[PATCH] ppc64: PCI reset support routines
[linux-2.6-block.git] / arch / powerpc / platforms / pseries / eeh.c
CommitLineData
1da177e4
LT
1/*
2 * eeh.c
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
69376502 4 *
1da177e4
LT
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
69376502 9 *
1da177e4
LT
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
69376502 14 *
1da177e4
LT
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
6dee3fb9 20#include <linux/delay.h>
1da177e4
LT
21#include <linux/init.h>
22#include <linux/list.h>
1da177e4
LT
23#include <linux/pci.h>
24#include <linux/proc_fs.h>
25#include <linux/rbtree.h>
26#include <linux/seq_file.h>
27#include <linux/spinlock.h>
69376502 28#include <asm/atomic.h>
1da177e4 29#include <asm/eeh.h>
172ca926 30#include <asm/eeh_event.h>
1da177e4
LT
31#include <asm/io.h>
32#include <asm/machdep.h>
172ca926 33#include <asm/ppc-pci.h>
1da177e4 34#include <asm/rtas.h>
1da177e4 35#include <asm/systemcfg.h>
1da177e4
LT
36
37#undef DEBUG
38
39/** Overview:
40 * EEH, or "Extended Error Handling" is a PCI bridge technology for
41 * dealing with PCI bus errors that can't be dealt with within the
42 * usual PCI framework, except by check-stopping the CPU. Systems
43 * that are designed for high-availability/reliability cannot afford
44 * to crash due to a "mere" PCI error, thus the need for EEH.
45 * An EEH-capable bridge operates by converting a detected error
46 * into a "slot freeze", taking the PCI adapter off-line, making
47 * the slot behave, from the OS'es point of view, as if the slot
48 * were "empty": all reads return 0xff's and all writes are silently
49 * ignored. EEH slot isolation events can be triggered by parity
50 * errors on the address or data busses (e.g. during posted writes),
69376502
LV
51 * which in turn might be caused by low voltage on the bus, dust,
52 * vibration, humidity, radioactivity or plain-old failed hardware.
1da177e4
LT
53 *
54 * Note, however, that one of the leading causes of EEH slot
55 * freeze events are buggy device drivers, buggy device microcode,
56 * or buggy device hardware. This is because any attempt by the
57 * device to bus-master data to a memory address that is not
58 * assigned to the device will trigger a slot freeze. (The idea
59 * is to prevent devices-gone-wild from corrupting system memory).
60 * Buggy hardware/drivers will have a miserable time co-existing
61 * with EEH.
62 *
63 * Ideally, a PCI device driver, when suspecting that an isolation
64 * event has occured (e.g. by reading 0xff's), will then ask EEH
65 * whether this is the case, and then take appropriate steps to
66 * reset the PCI slot, the PCI device, and then resume operations.
67 * However, until that day, the checking is done here, with the
68 * eeh_check_failure() routine embedded in the MMIO macros. If
69 * the slot is found to be isolated, an "EEH Event" is synthesized
70 * and sent out for processing.
71 */
72
5c1344e9 73/* If a device driver keeps reading an MMIO register in an interrupt
1da177e4
LT
74 * handler after a slot isolation event has occurred, we assume it
75 * is broken and panic. This sets the threshold for how many read
76 * attempts we allow before panicking.
77 */
5c1344e9 78#define EEH_MAX_FAILS 100000
1da177e4
LT
79
80/* RTAS tokens */
81static int ibm_set_eeh_option;
82static int ibm_set_slot_reset;
83static int ibm_read_slot_reset_state;
84static int ibm_read_slot_reset_state2;
85static int ibm_slot_error_detail;
86
87static int eeh_subsystem_enabled;
88
fd761fd8
LV
89/* Lock to avoid races due to multiple reports of an error */
90static DEFINE_SPINLOCK(confirm_error_lock);
91
1da177e4
LT
92/* Buffer for reporting slot-error-detail rtas calls */
93static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
94static DEFINE_SPINLOCK(slot_errbuf_lock);
95static int eeh_error_buf_size;
96
97/* System monitoring statistics */
177bc936
LV
98static DEFINE_PER_CPU(unsigned long, no_device);
99static DEFINE_PER_CPU(unsigned long, no_dn);
100static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
101static DEFINE_PER_CPU(unsigned long, ignored_check);
1da177e4
LT
102static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
103static DEFINE_PER_CPU(unsigned long, false_positives);
104static DEFINE_PER_CPU(unsigned long, ignored_failures);
105static DEFINE_PER_CPU(unsigned long, slot_resets);
106
107/**
108 * The pci address cache subsystem. This subsystem places
109 * PCI device address resources into a red-black tree, sorted
110 * according to the address range, so that given only an i/o
111 * address, the corresponding PCI device can be **quickly**
112 * found. It is safe to perform an address lookup in an interrupt
113 * context; this ability is an important feature.
114 *
115 * Currently, the only customer of this code is the EEH subsystem;
116 * thus, this code has been somewhat tailored to suit EEH better.
117 * In particular, the cache does *not* hold the addresses of devices
118 * for which EEH is not enabled.
119 *
120 * (Implementation Note: The RB tree seems to be better/faster
121 * than any hash algo I could think of for this problem, even
122 * with the penalty of slow pointer chases for d-cache misses).
123 */
124struct pci_io_addr_range
125{
126 struct rb_node rb_node;
127 unsigned long addr_lo;
128 unsigned long addr_hi;
129 struct pci_dev *pcidev;
130 unsigned int flags;
131};
132
133static struct pci_io_addr_cache
134{
135 struct rb_root rb_root;
136 spinlock_t piar_lock;
137} pci_io_addr_cache_root;
138
139static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
140{
141 struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
142
143 while (n) {
144 struct pci_io_addr_range *piar;
145 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
146
147 if (addr < piar->addr_lo) {
148 n = n->rb_left;
149 } else {
150 if (addr > piar->addr_hi) {
151 n = n->rb_right;
152 } else {
153 pci_dev_get(piar->pcidev);
154 return piar->pcidev;
155 }
156 }
157 }
158
159 return NULL;
160}
161
162/**
163 * pci_get_device_by_addr - Get device, given only address
164 * @addr: mmio (PIO) phys address or i/o port number
165 *
166 * Given an mmio phys address, or a port number, find a pci device
167 * that implements this address. Be sure to pci_dev_put the device
168 * when finished. I/O port numbers are assumed to be offset
169 * from zero (that is, they do *not* have pci_io_addr added in).
170 * It is safe to call this function within an interrupt.
171 */
172static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
173{
174 struct pci_dev *dev;
175 unsigned long flags;
176
177 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
178 dev = __pci_get_device_by_addr(addr);
179 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
180 return dev;
181}
182
183#ifdef DEBUG
184/*
185 * Handy-dandy debug print routine, does nothing more
186 * than print out the contents of our addr cache.
187 */
188static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
189{
190 struct rb_node *n;
191 int cnt = 0;
192
193 n = rb_first(&cache->rb_root);
194 while (n) {
195 struct pci_io_addr_range *piar;
196 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
982245f0 197 printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
1da177e4 198 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
982245f0 199 piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
1da177e4
LT
200 cnt++;
201 n = rb_next(n);
202 }
203}
204#endif
205
206/* Insert address range into the rb tree. */
207static struct pci_io_addr_range *
208pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
209 unsigned long ahi, unsigned int flags)
210{
211 struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
212 struct rb_node *parent = NULL;
213 struct pci_io_addr_range *piar;
214
215 /* Walk tree, find a place to insert into tree */
216 while (*p) {
217 parent = *p;
218 piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
56b0fca3 219 if (ahi < piar->addr_lo) {
1da177e4 220 p = &parent->rb_left;
56b0fca3 221 } else if (alo > piar->addr_hi) {
1da177e4
LT
222 p = &parent->rb_right;
223 } else {
224 if (dev != piar->pcidev ||
225 alo != piar->addr_lo || ahi != piar->addr_hi) {
226 printk(KERN_WARNING "PIAR: overlapping address range\n");
227 }
228 return piar;
229 }
230 }
231 piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
232 if (!piar)
233 return NULL;
234
235 piar->addr_lo = alo;
236 piar->addr_hi = ahi;
237 piar->pcidev = dev;
238 piar->flags = flags;
239
56b0fca3
LV
240#ifdef DEBUG
241 printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
242 alo, ahi, pci_name (dev));
243#endif
244
1da177e4
LT
245 rb_link_node(&piar->rb_node, parent, p);
246 rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
247
248 return piar;
249}
250
251static void __pci_addr_cache_insert_device(struct pci_dev *dev)
252{
253 struct device_node *dn;
1635317f 254 struct pci_dn *pdn;
1da177e4
LT
255 int i;
256 int inserted = 0;
257
258 dn = pci_device_to_OF_node(dev);
259 if (!dn) {
69376502 260 printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
1da177e4
LT
261 return;
262 }
263
264 /* Skip any devices for which EEH is not enabled. */
69376502 265 pdn = PCI_DN(dn);
1635317f
PM
266 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
267 pdn->eeh_mode & EEH_MODE_NOCHECK) {
1da177e4 268#ifdef DEBUG
69376502
LV
269 printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
270 pci_name(dev), pdn->node->full_name);
1da177e4
LT
271#endif
272 return;
273 }
274
275 /* The cache holds a reference to the device... */
276 pci_dev_get(dev);
277
278 /* Walk resources on this device, poke them into the tree */
279 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
280 unsigned long start = pci_resource_start(dev,i);
281 unsigned long end = pci_resource_end(dev,i);
282 unsigned int flags = pci_resource_flags(dev,i);
283
284 /* We are interested only bus addresses, not dma or other stuff */
285 if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
286 continue;
287 if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
288 continue;
289 pci_addr_cache_insert(dev, start, end, flags);
290 inserted = 1;
291 }
292
293 /* If there was nothing to add, the cache has no reference... */
294 if (!inserted)
295 pci_dev_put(dev);
296}
297
298/**
299 * pci_addr_cache_insert_device - Add a device to the address cache
300 * @dev: PCI device whose I/O addresses we are interested in.
301 *
302 * In order to support the fast lookup of devices based on addresses,
303 * we maintain a cache of devices that can be quickly searched.
304 * This routine adds a device to that cache.
305 */
56b0fca3 306static void pci_addr_cache_insert_device(struct pci_dev *dev)
1da177e4
LT
307{
308 unsigned long flags;
309
310 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
311 __pci_addr_cache_insert_device(dev);
312 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
313}
314
315static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
316{
317 struct rb_node *n;
318 int removed = 0;
319
320restart:
321 n = rb_first(&pci_io_addr_cache_root.rb_root);
322 while (n) {
323 struct pci_io_addr_range *piar;
324 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
325
326 if (piar->pcidev == dev) {
327 rb_erase(n, &pci_io_addr_cache_root.rb_root);
328 removed = 1;
329 kfree(piar);
330 goto restart;
331 }
332 n = rb_next(n);
333 }
334
335 /* The cache no longer holds its reference to this device... */
336 if (removed)
337 pci_dev_put(dev);
338}
339
340/**
341 * pci_addr_cache_remove_device - remove pci device from addr cache
342 * @dev: device to remove
343 *
344 * Remove a device from the addr-cache tree.
345 * This is potentially expensive, since it will walk
346 * the tree multiple times (once per resource).
347 * But so what; device removal doesn't need to be that fast.
348 */
56b0fca3 349static void pci_addr_cache_remove_device(struct pci_dev *dev)
1da177e4
LT
350{
351 unsigned long flags;
352
353 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
354 __pci_addr_cache_remove_device(dev);
355 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
356}
357
358/**
359 * pci_addr_cache_build - Build a cache of I/O addresses
360 *
361 * Build a cache of pci i/o addresses. This cache will be used to
362 * find the pci device that corresponds to a given address.
363 * This routine scans all pci busses to build the cache.
364 * Must be run late in boot process, after the pci controllers
365 * have been scaned for devices (after all device resources are known).
366 */
367void __init pci_addr_cache_build(void)
368{
369 struct pci_dev *dev = NULL;
370
56b0fca3
LV
371 if (!eeh_subsystem_enabled)
372 return;
373
1da177e4
LT
374 spin_lock_init(&pci_io_addr_cache_root.piar_lock);
375
376 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
377 /* Ignore PCI bridges ( XXX why ??) */
378 if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
379 continue;
380 }
381 pci_addr_cache_insert_device(dev);
382 }
383
384#ifdef DEBUG
385 /* Verify tree built up above, echo back the list of addrs. */
386 pci_addr_cache_print(&pci_io_addr_cache_root);
387#endif
388}
389
390/* --------------------------------------------------------------- */
391/* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
392
df7242b1
LV
393void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
394{
395 unsigned long flags;
396 int rc;
397
398 /* Log the error with the rtas logger */
399 spin_lock_irqsave(&slot_errbuf_lock, flags);
400 memset(slot_errbuf, 0, eeh_error_buf_size);
401
402 rc = rtas_call(ibm_slot_error_detail,
403 8, 1, NULL, pdn->eeh_config_addr,
404 BUID_HI(pdn->phb->buid),
405 BUID_LO(pdn->phb->buid), NULL, 0,
406 virt_to_phys(slot_errbuf),
407 eeh_error_buf_size,
408 severity);
409
410 if (rc == 0)
411 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
412 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
413}
414
1da177e4
LT
415/**
416 * read_slot_reset_state - Read the reset state of a device node's slot
417 * @dn: device node to read
418 * @rets: array to return results in
419 */
69376502 420static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
1da177e4
LT
421{
422 int token, outputs;
423
424 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
425 token = ibm_read_slot_reset_state2;
426 outputs = 4;
427 } else {
428 token = ibm_read_slot_reset_state;
69376502 429 rets[2] = 0; /* fake PE Unavailable info */
1da177e4
LT
430 outputs = 3;
431 }
432
1635317f
PM
433 return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
434 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
1da177e4
LT
435}
436
1da177e4
LT
437/**
438 * eeh_token_to_phys - convert EEH address token to phys address
69376502 439 * @token i/o token, should be address in the form 0xA....
1da177e4
LT
440 */
441static inline unsigned long eeh_token_to_phys(unsigned long token)
442{
443 pte_t *ptep;
444 unsigned long pa;
445
20cee16c 446 ptep = find_linux_pte(init_mm.pgd, token);
1da177e4
LT
447 if (!ptep)
448 return token;
449 pa = pte_pfn(*ptep) << PAGE_SHIFT;
450
451 return pa | (token & (PAGE_SIZE-1));
452}
453
fd761fd8
LV
454/**
455 * Return the "partitionable endpoint" (pe) under which this device lies
456 */
457static struct device_node * find_device_pe(struct device_node *dn)
458{
459 while ((dn->parent) && PCI_DN(dn->parent) &&
460 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
461 dn = dn->parent;
462 }
463 return dn;
464}
465
466/** Mark all devices that are peers of this device as failed.
467 * Mark the device driver too, so that it can see the failure
468 * immediately; this is critical, since some drivers poll
469 * status registers in interrupts ... If a driver is polling,
470 * and the slot is frozen, then the driver can deadlock in
471 * an interrupt context, which is bad.
472 */
473
474static inline void __eeh_mark_slot (struct device_node *dn)
475{
476 while (dn) {
477 PCI_DN(dn)->eeh_mode |= EEH_MODE_ISOLATED;
478
479 if (dn->child)
480 __eeh_mark_slot (dn->child);
481 dn = dn->sibling;
482 }
483}
484
485static inline void __eeh_clear_slot (struct device_node *dn)
486{
487 while (dn) {
488 PCI_DN(dn)->eeh_mode &= ~EEH_MODE_ISOLATED;
489 if (dn->child)
490 __eeh_clear_slot (dn->child);
491 dn = dn->sibling;
492 }
493}
494
495static inline void eeh_clear_slot (struct device_node *dn)
496{
497 unsigned long flags;
498 spin_lock_irqsave(&confirm_error_lock, flags);
499 __eeh_clear_slot (dn);
500 spin_unlock_irqrestore(&confirm_error_lock, flags);
501}
502
1da177e4
LT
503/**
504 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
505 * @dn device node
506 * @dev pci device, if known
507 *
508 * Check for an EEH failure for the given device node. Call this
509 * routine if the result of a read was all 0xff's and you want to
510 * find out if this is due to an EEH slot freeze. This routine
511 * will query firmware for the EEH status.
512 *
513 * Returns 0 if there has not been an EEH error; otherwise returns
69376502 514 * a non-zero value and queues up a slot isolation event notification.
1da177e4
LT
515 *
516 * It is safe to call this routine in an interrupt context.
517 */
518int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
519{
520 int ret;
521 int rets[3];
522 unsigned long flags;
1635317f 523 struct pci_dn *pdn;
fd761fd8
LV
524 struct device_node *pe_dn;
525 int rc = 0;
1da177e4
LT
526
527 __get_cpu_var(total_mmio_ffs)++;
528
529 if (!eeh_subsystem_enabled)
530 return 0;
531
177bc936
LV
532 if (!dn) {
533 __get_cpu_var(no_dn)++;
1da177e4 534 return 0;
177bc936 535 }
69376502 536 pdn = PCI_DN(dn);
1da177e4
LT
537
538 /* Access to IO BARs might get this far and still not want checking. */
f8632c82 539 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
1635317f 540 pdn->eeh_mode & EEH_MODE_NOCHECK) {
177bc936
LV
541 __get_cpu_var(ignored_check)++;
542#ifdef DEBUG
f8632c82
LV
543 printk ("EEH:ignored check (%x) for %s %s\n",
544 pdn->eeh_mode, pci_name (dev), dn->full_name);
177bc936 545#endif
1da177e4
LT
546 return 0;
547 }
548
1635317f 549 if (!pdn->eeh_config_addr) {
177bc936 550 __get_cpu_var(no_cfg_addr)++;
1da177e4
LT
551 return 0;
552 }
553
fd761fd8
LV
554 /* If we already have a pending isolation event for this
555 * slot, we know it's bad already, we don't need to check.
556 * Do this checking under a lock; as multiple PCI devices
557 * in one slot might report errors simultaneously, and we
558 * only want one error recovery routine running.
1da177e4 559 */
fd761fd8
LV
560 spin_lock_irqsave(&confirm_error_lock, flags);
561 rc = 1;
1635317f 562 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
5c1344e9
LV
563 pdn->eeh_check_count ++;
564 if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
565 printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
566 pdn->eeh_check_count);
567 dump_stack();
568
1da177e4 569 /* re-read the slot reset state */
69376502 570 if (read_slot_reset_state(pdn, rets) != 0)
1da177e4 571 rets[0] = -1; /* reset state unknown */
5c1344e9
LV
572
573 /* If we are here, then we hit an infinite loop. Stop. */
574 panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
1da177e4 575 }
fd761fd8 576 goto dn_unlock;
1da177e4
LT
577 }
578
579 /*
580 * Now test for an EEH failure. This is VERY expensive.
581 * Note that the eeh_config_addr may be a parent device
582 * in the case of a device behind a bridge, or it may be
583 * function zero of a multi-function device.
584 * In any case they must share a common PHB.
585 */
69376502 586 ret = read_slot_reset_state(pdn, rets);
76e6faf7
LV
587
588 /* If the call to firmware failed, punt */
589 if (ret != 0) {
590 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
591 ret, dn->full_name);
592 __get_cpu_var(false_positives)++;
fd761fd8
LV
593 rc = 0;
594 goto dn_unlock;
76e6faf7
LV
595 }
596
597 /* If EEH is not supported on this device, punt. */
598 if (rets[1] != 1) {
599 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
600 ret, dn->full_name);
601 __get_cpu_var(false_positives)++;
fd761fd8
LV
602 rc = 0;
603 goto dn_unlock;
76e6faf7
LV
604 }
605
606 /* If not the kind of error we know about, punt. */
607 if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
608 __get_cpu_var(false_positives)++;
fd761fd8
LV
609 rc = 0;
610 goto dn_unlock;
76e6faf7
LV
611 }
612
613 /* Note that config-io to empty slots may fail;
614 * we recognize empty because they don't have children. */
615 if ((rets[0] == 5) && (dn->child == NULL)) {
1da177e4 616 __get_cpu_var(false_positives)++;
fd761fd8
LV
617 rc = 0;
618 goto dn_unlock;
1da177e4
LT
619 }
620
fd761fd8
LV
621 __get_cpu_var(slot_resets)++;
622
623 /* Avoid repeated reports of this failure, including problems
624 * with other functions on this device, and functions under
625 * bridges. */
626 pe_dn = find_device_pe (dn);
627 __eeh_mark_slot (pe_dn);
628 spin_unlock_irqrestore(&confirm_error_lock, flags);
1da177e4 629
172ca926
LV
630 eeh_send_failure_event (dn, dev, rets[0], rets[2]);
631
1da177e4
LT
632 /* Most EEH events are due to device driver bugs. Having
633 * a stack trace will help the device-driver authors figure
634 * out what happened. So print that out. */
76e6faf7 635 if (rets[0] != 5) dump_stack();
fd761fd8
LV
636 return 1;
637
638dn_unlock:
639 spin_unlock_irqrestore(&confirm_error_lock, flags);
640 return rc;
1da177e4
LT
641}
642
fd761fd8 643EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
1da177e4
LT
644
645/**
646 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
647 * @token i/o token, should be address in the form 0xA....
648 * @val value, should be all 1's (XXX why do we need this arg??)
649 *
1da177e4
LT
650 * Check for an EEH failure at the given token address. Call this
651 * routine if the result of a read was all 0xff's and you want to
652 * find out if this is due to an EEH slot freeze event. This routine
653 * will query firmware for the EEH status.
654 *
655 * Note this routine is safe to call in an interrupt context.
656 */
657unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
658{
659 unsigned long addr;
660 struct pci_dev *dev;
661 struct device_node *dn;
662
663 /* Finding the phys addr + pci device; this is pretty quick. */
664 addr = eeh_token_to_phys((unsigned long __force) token);
665 dev = pci_get_device_by_addr(addr);
177bc936
LV
666 if (!dev) {
667 __get_cpu_var(no_device)++;
1da177e4 668 return val;
177bc936 669 }
1da177e4
LT
670
671 dn = pci_device_to_OF_node(dev);
672 eeh_dn_check_failure (dn, dev);
673
674 pci_dev_put(dev);
675 return val;
676}
677
678EXPORT_SYMBOL(eeh_check_failure);
679
6dee3fb9
LV
680/* ------------------------------------------------------------- */
681/* The code below deals with error recovery */
682
683/** Return negative value if a permanent error, else return
684 * a number of milliseconds to wait until the PCI slot is
685 * ready to be used.
686 */
687static int
688eeh_slot_availability(struct pci_dn *pdn)
689{
690 int rc;
691 int rets[3];
692
693 rc = read_slot_reset_state(pdn, rets);
694
695 if (rc) return rc;
696
697 if (rets[1] == 0) return -1; /* EEH is not supported */
698 if (rets[0] == 0) return 0; /* Oll Korrect */
699 if (rets[0] == 5) {
700 if (rets[2] == 0) return -1; /* permanently unavailable */
701 return rets[2]; /* number of millisecs to wait */
702 }
703 return -1;
704}
705
706/** rtas_pci_slot_reset raises/lowers the pci #RST line
707 * state: 1/0 to raise/lower the #RST
708 *
709 * Clear the EEH-frozen condition on a slot. This routine
710 * asserts the PCI #RST line if the 'state' argument is '1',
711 * and drops the #RST line if 'state is '0'. This routine is
712 * safe to call in an interrupt context.
713 *
714 */
715
716static void
717rtas_pci_slot_reset(struct pci_dn *pdn, int state)
718{
719 int rc;
720
721 BUG_ON (pdn==NULL);
722
723 if (!pdn->phb) {
724 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
725 pdn->node->full_name);
726 return;
727 }
728
729 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
730 pdn->eeh_config_addr,
731 BUID_HI(pdn->phb->buid),
732 BUID_LO(pdn->phb->buid),
733 state);
734 if (rc) {
735 printk (KERN_WARNING "EEH: Unable to reset the failed slot, (%d) #RST=%d dn=%s\n",
736 rc, state, pdn->node->full_name);
737 return;
738 }
739
740 if (state == 0)
741 eeh_clear_slot (pdn->node->parent->child);
742}
743
744/** rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
745 * dn -- device node to be reset.
746 */
747
748void
749rtas_set_slot_reset(struct pci_dn *pdn)
750{
751 int i, rc;
752
753 rtas_pci_slot_reset (pdn, 1);
754
755 /* The PCI bus requires that the reset be held high for at least
756 * a 100 milliseconds. We wait a bit longer 'just in case'. */
757
758#define PCI_BUS_RST_HOLD_TIME_MSEC 250
759 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
760 rtas_pci_slot_reset (pdn, 0);
761
762 /* After a PCI slot has been reset, the PCI Express spec requires
763 * a 1.5 second idle time for the bus to stabilize, before starting
764 * up traffic. */
765#define PCI_BUS_SETTLE_TIME_MSEC 1800
766 msleep (PCI_BUS_SETTLE_TIME_MSEC);
767
768 /* Now double check with the firmware to make sure the device is
769 * ready to be used; if not, wait for recovery. */
770 for (i=0; i<10; i++) {
771 rc = eeh_slot_availability (pdn);
772 if (rc <= 0) break;
773
774 msleep (rc+100);
775 }
776}
777
172ca926
LV
778/* ------------------------------------------------------------- */
779/* The code below deals with enabling EEH for devices during the
780 * early boot sequence. EEH must be enabled before any PCI probing
781 * can be done.
782 */
783
784#define EEH_ENABLE 1
785
1da177e4
LT
786struct eeh_early_enable_info {
787 unsigned int buid_hi;
788 unsigned int buid_lo;
789};
790
791/* Enable eeh for the given device node. */
792static void *early_enable_eeh(struct device_node *dn, void *data)
793{
794 struct eeh_early_enable_info *info = data;
795 int ret;
796 char *status = get_property(dn, "status", NULL);
797 u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
798 u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
799 u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
800 u32 *regs;
801 int enable;
69376502 802 struct pci_dn *pdn = PCI_DN(dn);
1da177e4 803
1635317f 804 pdn->eeh_mode = 0;
5c1344e9
LV
805 pdn->eeh_check_count = 0;
806 pdn->eeh_freeze_count = 0;
1da177e4
LT
807
808 if (status && strcmp(status, "ok") != 0)
809 return NULL; /* ignore devices with bad status */
810
811 /* Ignore bad nodes. */
812 if (!class_code || !vendor_id || !device_id)
813 return NULL;
814
815 /* There is nothing to check on PCI to ISA bridges */
816 if (dn->type && !strcmp(dn->type, "isa")) {
1635317f 817 pdn->eeh_mode |= EEH_MODE_NOCHECK;
1da177e4
LT
818 return NULL;
819 }
820
821 /*
822 * Now decide if we are going to "Disable" EEH checking
823 * for this device. We still run with the EEH hardware active,
824 * but we won't be checking for ff's. This means a driver
825 * could return bad data (very bad!), an interrupt handler could
826 * hang waiting on status bits that won't change, etc.
827 * But there are a few cases like display devices that make sense.
828 */
829 enable = 1; /* i.e. we will do checking */
830 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
831 enable = 0;
832
833 if (!enable)
1635317f 834 pdn->eeh_mode |= EEH_MODE_NOCHECK;
1da177e4
LT
835
836 /* Ok... see if this device supports EEH. Some do, some don't,
837 * and the only way to find out is to check each and every one. */
838 regs = (u32 *)get_property(dn, "reg", NULL);
839 if (regs) {
840 /* First register entry is addr (00BBSS00) */
841 /* Try to enable eeh */
842 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
172ca926
LV
843 regs[0], info->buid_hi, info->buid_lo,
844 EEH_ENABLE);
845
1da177e4
LT
846 if (ret == 0) {
847 eeh_subsystem_enabled = 1;
1635317f
PM
848 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
849 pdn->eeh_config_addr = regs[0];
1da177e4
LT
850#ifdef DEBUG
851 printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
852#endif
853 } else {
854
855 /* This device doesn't support EEH, but it may have an
856 * EEH parent, in which case we mark it as supported. */
69376502 857 if (dn->parent && PCI_DN(dn->parent)
1635317f 858 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
1da177e4 859 /* Parent supports EEH. */
1635317f
PM
860 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
861 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
1da177e4
LT
862 return NULL;
863 }
864 }
865 } else {
866 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
867 dn->full_name);
868 }
869
69376502 870 return NULL;
1da177e4
LT
871}
872
873/*
874 * Initialize EEH by trying to enable it for all of the adapters in the system.
875 * As a side effect we can determine here if eeh is supported at all.
876 * Note that we leave EEH on so failed config cycles won't cause a machine
877 * check. If a user turns off EEH for a particular adapter they are really
878 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
879 * grant access to a slot if EEH isn't enabled, and so we always enable
880 * EEH for all slots/all devices.
881 *
882 * The eeh-force-off option disables EEH checking globally, for all slots.
883 * Even if force-off is set, the EEH hardware is still enabled, so that
884 * newer systems can boot.
885 */
886void __init eeh_init(void)
887{
888 struct device_node *phb, *np;
889 struct eeh_early_enable_info info;
890
fd761fd8 891 spin_lock_init(&confirm_error_lock);
df7242b1
LV
892 spin_lock_init(&slot_errbuf_lock);
893
1da177e4
LT
894 np = of_find_node_by_path("/rtas");
895 if (np == NULL)
896 return;
897
898 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
899 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
900 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
901 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
902 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
903
904 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
905 return;
906
907 eeh_error_buf_size = rtas_token("rtas-error-log-max");
908 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
909 eeh_error_buf_size = 1024;
910 }
911 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
912 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
913 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
914 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
915 }
916
917 /* Enable EEH for all adapters. Note that eeh requires buid's */
918 for (phb = of_find_node_by_name(NULL, "pci"); phb;
919 phb = of_find_node_by_name(phb, "pci")) {
920 unsigned long buid;
921
922 buid = get_phb_buid(phb);
69376502 923 if (buid == 0 || PCI_DN(phb) == NULL)
1da177e4
LT
924 continue;
925
926 info.buid_lo = BUID_LO(buid);
927 info.buid_hi = BUID_HI(buid);
928 traverse_pci_devices(phb, early_enable_eeh, &info);
929 }
930
931 if (eeh_subsystem_enabled)
932 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
933 else
934 printk(KERN_WARNING "EEH: No capable adapters found\n");
935}
936
937/**
938 * eeh_add_device_early - enable EEH for the indicated device_node
939 * @dn: device node for which to set up EEH
940 *
941 * This routine must be used to perform EEH initialization for PCI
942 * devices that were added after system boot (e.g. hotplug, dlpar).
943 * This routine must be called before any i/o is performed to the
944 * adapter (inluding any config-space i/o).
945 * Whether this actually enables EEH or not for this device depends
946 * on the CEC architecture, type of the device, on earlier boot
947 * command-line arguments & etc.
948 */
949void eeh_add_device_early(struct device_node *dn)
950{
951 struct pci_controller *phb;
952 struct eeh_early_enable_info info;
953
69376502 954 if (!dn || !PCI_DN(dn))
1da177e4 955 return;
1635317f 956 phb = PCI_DN(dn)->phb;
1da177e4 957 if (NULL == phb || 0 == phb->buid) {
69376502
LV
958 printk(KERN_WARNING "EEH: Expected buid but found none for %s\n",
959 dn->full_name);
960 dump_stack();
1da177e4
LT
961 return;
962 }
963
964 info.buid_hi = BUID_HI(phb->buid);
965 info.buid_lo = BUID_LO(phb->buid);
966 early_enable_eeh(dn, &info);
967}
56b0fca3 968EXPORT_SYMBOL_GPL(eeh_add_device_early);
1da177e4
LT
969
970/**
971 * eeh_add_device_late - perform EEH initialization for the indicated pci device
972 * @dev: pci device for which to set up EEH
973 *
974 * This routine must be used to complete EEH initialization for PCI
975 * devices that were added after system boot (e.g. hotplug, dlpar).
976 */
977void eeh_add_device_late(struct pci_dev *dev)
978{
56b0fca3
LV
979 struct device_node *dn;
980
1da177e4
LT
981 if (!dev || !eeh_subsystem_enabled)
982 return;
983
984#ifdef DEBUG
982245f0 985 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
1da177e4
LT
986#endif
987
56b0fca3
LV
988 pci_dev_get (dev);
989 dn = pci_device_to_OF_node(dev);
990 PCI_DN(dn)->pcidev = dev;
991
1da177e4
LT
992 pci_addr_cache_insert_device (dev);
993}
56b0fca3 994EXPORT_SYMBOL_GPL(eeh_add_device_late);
1da177e4
LT
995
996/**
997 * eeh_remove_device - undo EEH setup for the indicated pci device
998 * @dev: pci device to be removed
999 *
1000 * This routine should be when a device is removed from a running
1001 * system (e.g. by hotplug or dlpar).
1002 */
1003void eeh_remove_device(struct pci_dev *dev)
1004{
56b0fca3 1005 struct device_node *dn;
1da177e4
LT
1006 if (!dev || !eeh_subsystem_enabled)
1007 return;
1008
1009 /* Unregister the device with the EEH/PCI address search system */
1010#ifdef DEBUG
982245f0 1011 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
1da177e4
LT
1012#endif
1013 pci_addr_cache_remove_device(dev);
56b0fca3
LV
1014
1015 dn = pci_device_to_OF_node(dev);
1016 PCI_DN(dn)->pcidev = NULL;
1017 pci_dev_put (dev);
1da177e4 1018}
56b0fca3 1019EXPORT_SYMBOL_GPL(eeh_remove_device);
1da177e4
LT
1020
1021static int proc_eeh_show(struct seq_file *m, void *v)
1022{
1023 unsigned int cpu;
1024 unsigned long ffs = 0, positives = 0, failures = 0;
1025 unsigned long resets = 0;
177bc936 1026 unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
1da177e4
LT
1027
1028 for_each_cpu(cpu) {
1029 ffs += per_cpu(total_mmio_ffs, cpu);
1030 positives += per_cpu(false_positives, cpu);
1031 failures += per_cpu(ignored_failures, cpu);
1032 resets += per_cpu(slot_resets, cpu);
177bc936
LV
1033 no_dev += per_cpu(no_device, cpu);
1034 no_dn += per_cpu(no_dn, cpu);
1035 no_cfg += per_cpu(no_cfg_addr, cpu);
1036 no_check += per_cpu(ignored_check, cpu);
1da177e4
LT
1037 }
1038
1039 if (0 == eeh_subsystem_enabled) {
1040 seq_printf(m, "EEH Subsystem is globally disabled\n");
1041 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
1042 } else {
1043 seq_printf(m, "EEH Subsystem is enabled\n");
177bc936
LV
1044 seq_printf(m,
1045 "no device=%ld\n"
1046 "no device node=%ld\n"
1047 "no config address=%ld\n"
1048 "check not wanted=%ld\n"
1049 "eeh_total_mmio_ffs=%ld\n"
1050 "eeh_false_positives=%ld\n"
1051 "eeh_ignored_failures=%ld\n"
1052 "eeh_slot_resets=%ld\n",
1053 no_dev, no_dn, no_cfg, no_check,
1054 ffs, positives, failures, resets);
1da177e4
LT
1055 }
1056
1057 return 0;
1058}
1059
1060static int proc_eeh_open(struct inode *inode, struct file *file)
1061{
1062 return single_open(file, proc_eeh_show, NULL);
1063}
1064
1065static struct file_operations proc_eeh_operations = {
1066 .open = proc_eeh_open,
1067 .read = seq_read,
1068 .llseek = seq_lseek,
1069 .release = single_release,
1070};
1071
1072static int __init eeh_init_proc(void)
1073{
1074 struct proc_dir_entry *e;
1075
1076 if (systemcfg->platform & PLATFORM_PSERIES) {
1077 e = create_proc_entry("ppc64/eeh", 0, NULL);
1078 if (e)
1079 e->proc_fops = &proc_eeh_operations;
1080 }
1081
1082 return 0;
1083}
1084__initcall(eeh_init_proc);