s390/mm: correct transfer of dirty & young bits in __pmd_to_pte
[linux-2.6-block.git] / arch / s390 / include / asm / pgtable.h
CommitLineData
1da177e4 1/*
1da177e4 2 * S390 version
a53c8fab 3 * Copyright IBM Corp. 1999, 2000
1da177e4
LT
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11#ifndef _ASM_S390_PGTABLE_H
12#define _ASM_S390_PGTABLE_H
13
1da177e4
LT
14/*
15 * The Linux memory management assumes a three-level page table setup. For
16 * s390 31 bit we "fold" the mid level into the top-level page table, so
17 * that we physically have the same two-level page table as the s390 mmu
18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19 * the hardware provides (region first and region second tables are not
20 * used).
21 *
22 * The "pgd_xxx()" functions are trivial for a folded two-level
23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
24 * into the pgd entry)
25 *
26 * This file contains the functions and defines necessary to modify and use
27 * the S390 page table tree.
28 */
29#ifndef __ASSEMBLY__
9789db08 30#include <linux/sched.h>
2dcea57a 31#include <linux/mm_types.h>
abf09bed 32#include <linux/page-flags.h>
527e30b4 33#include <linux/radix-tree.h>
1da177e4 34#include <asm/bug.h>
b2fa47e6 35#include <asm/page.h>
1da177e4 36
1da177e4
LT
37extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
38extern void paging_init(void);
2b67fc46 39extern void vmem_map_init(void);
1da177e4
LT
40
41/*
42 * The S390 doesn't have any external MMU info: the kernel page
43 * tables contain all the necessary information.
44 */
4b3073e1 45#define update_mmu_cache(vma, address, ptep) do { } while (0)
b113da65 46#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
1da177e4
LT
47
48/*
238ec4ef 49 * ZERO_PAGE is a global shared page that is always zero; used
1da177e4
LT
50 * for zero-mapped memory areas etc..
51 */
238ec4ef
MS
52
53extern unsigned long empty_zero_page;
54extern unsigned long zero_page_mask;
55
56#define ZERO_PAGE(vaddr) \
57 (virt_to_page((void *)(empty_zero_page + \
58 (((unsigned long)(vaddr)) &zero_page_mask))))
816422ad 59#define __HAVE_COLOR_ZERO_PAGE
238ec4ef 60
4f2e2903 61/* TODO: s390 cannot support io_remap_pfn_range... */
1da177e4
LT
62#endif /* !__ASSEMBLY__ */
63
64/*
65 * PMD_SHIFT determines the size of the area a second-level page
66 * table can map
67 * PGDIR_SHIFT determines what a third-level page table entry can map
68 */
5a79859a
HC
69#define PMD_SHIFT 20
70#define PUD_SHIFT 31
71#define PGDIR_SHIFT 42
1da177e4
LT
72
73#define PMD_SIZE (1UL << PMD_SHIFT)
74#define PMD_MASK (~(PMD_SIZE-1))
190a1d72
MS
75#define PUD_SIZE (1UL << PUD_SHIFT)
76#define PUD_MASK (~(PUD_SIZE-1))
5a216a20
MS
77#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
78#define PGDIR_MASK (~(PGDIR_SIZE-1))
1da177e4
LT
79
80/*
81 * entries per page directory level: the S390 is two-level, so
82 * we don't really have any PMD directory physically.
83 * for S390 segment-table entries are combined to one PGD
84 * that leads to 1024 pte per pgd
85 */
146e4b3c 86#define PTRS_PER_PTE 256
146e4b3c 87#define PTRS_PER_PMD 2048
5a216a20 88#define PTRS_PER_PUD 2048
146e4b3c 89#define PTRS_PER_PGD 2048
1da177e4 90
d016bf7e 91#define FIRST_USER_ADDRESS 0UL
d455a369 92
1da177e4
LT
93#define pte_ERROR(e) \
94 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
95#define pmd_ERROR(e) \
96 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
190a1d72
MS
97#define pud_ERROR(e) \
98 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
1da177e4
LT
99#define pgd_ERROR(e) \
100 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
101
102#ifndef __ASSEMBLY__
103/*
c972cc60
HC
104 * The vmalloc and module area will always be on the topmost area of the kernel
105 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
106 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
107 * modules will reside. That makes sure that inter module branches always
108 * happen without trampolines and in addition the placement within a 2GB frame
109 * is branch prediction unit friendly.
8b62bc96 110 */
239a6425 111extern unsigned long VMALLOC_START;
14045ebf
MS
112extern unsigned long VMALLOC_END;
113extern struct page *vmemmap;
239a6425 114
14045ebf 115#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
5fd9c6e2 116
c972cc60
HC
117extern unsigned long MODULES_VADDR;
118extern unsigned long MODULES_END;
119#define MODULES_VADDR MODULES_VADDR
120#define MODULES_END MODULES_END
121#define MODULES_LEN (1UL << 31)
c972cc60 122
c933146a
HC
123static inline int is_module_addr(void *addr)
124{
c933146a
HC
125 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
126 if (addr < (void *)MODULES_VADDR)
127 return 0;
128 if (addr > (void *)MODULES_END)
129 return 0;
c933146a
HC
130 return 1;
131}
132
1da177e4
LT
133/*
134 * A 31 bit pagetable entry of S390 has following format:
135 * | PFRA | | OS |
136 * 0 0IP0
137 * 00000000001111111111222222222233
138 * 01234567890123456789012345678901
139 *
140 * I Page-Invalid Bit: Page is not available for address-translation
141 * P Page-Protection Bit: Store access not possible for page
142 *
143 * A 31 bit segmenttable entry of S390 has following format:
144 * | P-table origin | |PTL
145 * 0 IC
146 * 00000000001111111111222222222233
147 * 01234567890123456789012345678901
148 *
149 * I Segment-Invalid Bit: Segment is not available for address-translation
150 * C Common-Segment Bit: Segment is not private (PoP 3-30)
151 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
152 *
153 * The 31 bit segmenttable origin of S390 has following format:
154 *
155 * |S-table origin | | STL |
156 * X **GPS
157 * 00000000001111111111222222222233
158 * 01234567890123456789012345678901
159 *
160 * X Space-Switch event:
161 * G Segment-Invalid Bit: *
162 * P Private-Space Bit: Segment is not private (PoP 3-30)
163 * S Storage-Alteration:
164 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
165 *
166 * A 64 bit pagetable entry of S390 has following format:
6a985c61 167 * | PFRA |0IPC| OS |
1da177e4
LT
168 * 0000000000111111111122222222223333333333444444444455555555556666
169 * 0123456789012345678901234567890123456789012345678901234567890123
170 *
171 * I Page-Invalid Bit: Page is not available for address-translation
172 * P Page-Protection Bit: Store access not possible for page
6a985c61 173 * C Change-bit override: HW is not required to set change bit
1da177e4
LT
174 *
175 * A 64 bit segmenttable entry of S390 has following format:
176 * | P-table origin | TT
177 * 0000000000111111111122222222223333333333444444444455555555556666
178 * 0123456789012345678901234567890123456789012345678901234567890123
179 *
180 * I Segment-Invalid Bit: Segment is not available for address-translation
181 * C Common-Segment Bit: Segment is not private (PoP 3-30)
182 * P Page-Protection Bit: Store access not possible for page
183 * TT Type 00
184 *
185 * A 64 bit region table entry of S390 has following format:
186 * | S-table origin | TF TTTL
187 * 0000000000111111111122222222223333333333444444444455555555556666
188 * 0123456789012345678901234567890123456789012345678901234567890123
189 *
190 * I Segment-Invalid Bit: Segment is not available for address-translation
191 * TT Type 01
192 * TF
190a1d72 193 * TL Table length
1da177e4
LT
194 *
195 * The 64 bit regiontable origin of S390 has following format:
196 * | region table origon | DTTL
197 * 0000000000111111111122222222223333333333444444444455555555556666
198 * 0123456789012345678901234567890123456789012345678901234567890123
199 *
200 * X Space-Switch event:
201 * G Segment-Invalid Bit:
202 * P Private-Space Bit:
203 * S Storage-Alteration:
204 * R Real space
205 * TL Table-Length:
206 *
207 * A storage key has the following format:
208 * | ACC |F|R|C|0|
209 * 0 3 4 5 6 7
210 * ACC: access key
211 * F : fetch protection bit
212 * R : referenced bit
213 * C : changed bit
214 */
215
216/* Hardware bits in the page table entry */
e5098611 217#define _PAGE_PROTECT 0x200 /* HW read-only bit */
83377484 218#define _PAGE_INVALID 0x400 /* HW invalid bit */
e5098611 219#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
3610cce8
MS
220
221/* Software bits in the page table entry */
e5098611
MS
222#define _PAGE_PRESENT 0x001 /* SW pte present bit */
223#define _PAGE_TYPE 0x002 /* SW pte type bit */
224#define _PAGE_YOUNG 0x004 /* SW pte young bit */
225#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
0944fe3f
MS
226#define _PAGE_READ 0x010 /* SW pte read bit */
227#define _PAGE_WRITE 0x020 /* SW pte write bit */
228#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
b31288fa 229#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
a08cb629 230#define __HAVE_ARCH_PTE_SPECIAL
1da177e4 231
138c9021 232/* Set of bits not changed in pte_modify */
6a5c1482
HC
233#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
234 _PAGE_YOUNG)
53492b1d 235
83377484 236/*
6e76d4b2
KS
237 * handle_pte_fault uses pte_present and pte_none to find out the pte type
238 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
239 * distinguish present from not-present ptes. It is changed only with the page
240 * table lock held.
83377484 241 *
e5098611
MS
242 * The following table gives the different possible bit combinations for
243 * the pte hardware and software bits in the last 12 bits of a pte:
83377484 244 *
0944fe3f
MS
245 * 842100000000
246 * 000084210000
247 * 000000008421
248 * .IR...wrdytp
249 * empty .10...000000
250 * swap .10...xxxx10
251 * file .11...xxxxx0
252 * prot-none, clean, old .11...000001
253 * prot-none, clean, young .11...000101
254 * prot-none, dirty, old .10...001001
255 * prot-none, dirty, young .10...001101
256 * read-only, clean, old .11...010001
257 * read-only, clean, young .01...010101
258 * read-only, dirty, old .11...011001
259 * read-only, dirty, young .01...011101
260 * read-write, clean, old .11...110001
261 * read-write, clean, young .01...110101
262 * read-write, dirty, old .10...111001
263 * read-write, dirty, young .00...111101
e5098611
MS
264 *
265 * pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001
266 * pte_none is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400
e5098611 267 * pte_swap is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402
83377484
MS
268 */
269
3610cce8
MS
270/* Bits in the segment/region table address-space-control-element */
271#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
272#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
273#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
274#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
275#define _ASCE_REAL_SPACE 0x20 /* real space control */
276#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
277#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
278#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
279#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
280#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
281#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
282
283/* Bits in the region table entry */
284#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
e5098611
MS
285#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
286#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
3610cce8
MS
287#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
288#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
289#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
290#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
291#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
292
293#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
e5098611 294#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
3610cce8 295#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
e5098611 296#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
3610cce8 297#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
e5098611 298#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
3610cce8 299
18da2369 300#define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
1819ed1f 301#define _REGION3_ENTRY_RO 0x200 /* page protection bit */
18da2369 302
1da177e4 303/* Bits in the segment table entry */
0944fe3f 304#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
152125b7 305#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
ea81531d 306#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
3610cce8 307#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
e5098611
MS
308#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
309#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
1da177e4 310
3610cce8 311#define _SEGMENT_ENTRY (0)
e5098611 312#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
3610cce8 313
152125b7
MS
314#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
315#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
316#define _SEGMENT_ENTRY_SPLIT 0x0800 /* THP splitting bit */
317#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
152125b7
MS
318#define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
319#define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
0944fe3f
MS
320
321/*
322 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
152125b7
MS
323 * dy..R...I...wr
324 * prot-none, clean, old 00..1...1...00
325 * prot-none, clean, young 01..1...1...00
326 * prot-none, dirty, old 10..1...1...00
327 * prot-none, dirty, young 11..1...1...00
328 * read-only, clean, old 00..1...1...01
329 * read-only, clean, young 01..1...0...01
330 * read-only, dirty, old 10..1...1...01
331 * read-only, dirty, young 11..1...0...01
332 * read-write, clean, old 00..1...1...11
333 * read-write, clean, young 01..1...0...11
334 * read-write, dirty, old 10..0...1...11
335 * read-write, dirty, young 11..0...0...11
0944fe3f
MS
336 * The segment table origin is used to distinguish empty (origin==0) from
337 * read-write, old segment table entries (origin!=0)
338 */
e5098611 339
152125b7 340#define _SEGMENT_ENTRY_SPLIT_BIT 11 /* THP splitting bit number */
1ae1c1d0 341
6c61cfe9 342/* Page status table bits for virtualization */
0d0dafc1
MS
343#define PGSTE_ACC_BITS 0xf000000000000000UL
344#define PGSTE_FP_BIT 0x0800000000000000UL
345#define PGSTE_PCL_BIT 0x0080000000000000UL
346#define PGSTE_HR_BIT 0x0040000000000000UL
347#define PGSTE_HC_BIT 0x0020000000000000UL
348#define PGSTE_GR_BIT 0x0004000000000000UL
349#define PGSTE_GC_BIT 0x0002000000000000UL
0a61b222
MS
350#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
351#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
6c61cfe9 352
b31288fa
KW
353/* Guest Page State used for virtualization */
354#define _PGSTE_GPS_ZERO 0x0000000080000000UL
355#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
356#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
357#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
358
1da177e4 359/*
3610cce8
MS
360 * A user page table pointer has the space-switch-event bit, the
361 * private-space-control bit and the storage-alteration-event-control
362 * bit set. A kernel page table pointer doesn't need them.
1da177e4 363 */
3610cce8
MS
364#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
365 _ASCE_ALT_EVENT)
1da177e4 366
1da177e4 367/*
9282ed92 368 * Page protection definitions.
1da177e4 369 */
e5098611 370#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
0944fe3f
MS
371#define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
372 _PAGE_INVALID | _PAGE_PROTECT)
373#define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
374 _PAGE_INVALID | _PAGE_PROTECT)
375
376#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
377 _PAGE_YOUNG | _PAGE_DIRTY)
378#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
379 _PAGE_YOUNG | _PAGE_DIRTY)
380#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
381 _PAGE_PROTECT)
1da177e4
LT
382
383/*
043d0708
MS
384 * On s390 the page table entry has an invalid bit and a read-only bit.
385 * Read permission implies execute permission and write permission
386 * implies read permission.
1da177e4
LT
387 */
388 /*xwr*/
9282ed92 389#define __P000 PAGE_NONE
e5098611
MS
390#define __P001 PAGE_READ
391#define __P010 PAGE_READ
392#define __P011 PAGE_READ
393#define __P100 PAGE_READ
394#define __P101 PAGE_READ
395#define __P110 PAGE_READ
396#define __P111 PAGE_READ
9282ed92
GS
397
398#define __S000 PAGE_NONE
e5098611
MS
399#define __S001 PAGE_READ
400#define __S010 PAGE_WRITE
401#define __S011 PAGE_WRITE
402#define __S100 PAGE_READ
403#define __S101 PAGE_READ
404#define __S110 PAGE_WRITE
405#define __S111 PAGE_WRITE
1da177e4 406
106c992a
GS
407/*
408 * Segment entry (large page) protection definitions.
409 */
e5098611
MS
410#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
411 _SEGMENT_ENTRY_PROTECT)
152125b7
MS
412#define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
413 _SEGMENT_ENTRY_READ)
414#define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
415 _SEGMENT_ENTRY_WRITE)
106c992a 416
b2fa47e6
MS
417static inline int mm_has_pgste(struct mm_struct *mm)
418{
419#ifdef CONFIG_PGSTE
420 if (unlikely(mm->context.has_pgste))
421 return 1;
422#endif
423 return 0;
424}
65eef335 425
0b46e0a3
MS
426static inline int mm_alloc_pgste(struct mm_struct *mm)
427{
428#ifdef CONFIG_PGSTE
429 if (unlikely(mm->context.alloc_pgste))
430 return 1;
431#endif
432 return 0;
433}
434
2faee8ff
DD
435/*
436 * In the case that a guest uses storage keys
437 * faults should no longer be backed by zero pages
438 */
439#define mm_forbids_zeropage mm_use_skey
65eef335
DD
440static inline int mm_use_skey(struct mm_struct *mm)
441{
442#ifdef CONFIG_PGSTE
443 if (mm->context.use_skey)
444 return 1;
445#endif
446 return 0;
447}
448
1da177e4
LT
449/*
450 * pgd/pmd/pte query functions
451 */
5a216a20
MS
452static inline int pgd_present(pgd_t pgd)
453{
6252d702
MS
454 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
455 return 1;
5a216a20
MS
456 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
457}
458
459static inline int pgd_none(pgd_t pgd)
460{
6252d702
MS
461 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
462 return 0;
e5098611 463 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
5a216a20
MS
464}
465
466static inline int pgd_bad(pgd_t pgd)
467{
6252d702
MS
468 /*
469 * With dynamic page table levels the pgd can be a region table
470 * entry or a segment table entry. Check for the bit that are
471 * invalid for either table entry.
472 */
5a216a20 473 unsigned long mask =
e5098611 474 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
5a216a20
MS
475 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
476 return (pgd_val(pgd) & mask) != 0;
477}
190a1d72
MS
478
479static inline int pud_present(pud_t pud)
1da177e4 480{
6252d702
MS
481 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
482 return 1;
0d017923 483 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
484}
485
190a1d72 486static inline int pud_none(pud_t pud)
1da177e4 487{
6252d702
MS
488 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
489 return 0;
e5098611 490 return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
1da177e4
LT
491}
492
18da2369
HC
493static inline int pud_large(pud_t pud)
494{
495 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
496 return 0;
497 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
498}
499
190a1d72 500static inline int pud_bad(pud_t pud)
1da177e4 501{
6252d702
MS
502 /*
503 * With dynamic page table levels the pud can be a region table
504 * entry or a segment table entry. Check for the bit that are
505 * invalid for either table entry.
506 */
5a216a20 507 unsigned long mask =
e5098611 508 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
5a216a20
MS
509 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
510 return (pud_val(pud) & mask) != 0;
1da177e4
LT
511}
512
4448aaf0 513static inline int pmd_present(pmd_t pmd)
1da177e4 514{
e5098611 515 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
1da177e4
LT
516}
517
4448aaf0 518static inline int pmd_none(pmd_t pmd)
1da177e4 519{
e5098611 520 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
1da177e4
LT
521}
522
378b1e7a
HC
523static inline int pmd_large(pmd_t pmd)
524{
e5098611 525 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
378b1e7a
HC
526}
527
152125b7 528static inline int pmd_pfn(pmd_t pmd)
0944fe3f 529{
152125b7
MS
530 unsigned long origin_mask;
531
532 origin_mask = _SEGMENT_ENTRY_ORIGIN;
533 if (pmd_large(pmd))
534 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
535 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
0944fe3f
MS
536}
537
4448aaf0 538static inline int pmd_bad(pmd_t pmd)
1da177e4 539{
0944fe3f
MS
540 if (pmd_large(pmd))
541 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
0944fe3f 542 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
1da177e4
LT
543}
544
75077afb
GS
545#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
546extern void pmdp_splitting_flush(struct vm_area_struct *vma,
547 unsigned long addr, pmd_t *pmdp);
548
1ae1c1d0
GS
549#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
550extern int pmdp_set_access_flags(struct vm_area_struct *vma,
551 unsigned long address, pmd_t *pmdp,
552 pmd_t entry, int dirty);
553
554#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
555extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
556 unsigned long address, pmd_t *pmdp);
557
558#define __HAVE_ARCH_PMD_WRITE
559static inline int pmd_write(pmd_t pmd)
560{
152125b7
MS
561 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
562}
563
564static inline int pmd_dirty(pmd_t pmd)
565{
566 int dirty = 1;
567 if (pmd_large(pmd))
568 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
569 return dirty;
1ae1c1d0
GS
570}
571
572static inline int pmd_young(pmd_t pmd)
573{
152125b7
MS
574 int young = 1;
575 if (pmd_large(pmd))
0944fe3f 576 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
0944fe3f 577 return young;
1ae1c1d0
GS
578}
579
e5098611 580static inline int pte_present(pte_t pte)
1da177e4 581{
e5098611
MS
582 /* Bit pattern: (pte & 0x001) == 0x001 */
583 return (pte_val(pte) & _PAGE_PRESENT) != 0;
1da177e4
LT
584}
585
e5098611 586static inline int pte_none(pte_t pte)
1da177e4 587{
e5098611
MS
588 /* Bit pattern: pte == 0x400 */
589 return pte_val(pte) == _PAGE_INVALID;
1da177e4
LT
590}
591
b31288fa
KW
592static inline int pte_swap(pte_t pte)
593{
594 /* Bit pattern: (pte & 0x603) == 0x402 */
595 return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT |
596 _PAGE_TYPE | _PAGE_PRESENT))
597 == (_PAGE_INVALID | _PAGE_TYPE);
598}
599
7e675137
NP
600static inline int pte_special(pte_t pte)
601{
a08cb629 602 return (pte_val(pte) & _PAGE_SPECIAL);
7e675137
NP
603}
604
ba8a9229 605#define __HAVE_ARCH_PTE_SAME
b2fa47e6
MS
606static inline int pte_same(pte_t a, pte_t b)
607{
608 return pte_val(a) == pte_val(b);
609}
1da177e4 610
b2fa47e6 611static inline pgste_t pgste_get_lock(pte_t *ptep)
5b7baf05 612{
b2fa47e6 613 unsigned long new = 0;
5b7baf05 614#ifdef CONFIG_PGSTE
b2fa47e6
MS
615 unsigned long old;
616
5b7baf05 617 preempt_disable();
b2fa47e6
MS
618 asm(
619 " lg %0,%2\n"
620 "0: lgr %1,%0\n"
0d0dafc1
MS
621 " nihh %0,0xff7f\n" /* clear PCL bit in old */
622 " oihh %1,0x0080\n" /* set PCL bit in new */
b2fa47e6
MS
623 " csg %0,%1,%2\n"
624 " jl 0b\n"
625 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
a8f6e7f7 626 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
5b7baf05 627#endif
b2fa47e6 628 return __pgste(new);
5b7baf05
CB
629}
630
b2fa47e6 631static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
5b7baf05
CB
632{
633#ifdef CONFIG_PGSTE
b2fa47e6 634 asm(
0d0dafc1 635 " nihh %1,0xff7f\n" /* clear PCL bit */
b2fa47e6
MS
636 " stg %1,%0\n"
637 : "=Q" (ptep[PTRS_PER_PTE])
a8f6e7f7
CB
638 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
639 : "cc", "memory");
5b7baf05
CB
640 preempt_enable();
641#endif
642}
643
d56c893d
MS
644static inline pgste_t pgste_get(pte_t *ptep)
645{
646 unsigned long pgste = 0;
647#ifdef CONFIG_PGSTE
648 pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
649#endif
650 return __pgste(pgste);
651}
652
3a82603b
CB
653static inline void pgste_set(pte_t *ptep, pgste_t pgste)
654{
655#ifdef CONFIG_PGSTE
656 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
657#endif
658}
659
65eef335
DD
660static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
661 struct mm_struct *mm)
5b7baf05
CB
662{
663#ifdef CONFIG_PGSTE
0944fe3f 664 unsigned long address, bits, skey;
b2fa47e6 665
65eef335 666 if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
09b53883 667 return pgste;
a43a9d93 668 address = pte_val(*ptep) & PAGE_MASK;
0944fe3f 669 skey = (unsigned long) page_get_storage_key(address);
b2fa47e6 670 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
b2fa47e6 671 /* Transfer page changed & referenced bit to guest bits in pgste */
0d0dafc1 672 pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */
b2fa47e6 673 /* Copy page access key and fetch protection bit to pgste */
0944fe3f
MS
674 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
675 pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
b2fa47e6
MS
676#endif
677 return pgste;
678
679}
680
65eef335
DD
681static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
682 struct mm_struct *mm)
b2fa47e6
MS
683{
684#ifdef CONFIG_PGSTE
a43a9d93 685 unsigned long address;
338679f7 686 unsigned long nkey;
b2fa47e6 687
65eef335 688 if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
09b53883 689 return;
338679f7 690 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
09b53883 691 address = pte_val(entry) & PAGE_MASK;
338679f7
CB
692 /*
693 * Set page access key and fetch protection bit from pgste.
694 * The guest C/R information is still in the PGSTE, set real
695 * key C/R to 0.
696 */
fe489bf4 697 nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
0a61b222 698 nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
338679f7 699 page_set_storage_key(address, nkey, 0);
5b7baf05
CB
700#endif
701}
702
0a61b222 703static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
abf09bed 704{
0a61b222
MS
705 if ((pte_val(entry) & _PAGE_PRESENT) &&
706 (pte_val(entry) & _PAGE_WRITE) &&
707 !(pte_val(entry) & _PAGE_INVALID)) {
708 if (!MACHINE_HAS_ESOP) {
709 /*
710 * Without enhanced suppression-on-protection force
711 * the dirty bit on for all writable ptes.
712 */
713 pte_val(entry) |= _PAGE_DIRTY;
714 pte_val(entry) &= ~_PAGE_PROTECT;
715 }
716 if (!(pte_val(entry) & _PAGE_PROTECT))
717 /* This pte allows write access, set user-dirty */
718 pgste_val(pgste) |= PGSTE_UC_BIT;
abf09bed
MS
719 }
720 *ptep = entry;
0a61b222 721 return pgste;
abf09bed
MS
722}
723
e5992f2e
MS
724/**
725 * struct gmap_struct - guest address space
527e30b4 726 * @crst_list: list of all crst tables used in the guest address space
e5992f2e 727 * @mm: pointer to the parent mm_struct
527e30b4
MS
728 * @guest_to_host: radix tree with guest to host address translation
729 * @host_to_guest: radix tree with pointer to segment table entries
730 * @guest_table_lock: spinlock to protect all entries in the guest page table
e5992f2e 731 * @table: pointer to the page directory
480e5926 732 * @asce: address space control element for gmap page table
24eb3a82 733 * @pfault_enabled: defines if pfaults are applicable for the guest
e5992f2e
MS
734 */
735struct gmap {
736 struct list_head list;
527e30b4 737 struct list_head crst_list;
e5992f2e 738 struct mm_struct *mm;
527e30b4
MS
739 struct radix_tree_root guest_to_host;
740 struct radix_tree_root host_to_guest;
741 spinlock_t guest_table_lock;
e5992f2e 742 unsigned long *table;
480e5926 743 unsigned long asce;
c6c956b8 744 unsigned long asce_end;
2c70fe44 745 void *private;
24eb3a82 746 bool pfault_enabled;
e5992f2e
MS
747};
748
d3383632
MS
749/**
750 * struct gmap_notifier - notify function block for page invalidation
751 * @notifier_call: address of callback function
752 */
753struct gmap_notifier {
754 struct list_head list;
6e0a0431 755 void (*notifier_call)(struct gmap *gmap, unsigned long gaddr);
d3383632
MS
756};
757
c6c956b8 758struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit);
e5992f2e
MS
759void gmap_free(struct gmap *gmap);
760void gmap_enable(struct gmap *gmap);
761void gmap_disable(struct gmap *gmap);
762int gmap_map_segment(struct gmap *gmap, unsigned long from,
d3383632 763 unsigned long to, unsigned long len);
e5992f2e 764int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
6e0a0431
MS
765unsigned long __gmap_translate(struct gmap *, unsigned long gaddr);
766unsigned long gmap_translate(struct gmap *, unsigned long gaddr);
527e30b4
MS
767int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr);
768int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags);
6e0a0431
MS
769void gmap_discard(struct gmap *, unsigned long from, unsigned long to);
770void __gmap_zap(struct gmap *, unsigned long gaddr);
a0bf4f14
DD
771bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
772
e5992f2e 773
d3383632
MS
774void gmap_register_ipte_notifier(struct gmap_notifier *);
775void gmap_unregister_ipte_notifier(struct gmap_notifier *);
776int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
9da4e380 777void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
d3383632
MS
778
779static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
55dbbdd9 780 unsigned long addr,
d3383632
MS
781 pte_t *ptep, pgste_t pgste)
782{
783#ifdef CONFIG_PGSTE
0d0dafc1
MS
784 if (pgste_val(pgste) & PGSTE_IN_BIT) {
785 pgste_val(pgste) &= ~PGSTE_IN_BIT;
9da4e380 786 gmap_do_ipte_notify(mm, addr, ptep);
d3383632
MS
787 }
788#endif
789 return pgste;
790}
791
b2fa47e6
MS
792/*
793 * Certain architectures need to do special things when PTEs
794 * within a page table are directly modified. Thus, the following
795 * hook is made available.
796 */
797static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
798 pte_t *ptep, pte_t entry)
799{
800 pgste_t pgste;
801
802 if (mm_has_pgste(mm)) {
803 pgste = pgste_get_lock(ptep);
b31288fa 804 pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
65eef335 805 pgste_set_key(ptep, pgste, entry, mm);
0a61b222 806 pgste = pgste_set_pte(ptep, pgste, entry);
b2fa47e6 807 pgste_set_unlock(ptep, pgste);
abf09bed 808 } else {
b2fa47e6 809 *ptep = entry;
abf09bed 810 }
b2fa47e6
MS
811}
812
1da177e4
LT
813/*
814 * query functions pte_write/pte_dirty/pte_young only work if
815 * pte_present() is true. Undefined behaviour if not..
816 */
4448aaf0 817static inline int pte_write(pte_t pte)
1da177e4 818{
e5098611 819 return (pte_val(pte) & _PAGE_WRITE) != 0;
1da177e4
LT
820}
821
4448aaf0 822static inline int pte_dirty(pte_t pte)
1da177e4 823{
e5098611 824 return (pte_val(pte) & _PAGE_DIRTY) != 0;
1da177e4
LT
825}
826
4448aaf0 827static inline int pte_young(pte_t pte)
1da177e4 828{
0944fe3f 829 return (pte_val(pte) & _PAGE_YOUNG) != 0;
1da177e4
LT
830}
831
b31288fa
KW
832#define __HAVE_ARCH_PTE_UNUSED
833static inline int pte_unused(pte_t pte)
834{
835 return pte_val(pte) & _PAGE_UNUSED;
836}
837
1da177e4
LT
838/*
839 * pgd/pmd/pte modification functions
840 */
841
b2fa47e6 842static inline void pgd_clear(pgd_t *pgd)
5a216a20 843{
6252d702
MS
844 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
845 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
5a216a20
MS
846}
847
b2fa47e6 848static inline void pud_clear(pud_t *pud)
1da177e4 849{
6252d702
MS
850 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
851 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
1da177e4
LT
852}
853
b2fa47e6 854static inline void pmd_clear(pmd_t *pmdp)
1da177e4 855{
e5098611 856 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
1da177e4
LT
857}
858
4448aaf0 859static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1da177e4 860{
e5098611 861 pte_val(*ptep) = _PAGE_INVALID;
1da177e4
LT
862}
863
864/*
865 * The following pte modification functions only work if
866 * pte_present() is true. Undefined behaviour if not..
867 */
4448aaf0 868static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1da177e4 869{
138c9021 870 pte_val(pte) &= _PAGE_CHG_MASK;
1da177e4 871 pte_val(pte) |= pgprot_val(newprot);
0944fe3f
MS
872 /*
873 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
874 * invalid bit set, clear it again for readable, young pages
875 */
876 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
877 pte_val(pte) &= ~_PAGE_INVALID;
878 /*
879 * newprot for PAGE_READ and PAGE_WRITE has the page protection
880 * bit set, clear it again for writable, dirty pages
881 */
e5098611
MS
882 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
883 pte_val(pte) &= ~_PAGE_PROTECT;
1da177e4
LT
884 return pte;
885}
886
4448aaf0 887static inline pte_t pte_wrprotect(pte_t pte)
1da177e4 888{
e5098611
MS
889 pte_val(pte) &= ~_PAGE_WRITE;
890 pte_val(pte) |= _PAGE_PROTECT;
1da177e4
LT
891 return pte;
892}
893
4448aaf0 894static inline pte_t pte_mkwrite(pte_t pte)
1da177e4 895{
e5098611
MS
896 pte_val(pte) |= _PAGE_WRITE;
897 if (pte_val(pte) & _PAGE_DIRTY)
898 pte_val(pte) &= ~_PAGE_PROTECT;
1da177e4
LT
899 return pte;
900}
901
4448aaf0 902static inline pte_t pte_mkclean(pte_t pte)
1da177e4 903{
e5098611
MS
904 pte_val(pte) &= ~_PAGE_DIRTY;
905 pte_val(pte) |= _PAGE_PROTECT;
1da177e4
LT
906 return pte;
907}
908
4448aaf0 909static inline pte_t pte_mkdirty(pte_t pte)
1da177e4 910{
e5098611
MS
911 pte_val(pte) |= _PAGE_DIRTY;
912 if (pte_val(pte) & _PAGE_WRITE)
913 pte_val(pte) &= ~_PAGE_PROTECT;
1da177e4
LT
914 return pte;
915}
916
4448aaf0 917static inline pte_t pte_mkold(pte_t pte)
1da177e4 918{
e5098611 919 pte_val(pte) &= ~_PAGE_YOUNG;
0944fe3f 920 pte_val(pte) |= _PAGE_INVALID;
1da177e4
LT
921 return pte;
922}
923
4448aaf0 924static inline pte_t pte_mkyoung(pte_t pte)
1da177e4 925{
0944fe3f
MS
926 pte_val(pte) |= _PAGE_YOUNG;
927 if (pte_val(pte) & _PAGE_READ)
928 pte_val(pte) &= ~_PAGE_INVALID;
1da177e4
LT
929 return pte;
930}
931
7e675137
NP
932static inline pte_t pte_mkspecial(pte_t pte)
933{
a08cb629 934 pte_val(pte) |= _PAGE_SPECIAL;
7e675137
NP
935 return pte;
936}
937
84afdcee
HC
938#ifdef CONFIG_HUGETLB_PAGE
939static inline pte_t pte_mkhuge(pte_t pte)
940{
e5098611 941 pte_val(pte) |= _PAGE_LARGE;
84afdcee
HC
942 return pte;
943}
944#endif
945
9282ed92 946static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1da177e4 947{
53e857f3
MS
948 unsigned long pto = (unsigned long) ptep;
949
53e857f3
MS
950 /* Invalidation + global TLB flush for the pte */
951 asm volatile(
952 " ipte %2,%3"
953 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
954}
955
1b948d6c
MS
956static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
957{
958 unsigned long pto = (unsigned long) ptep;
959
1b948d6c
MS
960 /* Invalidation + local TLB flush for the pte */
961 asm volatile(
962 " .insn rrf,0xb2210000,%2,%3,0,1"
963 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
964}
965
cfb0b241
HC
966static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
967{
968 unsigned long pto = (unsigned long) ptep;
969
cfb0b241
HC
970 /* Invalidate a range of ptes + global TLB flush of the ptes */
971 do {
972 asm volatile(
973 " .insn rrf,0xb2210000,%2,%0,%1,0"
974 : "+a" (address), "+a" (nr) : "a" (pto) : "memory");
975 } while (nr != 255);
976}
977
53e857f3
MS
978static inline void ptep_flush_direct(struct mm_struct *mm,
979 unsigned long address, pte_t *ptep)
980{
1b948d6c
MS
981 int active, count;
982
53e857f3
MS
983 if (pte_val(*ptep) & _PAGE_INVALID)
984 return;
1b948d6c
MS
985 active = (mm == current->active_mm) ? 1 : 0;
986 count = atomic_add_return(0x10000, &mm->context.attach_count);
987 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
988 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
989 __ptep_ipte_local(address, ptep);
990 else
991 __ptep_ipte(address, ptep);
992 atomic_sub(0x10000, &mm->context.attach_count);
9282ed92
GS
993}
994
5c474a1e
MS
995static inline void ptep_flush_lazy(struct mm_struct *mm,
996 unsigned long address, pte_t *ptep)
997{
53e857f3 998 int active, count;
5c474a1e 999
53e857f3
MS
1000 if (pte_val(*ptep) & _PAGE_INVALID)
1001 return;
1002 active = (mm == current->active_mm) ? 1 : 0;
1003 count = atomic_add_return(0x10000, &mm->context.attach_count);
1004 if ((count & 0xffff) <= active) {
1005 pte_val(*ptep) |= _PAGE_INVALID;
5c474a1e 1006 mm->context.flush_mm = 1;
53e857f3
MS
1007 } else
1008 __ptep_ipte(address, ptep);
1009 atomic_sub(0x10000, &mm->context.attach_count);
5c474a1e
MS
1010}
1011
0a61b222
MS
1012/*
1013 * Get (and clear) the user dirty bit for a pte.
1014 */
1015static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1016 unsigned long addr,
1017 pte_t *ptep)
1018{
1019 pgste_t pgste;
1020 pte_t pte;
1021 int dirty;
1022
1023 if (!mm_has_pgste(mm))
1024 return 0;
1025 pgste = pgste_get_lock(ptep);
1026 dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
1027 pgste_val(pgste) &= ~PGSTE_UC_BIT;
1028 pte = *ptep;
1029 if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
55dbbdd9 1030 pgste = pgste_ipte_notify(mm, addr, ptep, pgste);
0a61b222
MS
1031 __ptep_ipte(addr, ptep);
1032 if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1033 pte_val(pte) |= _PAGE_PROTECT;
1034 else
1035 pte_val(pte) |= _PAGE_INVALID;
1036 *ptep = pte;
1037 }
1038 pgste_set_unlock(ptep, pgste);
1039 return dirty;
1040}
1041
0944fe3f
MS
1042#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1043static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1044 unsigned long addr, pte_t *ptep)
1045{
1046 pgste_t pgste;
3e03d4c4 1047 pte_t pte, oldpte;
0944fe3f
MS
1048 int young;
1049
1050 if (mm_has_pgste(vma->vm_mm)) {
1051 pgste = pgste_get_lock(ptep);
55dbbdd9 1052 pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste);
0944fe3f
MS
1053 }
1054
3e03d4c4 1055 oldpte = pte = *ptep;
53e857f3 1056 ptep_flush_direct(vma->vm_mm, addr, ptep);
0944fe3f
MS
1057 young = pte_young(pte);
1058 pte = pte_mkold(pte);
1059
1060 if (mm_has_pgste(vma->vm_mm)) {
3e03d4c4 1061 pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
0a61b222 1062 pgste = pgste_set_pte(ptep, pgste, pte);
0944fe3f
MS
1063 pgste_set_unlock(ptep, pgste);
1064 } else
1065 *ptep = pte;
1066
1067 return young;
1068}
1069
1070#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1071static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1072 unsigned long address, pte_t *ptep)
1073{
1074 return ptep_test_and_clear_young(vma, address, ptep);
1075}
1076
ba8a9229
MS
1077/*
1078 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1079 * both clear the TLB for the unmapped pte. The reason is that
1080 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1081 * to modify an active pte. The sequence is
1082 * 1) ptep_get_and_clear
1083 * 2) set_pte_at
1084 * 3) flush_tlb_range
1085 * On s390 the tlb needs to get flushed with the modification of the pte
1086 * if the pte is active. The only way how this can be implemented is to
1087 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1088 * is a nop.
1089 */
1090#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
b2fa47e6
MS
1091static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1092 unsigned long address, pte_t *ptep)
1093{
1094 pgste_t pgste;
1095 pte_t pte;
1096
d3383632 1097 if (mm_has_pgste(mm)) {
b2fa47e6 1098 pgste = pgste_get_lock(ptep);
55dbbdd9 1099 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
d3383632 1100 }
b2fa47e6
MS
1101
1102 pte = *ptep;
5c474a1e 1103 ptep_flush_lazy(mm, address, ptep);
e5098611 1104 pte_val(*ptep) = _PAGE_INVALID;
b2fa47e6
MS
1105
1106 if (mm_has_pgste(mm)) {
65eef335 1107 pgste = pgste_update_all(&pte, pgste, mm);
b2fa47e6
MS
1108 pgste_set_unlock(ptep, pgste);
1109 }
1110 return pte;
1111}
1112
1113#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1114static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1115 unsigned long address,
1116 pte_t *ptep)
1117{
d3383632 1118 pgste_t pgste;
b2fa47e6
MS
1119 pte_t pte;
1120
d3383632
MS
1121 if (mm_has_pgste(mm)) {
1122 pgste = pgste_get_lock(ptep);
55dbbdd9 1123 pgste_ipte_notify(mm, address, ptep, pgste);
d3383632 1124 }
b2fa47e6
MS
1125
1126 pte = *ptep;
5c474a1e 1127 ptep_flush_lazy(mm, address, ptep);
b56433cb 1128
3a82603b 1129 if (mm_has_pgste(mm)) {
65eef335 1130 pgste = pgste_update_all(&pte, pgste, mm);
3a82603b
CB
1131 pgste_set(ptep, pgste);
1132 }
b2fa47e6
MS
1133 return pte;
1134}
1135
1136static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1137 unsigned long address,
1138 pte_t *ptep, pte_t pte)
1139{
b56433cb
CB
1140 pgste_t pgste;
1141
abf09bed 1142 if (mm_has_pgste(mm)) {
d56c893d 1143 pgste = pgste_get(ptep);
65eef335 1144 pgste_set_key(ptep, pgste, pte, mm);
0a61b222 1145 pgste = pgste_set_pte(ptep, pgste, pte);
b56433cb 1146 pgste_set_unlock(ptep, pgste);
abf09bed
MS
1147 } else
1148 *ptep = pte;
b2fa47e6 1149}
ba8a9229
MS
1150
1151#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
f0e47c22
MS
1152static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1153 unsigned long address, pte_t *ptep)
1154{
b2fa47e6
MS
1155 pgste_t pgste;
1156 pte_t pte;
1157
d3383632 1158 if (mm_has_pgste(vma->vm_mm)) {
b2fa47e6 1159 pgste = pgste_get_lock(ptep);
55dbbdd9 1160 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
d3383632 1161 }
b2fa47e6
MS
1162
1163 pte = *ptep;
53e857f3 1164 ptep_flush_direct(vma->vm_mm, address, ptep);
e5098611 1165 pte_val(*ptep) = _PAGE_INVALID;
b2fa47e6
MS
1166
1167 if (mm_has_pgste(vma->vm_mm)) {
b31288fa
KW
1168 if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1169 _PGSTE_GPS_USAGE_UNUSED)
1170 pte_val(pte) |= _PAGE_UNUSED;
65eef335 1171 pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
b2fa47e6
MS
1172 pgste_set_unlock(ptep, pgste);
1173 }
1da177e4
LT
1174 return pte;
1175}
1176
ba8a9229
MS
1177/*
1178 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1179 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1180 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1181 * cannot be accessed while the batched unmap is running. In this case
1182 * full==1 and a simple pte_clear is enough. See tlb.h.
1183 */
1184#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1185static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
b2fa47e6 1186 unsigned long address,
ba8a9229 1187 pte_t *ptep, int full)
1da177e4 1188{
b2fa47e6
MS
1189 pgste_t pgste;
1190 pte_t pte;
1191
a055f66a 1192 if (!full && mm_has_pgste(mm)) {
b2fa47e6 1193 pgste = pgste_get_lock(ptep);
55dbbdd9 1194 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
d3383632 1195 }
ba8a9229 1196
b2fa47e6
MS
1197 pte = *ptep;
1198 if (!full)
5c474a1e 1199 ptep_flush_lazy(mm, address, ptep);
e5098611 1200 pte_val(*ptep) = _PAGE_INVALID;
b2fa47e6 1201
a055f66a 1202 if (!full && mm_has_pgste(mm)) {
65eef335 1203 pgste = pgste_update_all(&pte, pgste, mm);
b2fa47e6
MS
1204 pgste_set_unlock(ptep, pgste);
1205 }
ba8a9229 1206 return pte;
1da177e4
LT
1207}
1208
ba8a9229 1209#define __HAVE_ARCH_PTEP_SET_WRPROTECT
b2fa47e6
MS
1210static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1211 unsigned long address, pte_t *ptep)
1212{
1213 pgste_t pgste;
1214 pte_t pte = *ptep;
1215
1216 if (pte_write(pte)) {
d3383632 1217 if (mm_has_pgste(mm)) {
b2fa47e6 1218 pgste = pgste_get_lock(ptep);
55dbbdd9 1219 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
d3383632 1220 }
b2fa47e6 1221
5c474a1e 1222 ptep_flush_lazy(mm, address, ptep);
abf09bed 1223 pte = pte_wrprotect(pte);
b2fa47e6 1224
abf09bed 1225 if (mm_has_pgste(mm)) {
0a61b222 1226 pgste = pgste_set_pte(ptep, pgste, pte);
b2fa47e6 1227 pgste_set_unlock(ptep, pgste);
abf09bed
MS
1228 } else
1229 *ptep = pte;
b2fa47e6
MS
1230 }
1231 return pte;
1232}
ba8a9229
MS
1233
1234#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
b2fa47e6
MS
1235static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1236 unsigned long address, pte_t *ptep,
1237 pte_t entry, int dirty)
1238{
1239 pgste_t pgste;
1240
1241 if (pte_same(*ptep, entry))
1242 return 0;
d3383632 1243 if (mm_has_pgste(vma->vm_mm)) {
b2fa47e6 1244 pgste = pgste_get_lock(ptep);
55dbbdd9 1245 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
d3383632 1246 }
b2fa47e6 1247
53e857f3 1248 ptep_flush_direct(vma->vm_mm, address, ptep);
b2fa47e6 1249
abf09bed 1250 if (mm_has_pgste(vma->vm_mm)) {
1951497d 1251 pgste_set_key(ptep, pgste, entry, vma->vm_mm);
0a61b222 1252 pgste = pgste_set_pte(ptep, pgste, entry);
b2fa47e6 1253 pgste_set_unlock(ptep, pgste);
abf09bed
MS
1254 } else
1255 *ptep = entry;
b2fa47e6
MS
1256 return 1;
1257}
1da177e4 1258
1da177e4
LT
1259/*
1260 * Conversion functions: convert a page and protection to a page entry,
1261 * and a page entry and page directory to the page they refer to.
1262 */
1263static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1264{
1265 pte_t __pte;
1266 pte_val(__pte) = physpage + pgprot_val(pgprot);
0944fe3f 1267 return pte_mkyoung(__pte);
1da177e4
LT
1268}
1269
2dcea57a
HC
1270static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1271{
0b2b6e1d 1272 unsigned long physpage = page_to_phys(page);
abf09bed 1273 pte_t __pte = mk_pte_phys(physpage, pgprot);
1da177e4 1274
e5098611
MS
1275 if (pte_write(__pte) && PageDirty(page))
1276 __pte = pte_mkdirty(__pte);
abf09bed 1277 return __pte;
2dcea57a
HC
1278}
1279
190a1d72
MS
1280#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1281#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1282#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1283#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1da177e4 1284
190a1d72
MS
1285#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1286#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1da177e4 1287
190a1d72
MS
1288#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1289#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
5a216a20 1290#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1da177e4 1291
5a216a20
MS
1292static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1293{
6252d702
MS
1294 pud_t *pud = (pud_t *) pgd;
1295 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1296 pud = (pud_t *) pgd_deref(*pgd);
5a216a20
MS
1297 return pud + pud_index(address);
1298}
1da177e4 1299
190a1d72 1300static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1da177e4 1301{
6252d702
MS
1302 pmd_t *pmd = (pmd_t *) pud;
1303 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1304 pmd = (pmd_t *) pud_deref(*pud);
190a1d72 1305 return pmd + pmd_index(address);
1da177e4
LT
1306}
1307
190a1d72
MS
1308#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1309#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1310#define pte_page(x) pfn_to_page(pte_pfn(x))
1da177e4 1311
152125b7 1312#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1da177e4 1313
190a1d72
MS
1314/* Find an entry in the lowest level page table.. */
1315#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1316#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1da177e4 1317#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1da177e4 1318#define pte_unmap(pte) do { } while (0)
1da177e4 1319
106c992a 1320#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1ae1c1d0
GS
1321static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1322{
d8e7a33d 1323 /*
e5098611 1324 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
d8e7a33d
GS
1325 * Convert to segment table entry format.
1326 */
1327 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1328 return pgprot_val(SEGMENT_NONE);
e5098611
MS
1329 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1330 return pgprot_val(SEGMENT_READ);
1331 return pgprot_val(SEGMENT_WRITE);
1ae1c1d0
GS
1332}
1333
152125b7 1334static inline pmd_t pmd_wrprotect(pmd_t pmd)
0944fe3f 1335{
152125b7
MS
1336 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1337 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1338 return pmd;
1339}
1340
1341static inline pmd_t pmd_mkwrite(pmd_t pmd)
1342{
1343 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1344 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1345 return pmd;
1346 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1347 return pmd;
1348}
1349
1350static inline pmd_t pmd_mkclean(pmd_t pmd)
1351{
1352 if (pmd_large(pmd)) {
1353 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
0944fe3f 1354 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
152125b7
MS
1355 }
1356 return pmd;
1357}
1358
1359static inline pmd_t pmd_mkdirty(pmd_t pmd)
1360{
1361 if (pmd_large(pmd)) {
1362 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY;
1363 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1364 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1365 }
1366 return pmd;
1367}
1368
1369static inline pmd_t pmd_mkyoung(pmd_t pmd)
1370{
1371 if (pmd_large(pmd)) {
0944fe3f 1372 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
152125b7
MS
1373 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1374 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
0944fe3f 1375 }
0944fe3f
MS
1376 return pmd;
1377}
1378
1379static inline pmd_t pmd_mkold(pmd_t pmd)
1380{
152125b7 1381 if (pmd_large(pmd)) {
0944fe3f
MS
1382 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1383 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1384 }
0944fe3f
MS
1385 return pmd;
1386}
1387
1ae1c1d0
GS
1388static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1389{
152125b7
MS
1390 if (pmd_large(pmd)) {
1391 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1392 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1393 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT;
1394 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1395 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1396 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1397 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1398 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1399 return pmd;
1400 }
1401 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1ae1c1d0
GS
1402 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1403 return pmd;
1404}
1405
106c992a 1406static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1ae1c1d0 1407{
106c992a
GS
1408 pmd_t __pmd;
1409 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
152125b7 1410 return __pmd;
1ae1c1d0
GS
1411}
1412
106c992a
GS
1413#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1414
1b948d6c
MS
1415static inline void __pmdp_csp(pmd_t *pmdp)
1416{
1417 register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1418 register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1419 _SEGMENT_ENTRY_INVALID;
1420 register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1421
1422 asm volatile(
1423 " csp %1,%3"
1424 : "=m" (*pmdp)
1425 : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1426}
1427
1428static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1429{
1430 unsigned long sto;
1431
1432 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1433 asm volatile(
1434 " .insn rrf,0xb98e0000,%2,%3,0,0"
1435 : "=m" (*pmdp)
1436 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1437 : "cc" );
1438}
1439
1440static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1441{
1442 unsigned long sto;
1443
1444 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1445 asm volatile(
1446 " .insn rrf,0xb98e0000,%2,%3,0,1"
1447 : "=m" (*pmdp)
1448 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1449 : "cc" );
1450}
1451
1452static inline void pmdp_flush_direct(struct mm_struct *mm,
1453 unsigned long address, pmd_t *pmdp)
1454{
1455 int active, count;
1456
1457 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1458 return;
1459 if (!MACHINE_HAS_IDTE) {
1460 __pmdp_csp(pmdp);
1461 return;
1462 }
1463 active = (mm == current->active_mm) ? 1 : 0;
1464 count = atomic_add_return(0x10000, &mm->context.attach_count);
1465 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1466 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1467 __pmdp_idte_local(address, pmdp);
1468 else
1469 __pmdp_idte(address, pmdp);
1470 atomic_sub(0x10000, &mm->context.attach_count);
1471}
1472
3eabaee9
MS
1473static inline void pmdp_flush_lazy(struct mm_struct *mm,
1474 unsigned long address, pmd_t *pmdp)
1475{
53e857f3 1476 int active, count;
3eabaee9 1477
1b948d6c
MS
1478 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1479 return;
53e857f3
MS
1480 active = (mm == current->active_mm) ? 1 : 0;
1481 count = atomic_add_return(0x10000, &mm->context.attach_count);
1482 if ((count & 0xffff) <= active) {
1483 pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
3eabaee9 1484 mm->context.flush_mm = 1;
1b948d6c
MS
1485 } else if (MACHINE_HAS_IDTE)
1486 __pmdp_idte(address, pmdp);
1487 else
1488 __pmdp_csp(pmdp);
53e857f3 1489 atomic_sub(0x10000, &mm->context.attach_count);
3eabaee9
MS
1490}
1491
106c992a
GS
1492#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1493
1494#define __HAVE_ARCH_PGTABLE_DEPOSIT
6b0b50b0
AK
1495extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1496 pgtable_t pgtable);
106c992a
GS
1497
1498#define __HAVE_ARCH_PGTABLE_WITHDRAW
6b0b50b0 1499extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
106c992a
GS
1500
1501static inline int pmd_trans_splitting(pmd_t pmd)
1502{
152125b7
MS
1503 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) &&
1504 (pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT);
106c992a
GS
1505}
1506
1507static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1508 pmd_t *pmdp, pmd_t entry)
1509{
106c992a
GS
1510 *pmdp = entry;
1511}
1512
1513static inline pmd_t pmd_mkhuge(pmd_t pmd)
1514{
1515 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
152125b7
MS
1516 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1517 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1ae1c1d0
GS
1518 return pmd;
1519}
1520
1ae1c1d0
GS
1521#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1522static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1523 unsigned long address, pmd_t *pmdp)
1524{
0944fe3f 1525 pmd_t pmd;
1ae1c1d0 1526
0944fe3f 1527 pmd = *pmdp;
1b948d6c 1528 pmdp_flush_direct(vma->vm_mm, address, pmdp);
0944fe3f
MS
1529 *pmdp = pmd_mkold(pmd);
1530 return pmd_young(pmd);
1ae1c1d0
GS
1531}
1532
1533#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1534static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1535 unsigned long address, pmd_t *pmdp)
1536{
1537 pmd_t pmd = *pmdp;
1538
1b948d6c 1539 pmdp_flush_direct(mm, address, pmdp);
1ae1c1d0
GS
1540 pmd_clear(pmdp);
1541 return pmd;
1542}
1543
fcbe08d6
MS
1544#define __HAVE_ARCH_PMDP_GET_AND_CLEAR_FULL
1545static inline pmd_t pmdp_get_and_clear_full(struct mm_struct *mm,
1546 unsigned long address,
1547 pmd_t *pmdp, int full)
1548{
1549 pmd_t pmd = *pmdp;
1550
1551 if (!full)
1552 pmdp_flush_lazy(mm, address, pmdp);
1553 pmd_clear(pmdp);
1554 return pmd;
1555}
1556
1ae1c1d0
GS
1557#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1558static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1559 unsigned long address, pmd_t *pmdp)
1560{
1561 return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1562}
1563
1564#define __HAVE_ARCH_PMDP_INVALIDATE
1565static inline void pmdp_invalidate(struct vm_area_struct *vma,
1566 unsigned long address, pmd_t *pmdp)
1567{
1b948d6c 1568 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1ae1c1d0
GS
1569}
1570
be328650
GS
1571#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1572static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1573 unsigned long address, pmd_t *pmdp)
1574{
1575 pmd_t pmd = *pmdp;
1576
1577 if (pmd_write(pmd)) {
1b948d6c 1578 pmdp_flush_direct(mm, address, pmdp);
be328650
GS
1579 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1580 }
1581}
1582
1ae1c1d0
GS
1583#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1584#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1585
1586static inline int pmd_trans_huge(pmd_t pmd)
1587{
1588 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1589}
1590
1591static inline int has_transparent_hugepage(void)
1592{
1593 return MACHINE_HAS_HPAGE ? 1 : 0;
1594}
75077afb
GS
1595#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1596
1da177e4
LT
1597/*
1598 * 31 bit swap entry format:
1599 * A page-table entry has some bits we have to treat in a special way.
1600 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1601 * exception will occur instead of a page translation exception. The
1602 * specifiation exception has the bad habit not to store necessary
1603 * information in the lowcore.
e5098611
MS
1604 * Bits 21, 22, 30 and 31 are used to indicate the page type.
1605 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1da177e4
LT
1606 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1607 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1608 * plus 24 for the offset.
1609 * 0| offset |0110|o|type |00|
1610 * 0 0000000001111111111 2222 2 22222 33
1611 * 0 1234567890123456789 0123 4 56789 01
1612 *
1613 * 64 bit swap entry format:
1614 * A page-table entry has some bits we have to treat in a special way.
1615 * Bits 52 and bit 55 have to be zero, otherwise an specification
1616 * exception will occur instead of a page translation exception. The
1617 * specifiation exception has the bad habit not to store necessary
1618 * information in the lowcore.
e5098611
MS
1619 * Bits 53, 54, 62 and 63 are used to indicate the page type.
1620 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1da177e4
LT
1621 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1622 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1623 * plus 56 for the offset.
1624 * | offset |0110|o|type |00|
1625 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1626 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1627 */
5a79859a 1628
1da177e4 1629#define __SWP_OFFSET_MASK (~0UL >> 11)
5a79859a 1630
4448aaf0 1631static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1da177e4
LT
1632{
1633 pte_t pte;
1634 offset &= __SWP_OFFSET_MASK;
e5098611 1635 pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) |
1da177e4
LT
1636 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1637 return pte;
1638}
1639
1640#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1641#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1642#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1643
1644#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1645#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1646
1da177e4
LT
1647#endif /* !__ASSEMBLY__ */
1648
1649#define kern_addr_valid(addr) (1)
1650
17f34580
HC
1651extern int vmem_add_mapping(unsigned long start, unsigned long size);
1652extern int vmem_remove_mapping(unsigned long start, unsigned long size);
402b0862 1653extern int s390_enable_sie(void);
3ac8e380 1654extern int s390_enable_skey(void);
a13cff31 1655extern void s390_reset_cmma(struct mm_struct *mm);
f4eb07c1 1656
1f6b83e5
MS
1657/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1658#define HAVE_ARCH_UNMAPPED_AREA
1659#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1660
1da177e4
LT
1661/*
1662 * No page table caches to initialise
1663 */
765a0cac
HC
1664static inline void pgtable_cache_init(void) { }
1665static inline void check_pgt_cache(void) { }
1da177e4 1666
1da177e4
LT
1667#include <asm-generic/pgtable.h>
1668
1669#endif /* _S390_PAGE_H */