whole page size
480 * to reduce fragmentation problems due to the buddy principle.
481 * XXX Provide actual fragmentation statistics in /proc.
482 *
483 * Alignments up to the page size are the same for physical and virtual
484 * addresses of the nocache area.
485 */
486static pte_t *
487srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
488{
489 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
490}
491
2f569afd 492static pgtable_t
1da177e4
LT
493srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
494{
495 unsigned long pte;
2f569afd 496 struct page *page;
1da177e4
LT
497
498 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
499 return NULL;
2f569afd
MS
500 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
501 pgtable_page_ctor(page);
502 return page;
1da177e4
LT
503}
504
505static void srmmu_free_pte_fast(pte_t *pte)
506{
507 srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
508}
509
2f569afd 510static void srmmu_pte_free(pgtable_t pte)
1da177e4
LT
511{
512 unsigned long p;
513
2f569afd 514 pgtable_page_dtor(pte);
1da177e4
LT
515 p = (unsigned long)page_address(pte); /* Cached address (for test) */
516 if (p == 0)
517 BUG();
518 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
519 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
520 srmmu_free_nocache(p, PTE_SIZE);
521}
522
523/*
524 */
525static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
526{
527 struct ctx_list *ctxp;
528
529 ctxp = ctx_free.next;
530 if(ctxp != &ctx_free) {
531 remove_from_ctx_list(ctxp);
532 add_to_used_ctxlist(ctxp);
533 mm->context = ctxp->ctx_number;
534 ctxp->ctx_mm = mm;
535 return;
536 }
537 ctxp = ctx_used.next;
538 if(ctxp->ctx_mm == old_mm)
539 ctxp = ctxp->next;
540 if(ctxp == &ctx_used)
541 panic("out of mmu contexts");
542 flush_cache_mm(ctxp->ctx_mm);
543 flush_tlb_mm(ctxp->ctx_mm);
544 remove_from_ctx_list(ctxp);
545 add_to_used_ctxlist(ctxp);
546 ctxp->ctx_mm->context = NO_CONTEXT;
547 ctxp->ctx_mm = mm;
548 mm->context = ctxp->ctx_number;
549}
550
551static inline void free_context(int context)
552{
553 struct ctx_list *ctx_old;
554
555 ctx_old = ctx_list_pool + context;
556 remove_from_ctx_list(ctx_old);
557 add_to_free_ctxlist(ctx_old);
558}
559
560
561static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
562 struct task_struct *tsk, int cpu)
563{
564 if(mm->context == NO_CONTEXT) {
565 spin_lock(&srmmu_context_spinlock);
566 alloc_context(old_mm, mm);
567 spin_unlock(&srmmu_context_spinlock);
568 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
569 }
570
571 if (is_hypersparc)
572 hyper_flush_whole_icache();
573
574 srmmu_set_context(mm->context);
575}
576
577/* Low level IO area allocation on the SRMMU. */
578static inline void srmmu_mapioaddr(unsigned long physaddr,
579 unsigned long virt_addr, int bus_type)
580{
581 pgd_t *pgdp;
582 pmd_t *pmdp;
583 pte_t *ptep;
584 unsigned long tmp;
585
586 physaddr &= PAGE_MASK;
587 pgdp = pgd_offset_k(virt_addr);
588 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
589 ptep = srmmu_pte_offset(pmdp, virt_addr);
590 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
591
592 /*
593 * I need to test whether this is consistent over all
594 * sun4m's. The bus_type represents the upper 4 bits of
595 * 36-bit physical address on the I/O space lines...
596 */
597 tmp |= (bus_type << 28);
598 tmp |= SRMMU_PRIV;
599 __flush_page_to_ram(virt_addr);
600 srmmu_set_pte(ptep, __pte(tmp));
601}
602
603static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
604 unsigned long xva, unsigned int len)
605{
606 while (len != 0) {
607 len -= PAGE_SIZE;
608 srmmu_mapioaddr(xpa, xva, bus);
609 xva += PAGE_SIZE;
610 xpa += PAGE_SIZE;
611 }
612 flush_tlb_all();
613}
614
615static inline void srmmu_unmapioaddr(unsigned long virt_addr)
616{
617 pgd_t *pgdp;
618 pmd_t *pmdp;
619 pte_t *ptep;
620
621 pgdp = pgd_offset_k(virt_addr);
622 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
623 ptep = srmmu_pte_offset(pmdp, virt_addr);
624
625 /* No need to flush uncacheable page. */
626 srmmu_pte_clear(ptep);
627}
628
629static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
630{
631 while (len != 0) {
632 len -= PAGE_SIZE;
633 srmmu_unmapioaddr(virt_addr);
634 virt_addr += PAGE_SIZE;
635 }
636 flush_tlb_all();
637}
638
639/*
640 * On the SRMMU we do not have the problems with limited tlb entries
641 * for mapping kernel pages, so we just take things from the free page
642 * pool. As a side effect we are putting a little too much pressure
643 * on the gfp() subsystem. This setup also makes the logic of the
644 * iommu mapping code a lot easier as we can transparently handle
645 * mappings on the kernel stack without any special code as we did
646 * need on the sun4c.
647 */
50215d65 648static struct thread_info *srmmu_alloc_thread_info(void)
1da177e4
LT
649{
650 struct thread_info *ret;
651
652 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
653 THREAD_INFO_ORDER);
654#ifdef CONFIG_DEBUG_STACK_USAGE
655 if (ret)
656 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
657#endif /* DEBUG_STACK_USAGE */
658
659 return ret;
660}
661
662static void srmmu_free_thread_info(struct thread_info *ti)
663{
664 free_pages((unsigned long)ti, THREAD_INFO_ORDER);
665}
666
667/* tsunami.S */
668extern void tsunami_flush_cache_all(void);
669extern void tsunami_flush_cache_mm(struct mm_struct *mm);
670extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
671extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
672extern void tsunami_flush_page_to_ram(unsigned long page);
673extern void tsunami_flush_page_for_dma(unsigned long page);
674extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
675extern void tsunami_flush_tlb_all(void);
676extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
677extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
678extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
679extern void tsunami_setup_blockops(void);
680
681/*
682 * Workaround, until we find what's going on with Swift. When low on memory,
683 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
684 * out it is already in page tables/ fault again on the same instruction.
685 * I really don't understand it, have checked it and contexts
686 * are right, flush_tlb_all is done as well, and it faults again...
687 * Strange. -jj
688 *
689 * The following code is a deadwood that may be necessary when
690 * we start to make precise page flushes again. --zaitcev
691 */
692static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
693{
694#if 0
695 static unsigned long last;
696 unsigned int val;
697 /* unsigned int n; */
698
699 if (address == last) {
700 val = srmmu_hwprobe(address);
701 if (val != 0 && pte_val(pte) != val) {
702 printk("swift_update_mmu_cache: "
703 "addr %lx put %08x probed %08x from %p\n",
704 address, pte_val(pte), val,
705 __builtin_return_address(0));
706 srmmu_flush_whole_tlb();
707 }
708 }
709 last = address;
710#endif
711}
712
713/* swift.S */
714extern void swift_flush_cache_all(void);
715extern void swift_flush_cache_mm(struct mm_struct *mm);
716extern void swift_flush_cache_range(struct vm_area_struct *vma,
717 unsigned long start, unsigned long end);
718extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
719extern void swift_flush_page_to_ram(unsigned long page);
720extern void swift_flush_page_for_dma(unsigned long page);
721extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
722extern void swift_flush_tlb_all(void);
723extern void swift_flush_tlb_mm(struct mm_struct *mm);
724extern void swift_flush_tlb_range(struct vm_area_struct *vma,
725 unsigned long start, unsigned long end);
726extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
727
728#if 0 /* P3: deadwood to debug precise flushes on Swift. */
729void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
730{
731 int cctx, ctx1;
732
733 page &= PAGE_MASK;
734 if ((ctx1 = vma->vm_mm->context) != -1) {
735 cctx = srmmu_get_context();
736/* Is context # ever different from current context? P3 */
737 if (cctx != ctx1) {
738 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
739 srmmu_set_context(ctx1);
740 swift_flush_page(page);
741 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
742 "r" (page), "i" (ASI_M_FLUSH_PROBE));
743 srmmu_set_context(cctx);
744 } else {
745 /* Rm. prot. bits from virt. c. */
746 /* swift_flush_cache_all(); */
747 /* swift_flush_cache_page(vma, page); */
748 swift_flush_page(page);
749
750 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
751 "r" (page), "i" (ASI_M_FLUSH_PROBE));
752 /* same as above: srmmu_flush_tlb_page() */
753 }
754 }
755}
756#endif
757
758/*
759 * The following are all MBUS based SRMMU modules, and therefore could
760 * be found in a multiprocessor configuration. On the whole, these
761 * chips seems to be much more touchy about DVMA and page tables
762 * with respect to cache coherency.
763 */
764
765/* Cypress flushes. */
766static void cypress_flush_cache_all(void)
767{
768 volatile unsigned long cypress_sucks;
769 unsigned long faddr, tagval;
770
771 flush_user_windows();
772 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
773 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
774 "=r" (tagval) :
775 "r" (faddr), "r" (0x40000),
776 "i" (ASI_M_DATAC_TAG));
777
778 /* If modified and valid, kick it. */
779 if((tagval & 0x60) == 0x60)
780 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
781 }
782}
783
784static void cypress_flush_cache_mm(struct mm_struct *mm)
785{
786 register unsigned long a, b, c, d, e, f, g;
787 unsigned long flags, faddr;
788 int octx;
789
790 FLUSH_BEGIN(mm)
791 flush_user_windows();
792 local_irq_save(flags);
793 octx = srmmu_get_context();
794 srmmu_set_context(mm->context);
795 a = 0x20; b = 0x40; c = 0x60;
796 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
797
798 faddr = (0x10000 - 0x100);
799 goto inside;
800 do {
801 faddr -= 0x100;
802 inside:
803 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
804 "sta %%g0, [%0 + %2] %1\n\t"
805 "sta %%g0, [%0 + %3] %1\n\t"
806 "sta %%g0, [%0 + %4] %1\n\t"
807 "sta %%g0, [%0 + %5] %1\n\t"
808 "sta %%g0, [%0 + %6] %1\n\t"
809 "sta %%g0, [%0 + %7] %1\n\t"
810 "sta %%g0, [%0 + %8] %1\n\t" : :
811 "r" (faddr), "i" (ASI_M_FLUSH_CTX),
812 "r" (a), "r" (b), "r" (c), "r" (d),
813 "r" (e), "r" (f), "r" (g));
814 } while(faddr);
815 srmmu_set_context(octx);
816 local_irq_restore(flags);
817 FLUSH_END
818}
819
820static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
821{
822 struct mm_struct *mm = vma->vm_mm;
823 register unsigned long a, b, c, d, e, f, g;
824 unsigned long flags, faddr;
825 int octx;
826
827 FLUSH_BEGIN(mm)
828 flush_user_windows();
829 local_irq_save(flags);
830 octx = srmmu_get_context();
831 srmmu_set_context(mm->context);
832 a = 0x20; b = 0x40; c = 0x60;
833 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
834
835 start &= SRMMU_REAL_PMD_MASK;
836 while(start < end) {
837 faddr = (start + (0x10000 - 0x100));
838 goto inside;
839 do {
840 faddr -= 0x100;
841 inside:
842 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
843 "sta %%g0, [%0 + %2] %1\n\t"
844 "sta %%g0, [%0 + %3] %1\n\t"
845 "sta %%g0, [%0 + %4] %1\n\t"
846 "sta %%g0, [%0 + %5] %1\n\t"
847 "sta %%g0, [%0 + %6] %1\n\t"
848 "sta %%g0, [%0 + %7] %1\n\t"
849 "sta %%g0, [%0 + %8] %1\n\t" : :
850 "r" (faddr),
851 "i" (ASI_M_FLUSH_SEG),
852 "r" (a), "r" (b), "r" (c), "r" (d),
853 "r" (e), "r" (f), "r" (g));
854 } while (faddr != start);
855 start += SRMMU_REAL_PMD_SIZE;
856 }
857 srmmu_set_context(octx);
858 local_irq_restore(flags);
859 FLUSH_END
860}
861
862static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
863{
864 register unsigned long a, b, c, d, e, f, g;
865 struct mm_struct *mm = vma->vm_mm;
866 unsigned long flags, line;
867 int octx;
868
869 FLUSH_BEGIN(mm)
870 flush_user_windows();
871 local_irq_save(flags);
872 octx = srmmu_get_context();
873 srmmu_set_context(mm->context);
874 a = 0x20; b = 0x40; c = 0x60;
875 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
876
877 page &= PAGE_MASK;
878 line = (page + PAGE_SIZE) - 0x100;
879 goto inside;
880 do {
881 line -= 0x100;
882 inside:
883 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
884 "sta %%g0, [%0 + %2] %1\n\t"
885 "sta %%g0, [%0 + %3] %1\n\t"
886 "sta %%g0, [%0 + %4] %1\n\t"
887 "sta %%g0, [%0 + %5] %1\n\t"
888 "sta %%g0, [%0 + %6] %1\n\t"
889 "sta %%g0, [%0 + %7] %1\n\t"
890 "sta %%g0, [%0 + %8] %1\n\t" : :
891 "r" (line),
892 "i" (ASI_M_FLUSH_PAGE),
893 "r" (a), "r" (b), "r" (c), "r" (d),
894 "r" (e), "r" (f), "r" (g));
895 } while(line != page);
896 srmmu_set_context(octx);
897 local_irq_restore(flags);
898 FLUSH_END
899}
900
901/* Cypress is copy-back, at least that is how we configure it. */
902static void cypress_flush_page_to_ram(unsigned long page)
903{
904 register unsigned long a, b, c, d, e, f, g;
905 unsigned long line;
906
907 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
908 page &= PAGE_MASK;
909 line = (page + PAGE_SIZE) - 0x100;
910 goto inside;
911 do {
912 line -= 0x100;
913 inside:
914 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
915 "sta %%g0, [%0 + %2] %1\n\t"
916 "sta %%g0, [%0 + %3] %1\n\t"
917 "sta %%g0, [%0 + %4] %1\n\t"
918 "sta %%g0, [%0 + %5] %1\n\t"
919 "sta %%g0, [%0 + %6] %1\n\t"
920 "sta %%g0, [%0 + %7] %1\n\t"
921 "sta %%g0, [%0 + %8] %1\n\t" : :
922 "r" (line),
923 "i" (ASI_M_FLUSH_PAGE),
924 "r" (a), "r" (b), "r" (c), "r" (d),
925 "r" (e), "r" (f), "r" (g));
926 } while(line != page);
927}
928
929/* Cypress is also IO cache coherent. */
930static void cypress_flush_page_for_dma(unsigned long page)
931{
932}
933
934/* Cypress has unified L2 VIPT, from which both instructions and data
935 * are stored. It does not have an onboard icache of any sort, therefore
936 * no flush is necessary.
937 */
938static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
939{
940}
941
942static void cypress_flush_tlb_all(void)
943{
944 srmmu_flush_whole_tlb();
945}
946
947static void cypress_flush_tlb_mm(struct mm_struct *mm)
948{
949 FLUSH_BEGIN(mm)
950 __asm__ __volatile__(
951 "lda [%0] %3, %%g5\n\t"
952 "sta %2, [%0] %3\n\t"
953 "sta %%g0, [%1] %4\n\t"
954 "sta %%g5, [%0] %3\n"
955 : /* no outputs */
956 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
957 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
958 : "g5");
959 FLUSH_END
960}
961
962static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
963{
964 struct mm_struct *mm = vma->vm_mm;
965 unsigned long size;
966
967 FLUSH_BEGIN(mm)
968 start &= SRMMU_PGDIR_MASK;
969 size = SRMMU_PGDIR_ALIGN(end) - start;
970 __asm__ __volatile__(
971 "lda [%0] %5, %%g5\n\t"
972 "sta %1, [%0] %5\n"
973 "1:\n\t"
974 "subcc %3, %4, %3\n\t"
975 "bne 1b\n\t"
976 " sta %%g0, [%2 + %3] %6\n\t"
977 "sta %%g5, [%0] %5\n"
978 : /* no outputs */
979 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
980 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
981 "i" (ASI_M_FLUSH_PROBE)
982 : "g5", "cc");
983 FLUSH_END
984}
985
986static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
987{
988 struct mm_struct *mm = vma->vm_mm;
989
990 FLUSH_BEGIN(mm)
991 __asm__ __volatile__(
992 "lda [%0] %3, %%g5\n\t"
993 "sta %1, [%0] %3\n\t"
994 "sta %%g0, [%2] %4\n\t"
995 "sta %%g5, [%0] %3\n"
996 : /* no outputs */
997 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
998 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
999 : "g5");
1000 FLUSH_END
1001}
1002
1003/* viking.S */
1004extern void viking_flush_cache_all(void);
1005extern void viking_flush_cache_mm(struct mm_struct *mm);
1006extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1007 unsigned long end);
1008extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1009extern void viking_flush_page_to_ram(unsigned long page);
1010extern void viking_flush_page_for_dma(unsigned long page);
1011extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1012extern void viking_flush_page(unsigned long page);
1013extern void viking_mxcc_flush_page(unsigned long page);
1014extern void viking_flush_tlb_all(void);
1015extern void viking_flush_tlb_mm(struct mm_struct *mm);
1016extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1017 unsigned long end);
1018extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1019 unsigned long page);
1020extern void sun4dsmp_flush_tlb_all(void);
1021extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1022extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1023 unsigned long end);
1024extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1025 unsigned long page);
1026
1027/* hypersparc.S */
1028extern void hypersparc_flush_cache_all(void);
1029extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1030extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1031extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1032extern void hypersparc_flush_page_to_ram(unsigned long page);
1033extern void hypersparc_flush_page_for_dma(unsigned long page);
1034extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1035extern void hypersparc_flush_tlb_all(void);
1036extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1037extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1038extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1039extern void hypersparc_setup_blockops(void);
1040
1041/*
1042 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1043 * kernel mappings are done with one single contiguous chunk of
1044 * ram. On small ram machines (classics mainly) we only get
1045 * around 8mb mapped for us.
1046 */
1047
50215d65 1048static void __init early_pgtable_allocfail(char *type)
1da177e4
LT
1049{
1050 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1051 prom_halt();
1052}
1053
50215d65
AB
1054static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
1055 unsigned long end)
1da177e4
LT
1056{
1057 pgd_t *pgdp;
1058 pmd_t *pmdp;
1059 pte_t *ptep;
1060
1061 while(start < end) {
1062 pgdp = pgd_offset_k(start);
1063 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1064 pmdp = (pmd_t *) __srmmu_get_nocache(
1065 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1066 if (pmdp == NULL)
1067 early_pgtable_allocfail("pmd");
1068 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1069 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1070 }
1071 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1072 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1073 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1074 if (ptep == NULL)
1075 early_pgtable_allocfail("pte");
1076 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1077 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1078 }
1079 if (start > (0xffffffffUL - PMD_SIZE))
1080 break;
1081 start = (start + PMD_SIZE) & PMD_MASK;
1082 }
1083}
1084
50215d65
AB
1085static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1086 unsigned long end)
1da177e4
LT
1087{
1088 pgd_t *pgdp;
1089 pmd_t *pmdp;
1090 pte_t *ptep;
1091
1092 while(start < end) {
1093 pgdp = pgd_offset_k(start);
1094 if(srmmu_pgd_none(*pgdp)) {
1095 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1096 if (pmdp == NULL)
1097 early_pgtable_allocfail("pmd");
1098 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1099 srmmu_pgd_set(pgdp, pmdp);
1100 }
1101 pmdp = srmmu_pmd_offset(pgdp, start);
1102 if(srmmu_pmd_none(*pmdp)) {
1103 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1104 PTE_SIZE);
1105 if (ptep == NULL)
1106 early_pgtable_allocfail("pte");
1107 memset(ptep, 0, PTE_SIZE);
1108 srmmu_pmd_set(pmdp, ptep);
1109 }
1110 if (start > (0xffffffffUL - PMD_SIZE))
1111 break;
1112 start = (start + PMD_SIZE) & PMD_MASK;
1113 }
1114}
1115
1116/*
1117 * This is much cleaner than poking around physical address space
1118 * looking at the prom's page table directly which is what most
1119 * other OS's do. Yuck... this is much better.
1120 */
50215d65
AB
1121static void __init srmmu_inherit_prom_mappings(unsigned long start,
1122 unsigned long end)
1da177e4
LT
1123{
1124 pgd_t *pgdp;
1125 pmd_t *pmdp;
1126 pte_t *ptep;
1127 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1128 unsigned long prompte;
1129
1130 while(start <= end) {
1131 if (start == 0)
1132 break; /* probably wrap around */
1133 if(start == 0xfef00000)
1134 start = KADB_DEBUGGER_BEGVM;
1135 if(!(prompte = srmmu_hwprobe(start))) {
1136 start += PAGE_SIZE;
1137 continue;
1138 }
1139
1140 /* A red snapper, see what it really is. */
1141 what = 0;
1142
1143 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1144 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1145 what = 1;
1146 }
1147
1148 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1149 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1150 prompte)
1151 what = 2;
1152 }
1153
1154 pgdp = pgd_offset_k(start);
1155 if(what == 2) {
1156 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1157 start += SRMMU_PGDIR_SIZE;
1158 continue;
1159 }
1160 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1161 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1162 if (pmdp == NULL)
1163 early_pgtable_allocfail("pmd");
1164 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1165 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1166 }
1167 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1168 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1169 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1170 PTE_SIZE);
1171 if (ptep == NULL)
1172 early_pgtable_allocfail("pte");
1173 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1174 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1175 }
1176 if(what == 1) {
1177 /*
1178 * We bend the rule where all 16 PTPs in a pmd_t point
1179 * inside the same PTE page, and we leak a perfectly
1180 * good hardware PTE piece. Alternatives seem worse.
1181 */
1182 unsigned int x; /* Index of HW PMD in soft cluster */
1183 x = (start >> PMD_SHIFT) & 15;
1184 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1185 start += SRMMU_REAL_PMD_SIZE;
1186 continue;
1187 }
1188 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1189 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1190 start += PAGE_SIZE;
1191 }
1192}
1193
1194#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1195
1196/* Create a third-level SRMMU 16MB page mapping. */
1197static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1198{
1199 pgd_t *pgdp = pgd_offset_k(vaddr);
1200 unsigned long big_pte;
1201
1202 big_pte = KERNEL_PTE(phys_base >> 4);
1203 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1204}
1205
1206/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1207static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1208{
1209 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1210 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1211 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1212 /* Map "low" memory only */
1213 const unsigned long min_vaddr = PAGE_OFFSET;
1214 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1215
1216 if (vstart < min_vaddr || vstart >= max_vaddr)
1217 return vstart;
1218
1219 if (vend > max_vaddr || vend < min_vaddr)
1220 vend = max_vaddr;
1221
1222 while(vstart < vend) {
1223 do_large_mapping(vstart, pstart);
1224 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1225 }
1226 return vstart;
1227}
1228
1229static inline void memprobe_error(char *msg)
1230{
1231 prom_printf(msg);
1232 prom_printf("Halting now...\n");
1233 prom_halt();
1234}
1235
1236static inline void map_kernel(void)
1237{
1238 int i;
1239
1240 if (phys_base > 0) {
1241 do_large_mapping(PAGE_OFFSET, phys_base);
1242 }
1243
1244 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1245 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1246 }
1247
1248 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1249}
1250
1251/* Paging initialization on the Sparc Reference MMU. */
1252extern void sparc_context_init(int);
1253
409832f5 1254void (*poke_srmmu)(void) __cpuinitdata = NULL;
1da177e4
LT
1255
1256extern unsigned long bootmem_init(unsigned long *pages_avail);
1257
1258void __init srmmu_paging_init(void)
1259{
1260 int i, cpunode;
1261 char node_str[128];
1262 pgd_t *pgd;
1263 pmd_t *pmd;
1264 pte_t *pte;
1265 unsigned long pages_avail;
1266
1267 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1268
1269 if (sparc_cpu_model == sun4d)
1270 num_contexts = 65536; /* We know it is Viking */
1271 else {
1272 /* Find the number of contexts on the srmmu. */
1273 cpunode = prom_getchild(prom_root_node);
1274 num_contexts = 0;
1275 while(cpunode != 0) {
1276 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1277 if(!strcmp(node_str, "cpu")) {
1278 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1279 break;
1280 }
1281 cpunode = prom_getsibling(cpunode);
1282 }
1283 }
1284
1285 if(!num_contexts) {
1286 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1287 prom_halt();
1288 }
1289
1290 pages_avail = 0;
1291 last_valid_pfn = bootmem_init(&pages_avail);
1292
1293 srmmu_nocache_calcsize();
1294 srmmu_nocache_init();
1295 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1296 map_kernel();
1297
1298 /* ctx table has to be physically aligned to its size */
1299 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1300 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1301
1302 for(i = 0; i < num_contexts; i++)
1303 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1304
1305 flush_cache_all();
1306 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
a54123e2
BB
1307#ifdef CONFIG_SMP
1308 /* Stop from hanging here... */
1309 local_flush_tlb_all();
1310#else
1da177e4 1311 flush_tlb_all();
a54123e2 1312#endif
1da177e4
LT
1313 poke_srmmu();
1314
1315#ifdef CONFIG_SUN_IO
1316 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1317 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1318#endif
1319
1320 srmmu_allocate_ptable_skeleton(
1321 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1322 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1323
1324 pgd = pgd_offset_k(PKMAP_BASE);
1325 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1326 pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1327 pkmap_page_table = pte;
1328
1329 flush_cache_all();
1330 flush_tlb_all();
1331
1332 sparc_context_init(num_contexts);
1333
1334 kmap_init();
1335
1336 {
1337 unsigned long zones_size[MAX_NR_ZONES];
1338 unsigned long zholes_size[MAX_NR_ZONES];
1339 unsigned long npages;
1340 int znum;
1341
1342 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1343 zones_size[znum] = zholes_size[znum] = 0;
1344
1345 npages = max_low_pfn - pfn_base;
1346
1347 zones_size[ZONE_DMA] = npages;
1348 zholes_size[ZONE_DMA] = npages - pages_avail;
1349
1350 npages = highend_pfn - max_low_pfn;
1351 zones_size[ZONE_HIGHMEM] = npages;
1352 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1353
9109fb7b 1354 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1da177e4
LT
1355 }
1356}
1357
1358static void srmmu_mmu_info(struct seq_file *m)
1359{
1360 seq_printf(m,
1361 "MMU type\t: %s\n"
1362 "contexts\t: %d\n"
1363 "nocache total\t: %ld\n"
1364 "nocache used\t: %d\n",
1365 srmmu_name,
1366 num_contexts,
1367 srmmu_nocache_size,
1368 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1369}
1370
1371static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1372{
1373}
1374
1375static void srmmu_destroy_context(struct mm_struct *mm)
1376{
1377
1378 if(mm->context != NO_CONTEXT) {
1379 flush_cache_mm(mm);
1380 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1381 flush_tlb_mm(mm);
1382 spin_lock(&srmmu_context_spinlock);
1383 free_context(mm->context);
1384 spin_unlock(&srmmu_context_spinlock);
1385 mm->context = NO_CONTEXT;
1386 }
1387}
1388
1389/* Init various srmmu chip types. */
1390static void __init srmmu_is_bad(void)
1391{
1392 prom_printf("Could not determine SRMMU chip type.\n");
1393 prom_halt();
1394}
1395
1396static void __init init_vac_layout(void)
1397{
1398 int nd, cache_lines;
1399 char node_str[128];
1400#ifdef CONFIG_SMP
1401 int cpu = 0;
1402 unsigned long max_size = 0;
1403 unsigned long min_line_size = 0x10000000;
1404#endif
1405
1406 nd = prom_getchild(prom_root_node);
1407 while((nd = prom_getsibling(nd)) != 0) {
1408 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1409 if(!strcmp(node_str, "cpu")) {
1410 vac_line_size = prom_getint(nd, "cache-line-size");
1411 if (vac_line_size == -1) {
1412 prom_printf("can't determine cache-line-size, "
1413 "halting.\n");
1414 prom_halt();
1415 }
1416 cache_lines = prom_getint(nd, "cache-nlines");
1417 if (cache_lines == -1) {
1418 prom_printf("can't determine cache-nlines, halting.\n");
1419 prom_halt();
1420 }
1421
1422 vac_cache_size = cache_lines * vac_line_size;
1423#ifdef CONFIG_SMP
1424 if(vac_cache_size > max_size)
1425 max_size = vac_cache_size;
1426 if(vac_line_size < min_line_size)
1427 min_line_size = vac_line_size;
a54123e2 1428 //FIXME: cpus not contiguous!!
1da177e4
LT
1429 cpu++;
1430 if (cpu >= NR_CPUS || !cpu_online(cpu))
1431 break;
1432#else
1433 break;
1434#endif
1435 }
1436 }
1437 if(nd == 0) {
1438 prom_printf("No CPU nodes found, halting.\n");
1439 prom_halt();
1440 }
1441#ifdef CONFIG_SMP
1442 vac_cache_size = max_size;
1443 vac_line_size = min_line_size;
1444#endif
1445 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1446 (int)vac_cache_size, (int)vac_line_size);
1447}
1448
409832f5 1449static void __cpuinit poke_hypersparc(void)
1da177e4
LT
1450{
1451 volatile unsigned long clear;
1452 unsigned long mreg = srmmu_get_mmureg();
1453
1454 hyper_flush_unconditional_combined();
1455
1456 mreg &= ~(HYPERSPARC_CWENABLE);
1457 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1458 mreg |= (HYPERSPARC_CMODE);
1459
1460 srmmu_set_mmureg(mreg);
1461
1462#if 0 /* XXX I think this is bad news... -DaveM */
1463 hyper_clear_all_tags();
1464#endif
1465
1466 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1467 hyper_flush_whole_icache();
1468 clear = srmmu_get_faddr();
1469 clear = srmmu_get_fstatus();
1470}
1471
1472static void __init init_hypersparc(void)
1473{
1474 srmmu_name = "ROSS HyperSparc";
1475 srmmu_modtype = HyperSparc;
1476
1477 init_vac_layout();
1478
1479 is_hypersparc = 1;
1480
1481 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1482 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1483 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1484 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1485 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1486 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1487 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1488
1489 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1490 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1491 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1492 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1493
1494 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1495 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1496 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1497
1498
1499 poke_srmmu = poke_hypersparc;
1500
1501 hypersparc_setup_blockops();
1502}
1503
409832f5 1504static void __cpuinit poke_cypress(void)
1da177e4
LT
1505{
1506 unsigned long mreg = srmmu_get_mmureg();
1507 unsigned long faddr, tagval;
1508 volatile unsigned long cypress_sucks;
1509 volatile unsigned long clear;
1510
1511 clear = srmmu_get_faddr();
1512 clear = srmmu_get_fstatus();
1513
1514 if (!(mreg & CYPRESS_CENABLE)) {
1515 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1516 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1517 "sta %%g0, [%0] %2\n\t" : :
1518 "r" (faddr), "r" (0x40000),
1519 "i" (ASI_M_DATAC_TAG));
1520 }
1521 } else {
1522 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1523 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1524 "=r" (tagval) :
1525 "r" (faddr), "r" (0x40000),
1526 "i" (ASI_M_DATAC_TAG));
1527
1528 /* If modified and valid, kick it. */
1529 if((tagval & 0x60) == 0x60)
1530 cypress_sucks = *(unsigned long *)
1531 (0xf0020000 + faddr);
1532 }
1533 }
1534
1535 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1536 clear = srmmu_get_faddr();
1537 clear = srmmu_get_fstatus();
1538
1539 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1540 srmmu_set_mmureg(mreg);
1541}
1542
1543static void __init init_cypress_common(void)
1544{
1545 init_vac_layout();
1546
1547 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1548 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1549 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1550 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1551 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1552 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1553 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1554
1555 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1556 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1557 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1558 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1559
1560
1561 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1562 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1563 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1564
1565 poke_srmmu = poke_cypress;
1566}
1567
1568static void __init init_cypress_604(void)
1569{
1570 srmmu_name = "ROSS Cypress-604(UP)";
1571 srmmu_modtype = Cypress;
1572 init_cypress_common();
1573}
1574
1575static void __init init_cypress_605(unsigned long mrev)
1576{
1577 srmmu_name = "ROSS Cypress-605(MP)";
1578 if(mrev == 0xe) {
1579 srmmu_modtype = Cypress_vE;
1580 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1581 } else {
1582 if(mrev == 0xd) {
1583 srmmu_modtype = Cypress_vD;
1584 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1585 } else {
1586 srmmu_modtype = Cypress;
1587 }
1588 }
1589 init_cypress_common();
1590}
1591
409832f5 1592static void __cpuinit poke_swift(void)
1da177e4
LT
1593{
1594 unsigned long mreg;
1595
1596 /* Clear any crap from the cache or else... */
1597 swift_flush_cache_all();
1598
1599 /* Enable I & D caches */
1600 mreg = srmmu_get_mmureg();
1601 mreg |= (SWIFT_IE | SWIFT_DE);
1602 /*
1603 * The Swift branch folding logic is completely broken. At
1604 * trap time, if things are just right, if can mistakenly
1605 * think that a trap is coming from kernel mode when in fact
1606 * it is coming from user mode (it mis-executes the branch in
1607 * the trap code). So you see things like crashme completely
1608 * hosing your machine which is completely unacceptable. Turn
1609 * this shit off... nice job Fujitsu.
1610 */
1611 mreg &= ~(SWIFT_BF);
1612 srmmu_set_mmureg(mreg);
1613}
1614
1615#define SWIFT_MASKID_ADDR 0x10003018
1616static void __init init_swift(void)
1617{
1618 unsigned long swift_rev;
1619
1620 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1621 "srl %0, 0x18, %0\n\t" :
1622 "=r" (swift_rev) :
1623 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1624 srmmu_name = "Fujitsu Swift";
1625 switch(swift_rev) {
1626 case 0x11:
1627 case 0x20:
1628 case 0x23:
1629 case 0x30:
1630 srmmu_modtype = Swift_lots_o_bugs;
1631 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1632 /*
1633 * Gee george, I wonder why Sun is so hush hush about
1634 * this hardware bug... really braindamage stuff going
1635 * on here. However I think we can find a way to avoid
1636 * all of the workaround overhead under Linux. Basically,
1637 * any page fault can cause kernel pages to become user
1638 * accessible (the mmu gets confused and clears some of
1639 * the ACC bits in kernel ptes). Aha, sounds pretty
1640 * horrible eh? But wait, after extensive testing it appears
1641 * that if you use pgd_t level large kernel pte's (like the
1642 * 4MB pages on the Pentium) the bug does not get tripped
1643 * at all. This avoids almost all of the major overhead.
1644 * Welcome to a world where your vendor tells you to,
1645 * "apply this kernel patch" instead of "sorry for the
1646 * broken hardware, send it back and we'll give you
1647 * properly functioning parts"
1648 */
1649 break;
1650 case 0x25:
1651 case 0x31:
1652 srmmu_modtype = Swift_bad_c;
1653 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1654 /*
1655 * You see Sun allude to this hardware bug but never
1656 * admit things directly, they'll say things like,
1657 * "the Swift chip cache problems" or similar.
1658 */
1659 break;
1660 default:
1661 srmmu_modtype = Swift_ok;
1662 break;
1663 };
1664
1665 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1666 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1667 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1668 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1669
1670
1671 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1672 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1673 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1674 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1675
1676 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1677 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1678 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1679
1680 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1681
1682 flush_page_for_dma_global = 0;
1683
1684 /*
1685 * Are you now convinced that the Swift is one of the
1686 * biggest VLSI abortions of all time? Bravo Fujitsu!
1687 * Fujitsu, the !#?!%$'d up processor people. I bet if
1688 * you examined the microcode of the Swift you'd find
1689 * XXX's all over the place.
1690 */
1691 poke_srmmu = poke_swift;
1692}
1693
1694static void turbosparc_flush_cache_all(void)
1695{
1696 flush_user_windows();
1697 turbosparc_idflash_clear();
1698}
1699
1700static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1701{
1702 FLUSH_BEGIN(mm)
1703 flush_user_windows();
1704 turbosparc_idflash_clear();
1705 FLUSH_END
1706}
1707
1708static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1709{
1710 FLUSH_BEGIN(vma->vm_mm)
1711 flush_user_windows();
1712 turbosparc_idflash_clear();
1713 FLUSH_END
1714}
1715
1716static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1717{
1718 FLUSH_BEGIN(vma->vm_mm)
1719 flush_user_windows();
1720 if (vma->vm_flags & VM_EXEC)
1721 turbosparc_flush_icache();
1722 turbosparc_flush_dcache();
1723 FLUSH_END
1724}
1725
1726/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1727static void turbosparc_flush_page_to_ram(unsigned long page)
1728{
1729#ifdef TURBOSPARC_WRITEBACK
1730 volatile unsigned long clear;
1731
1732 if (srmmu_hwprobe(page))
1733 turbosparc_flush_page_cache(page);
1734 clear = srmmu_get_fstatus();
1735#endif
1736}
1737
1738static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1739{
1740}
1741
1742static void turbosparc_flush_page_for_dma(unsigned long page)
1743{
1744 turbosparc_flush_dcache();
1745}
1746
1747static void turbosparc_flush_tlb_all(void)
1748{
1749 srmmu_flush_whole_tlb();
1750}
1751
1752static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1753{
1754 FLUSH_BEGIN(mm)
1755 srmmu_flush_whole_tlb();
1756 FLUSH_END
1757}
1758
1759static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1760{
1761 FLUSH_BEGIN(vma->vm_mm)
1762 srmmu_flush_whole_tlb();
1763 FLUSH_END
1764}
1765
1766static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1767{
1768 FLUSH_BEGIN(vma->vm_mm)
1769 srmmu_flush_whole_tlb();
1770 FLUSH_END
1771}
1772
1773
409832f5 1774static void __cpuinit poke_turbosparc(void)
1da177e4
LT
1775{
1776 unsigned long mreg = srmmu_get_mmureg();
1777 unsigned long ccreg;
1778
1779 /* Clear any crap from the cache or else... */
1780 turbosparc_flush_cache_all();
1781 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1782 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1783 srmmu_set_mmureg(mreg);
1784
1785 ccreg = turbosparc_get_ccreg();
1786
1787#ifdef TURBOSPARC_WRITEBACK
1788 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1789 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1790 /* Write-back D-cache, emulate VLSI
1791 * abortion number three, not number one */
1792#else
1793 /* For now let's play safe, optimize later */
1794 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1795 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1796 ccreg &= ~(TURBOSPARC_uS2);
1797 /* Emulate VLSI abortion number three, not number one */
1798#endif
1799
1800 switch (ccreg & 7) {
1801 case 0: /* No SE cache */
1802 case 7: /* Test mode */
1803 break;
1804 default:
1805 ccreg |= (TURBOSPARC_SCENABLE);
1806 }
1807 turbosparc_set_ccreg (ccreg);
1808
1809 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1810 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1811 srmmu_set_mmureg(mreg);
1812}
1813
1814static void __init init_turbosparc(void)
1815{
1816 srmmu_name = "Fujitsu TurboSparc";
1817 srmmu_modtype = TurboSparc;
1818
1819 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1820 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1821 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1822 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1823
1824 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1825 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1826 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1827 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1828
1829 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1830
1831 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1832 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1833
1834 poke_srmmu = poke_turbosparc;
1835}
1836
409832f5 1837static void __cpuinit poke_tsunami(void)
1da177e4
LT
1838{
1839 unsigned long mreg = srmmu_get_mmureg();
1840
1841 tsunami_flush_icache();
1842 tsunami_flush_dcache();
1843 mreg &= ~TSUNAMI_ITD;
1844 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1845 srmmu_set_mmureg(mreg);
1846}
1847
1848static void __init init_tsunami(void)
1849{
1850 /*
1851 * Tsunami's pretty sane, Sun and TI actually got it
1852 * somewhat right this time. Fujitsu should have
1853 * taken some lessons from them.
1854 */
1855
1856 srmmu_name = "TI Tsunami";
1857 srmmu_modtype = Tsunami;
1858
1859 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1860 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1861 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1862 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1863
1864
1865 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1866 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1867 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1868 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1869
1870 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1871 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1872 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1873
1874 poke_srmmu = poke_tsunami;
1875
1876 tsunami_setup_blockops();
1877}
1878
409832f5 1879static void __cpuinit poke_viking(void)
1da177e4
LT
1880{
1881 unsigned long mreg = srmmu_get_mmureg();
1882 static int smp_catch;
1883
1884 if(viking_mxcc_present) {
1885 unsigned long mxcc_control = mxcc_get_creg();
1886
1887 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1888 mxcc_control &= ~(MXCC_CTL_RRC);
1889 mxcc_set_creg(mxcc_control);
1890
1891 /*
1892 * We don't need memory parity checks.
1893 * XXX This is a mess, have to dig out later. ecd.
1894 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1895 */
1896
1897 /* We do cache ptables on MXCC. */
1898 mreg |= VIKING_TCENABLE;
1899 } else {
1900 unsigned long bpreg;
1901
1902 mreg &= ~(VIKING_TCENABLE);
1903 if(smp_catch++) {
1904 /* Must disable mixed-cmd mode here for other cpu's. */
1905 bpreg = viking_get_bpreg();
1906 bpreg &= ~(VIKING_ACTION_MIX);
1907 viking_set_bpreg(bpreg);
1908
1909 /* Just in case PROM does something funny. */
1910 msi_set_sync();
1911 }
1912 }
1913
1914 mreg |= VIKING_SPENABLE;
1915 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1916 mreg |= VIKING_SBENABLE;
1917 mreg &= ~(VIKING_ACENABLE);
1918 srmmu_set_mmureg(mreg);
1919
1920#ifdef CONFIG_SMP
1921 /* Avoid unnecessary cross calls. */
1922 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1923 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1924 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1925 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1926 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1927 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1928 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1929 btfixup();
1930#endif
1931}
1932
1933static void __init init_viking(void)
1934{
1935 unsigned long mreg = srmmu_get_mmureg();
1936
1937 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1938 if(mreg & VIKING_MMODE) {
1939 srmmu_name = "TI Viking";
1940 viking_mxcc_present = 0;
1941 msi_set_sync();
1942
1943 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1944 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1945 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1946
1947 /*
1948 * We need this to make sure old viking takes no hits
1949 * on it's cache for dma snoops to workaround the
1950 * "load from non-cacheable memory" interrupt bug.
1951 * This is only necessary because of the new way in
1952 * which we use the IOMMU.
1953 */
1954 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1955
1956 flush_page_for_dma_global = 0;
1957 } else {
1958 srmmu_name = "TI Viking/MXCC";
1959 viking_mxcc_present = 1;
1960
1961 srmmu_cache_pagetables = 1;
1962
1963 /* MXCC vikings lack the DMA snooping bug. */
1964 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1965 }
1966
1967 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1968 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1969 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1970 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1971
1972#ifdef CONFIG_SMP
1973 if (sparc_cpu_model == sun4d) {
1974 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1975 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1976 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1977 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1978 } else
1979#endif
1980 {
1981 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1982 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1983 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1984 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1985 }
1986
1987 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1988 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1989
1990 poke_srmmu = poke_viking;
1991}
1992
1993/* Probe for the srmmu chip version. */
1994static void __init get_srmmu_type(void)
1995{
1996 unsigned long mreg, psr;
1997 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1998
1999 srmmu_modtype = SRMMU_INVAL_MOD;
2000 hwbug_bitmask = 0;
2001
2002 mreg = srmmu_get_mmureg(); psr = get_psr();
2003 mod_typ = (mreg & 0xf0000000) >> 28;
2004 mod_rev = (mreg & 0x0f000000) >> 24;
2005 psr_typ = (psr >> 28) & 0xf;
2006 psr_vers = (psr >> 24) & 0xf;
2007
2008 /* First, check for HyperSparc or Cypress. */
2009 if(mod_typ == 1) {
2010 switch(mod_rev) {
2011 case 7:
2012 /* UP or MP Hypersparc */
2013 init_hypersparc();
2014 break;
2015 case 0:
2016 case 2:
2017 /* Uniprocessor Cypress */
2018 init_cypress_604();
2019 break;
2020 case 10:
2021 case 11:
2022 case 12:
2023 /* _REALLY OLD_ Cypress MP chips... */
2024 case 13:
2025 case 14:
2026 case 15:
2027 /* MP Cypress mmu/cache-controller */
2028 init_cypress_605(mod_rev);
2029 break;
2030 default:
2031 /* Some other Cypress revision, assume a 605. */
2032 init_cypress_605(mod_rev);
2033 break;
2034 };
2035 return;
2036 }
2037
2038 /*
2039 * Now Fujitsu TurboSparc. It might happen that it is
2040 * in Swift emulation mode, so we will check later...
2041 */
2042 if (psr_typ == 0 && psr_vers == 5) {
2043 init_turbosparc();
2044 return;
2045 }
2046
2047 /* Next check for Fujitsu Swift. */
2048 if(psr_typ == 0 && psr_vers == 4) {
2049 int cpunode;
2050 char node_str[128];
2051
2052 /* Look if it is not a TurboSparc emulating Swift... */
2053 cpunode = prom_getchild(prom_root_node);
2054 while((cpunode = prom_getsibling(cpunode)) != 0) {
2055 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2056 if(!strcmp(node_str, "cpu")) {
2057 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2058 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2059 init_turbosparc();
2060 return;
2061 }
2062 break;
2063 }
2064 }
2065
2066 init_swift();
2067 return;
2068 }
2069
2070 /* Now the Viking family of srmmu. */
2071 if(psr_typ == 4 &&
2072 ((psr_vers == 0) ||
2073 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2074 init_viking();
2075 return;
2076 }
2077
2078 /* Finally the Tsunami. */
2079 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2080 init_tsunami();
2081 return;
2082 }
2083
2084 /* Oh well */
2085 srmmu_is_bad();
2086}
2087
2088/* don't laugh, static pagetables */
2089static void srmmu_check_pgt_cache(int low, int high)
2090{
2091}
2092
2093extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2094 tsetup_mmu_patchme, rtrap_mmu_patchme;
2095
2096extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2097 tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2098
2099extern unsigned long srmmu_fault;
2100
2101#define PATCH_BRANCH(insn, dest) do { \
2102 iaddr = &(insn); \
2103 daddr = &(dest); \
2104 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2105 } while(0)
2106
2107static void __init patch_window_trap_handlers(void)
2108{
2109 unsigned long *iaddr, *daddr;
2110
2111 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2112 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2113 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2114 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2115 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2116 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2117 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2118}
2119
2120#ifdef CONFIG_SMP
2121/* Local cross-calls. */
2122static void smp_flush_page_for_dma(unsigned long page)
2123{
2124 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2125 local_flush_page_for_dma(page);
2126}
2127
2128#endif
2129
2130static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2131{
2132 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2133}
2134
2135static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2136{
2137 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2138}
2139
14778d90
DM
2140static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2141{
2142 prot &= ~__pgprot(SRMMU_CACHE);
2143
2144 return prot;
2145}
2146
1da177e4
LT
2147/* Load up routines and constants for sun4m and sun4d mmu */
2148void __init ld_mmu_srmmu(void)
2149{
2150 extern void ld_mmu_iommu(void);
2151 extern void ld_mmu_iounit(void);
2152 extern void ___xchg32_sun4md(void);
2153
2154 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2155 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2156 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2157
2158 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2159 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2160
2161 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
378e515c 2162 PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
1da177e4
LT
2163 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2164 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2165 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2166 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
1da177e4
LT
2167
2168 /* Functions */
14778d90 2169 BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
1da177e4
LT
2170#ifndef CONFIG_SMP
2171 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2172#endif
2173 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2174
2175 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2176 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2177
2178 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2179 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
46a82b2d 2180 BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
1da177e4
LT
2181
2182 BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2183
2184 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2185 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
1da177e4
LT
2186
2187 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2188 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2189 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2190
2191 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2192 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2193 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2194 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2195
2196 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2197 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2198 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2199 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2200 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2201 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2202
2203 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2204 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2205 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2206
2207 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2208 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2209 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2210 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2211 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2212 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2213 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2214 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2215
2216 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2217 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2218 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2219 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2220 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2221 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2222 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2223 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2224 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2225 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2226 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2227 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2228
2229 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2230 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2231
2232 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2233 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2234 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2235
2236 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2237
2238 BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2239 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2240
2241 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2242 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2243
2244 get_srmmu_type();
2245 patch_window_trap_handlers();
2246
2247#ifdef CONFIG_SMP
2248 /* El switcheroo... */
2249
2250 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2251 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2252 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2253 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2254 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2255 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2256 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2257 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2258 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2259 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2260 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2261
2262 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2263 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2264 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2265 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2266 if (sparc_cpu_model != sun4d) {
2267 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2268 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2269 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2270 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2271 }
2272 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2273 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2274 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2275#endif
2276
2277 if (sparc_cpu_model == sun4d)
2278 ld_mmu_iounit();
2279 else
2280 ld_mmu_iommu();
2281#ifdef CONFIG_SMP
2282 if (sparc_cpu_model == sun4d)
2283 sun4d_init_smp();
2284 else
2285 sun4m_init_smp();
2286#endif
2287}