powerpc/powernv: Skip check on PE if necessary
[linux-2.6-block.git] / arch / powerpc / platforms / powernv / pci-ioda.c
CommitLineData
184cd4a3
BH
1/*
2 * Support PCI/PCIe on PowerNV platforms
3 *
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
cee72d5b 12#undef DEBUG
184cd4a3
BH
13
14#include <linux/kernel.h>
15#include <linux/pci.h>
16#include <linux/delay.h>
17#include <linux/string.h>
18#include <linux/init.h>
19#include <linux/bootmem.h>
20#include <linux/irq.h>
21#include <linux/io.h>
22#include <linux/msi.h>
23
24#include <asm/sections.h>
25#include <asm/io.h>
26#include <asm/prom.h>
27#include <asm/pci-bridge.h>
28#include <asm/machdep.h>
29#include <asm/ppc-pci.h>
30#include <asm/opal.h>
31#include <asm/iommu.h>
32#include <asm/tce.h>
184cd4a3
BH
33
34#include "powernv.h"
35#include "pci.h"
36
37struct resource_wrap {
38 struct list_head link;
39 resource_size_t size;
40 resource_size_t align;
41 struct pci_dev *dev; /* Set if it's a device */
42 struct pci_bus *bus; /* Set if it's a bridge */
43};
44
45static int __pe_printk(const char *level, const struct pnv_ioda_pe *pe,
46 struct va_format *vaf)
47{
48 char pfix[32];
49
50 if (pe->pdev)
51 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
52 else
53 sprintf(pfix, "%04x:%02x ",
54 pci_domain_nr(pe->pbus), pe->pbus->number);
55 return printk("pci %s%s: [PE# %.3d] %pV", level, pfix, pe->pe_number, vaf);
56}
57
58#define define_pe_printk_level(func, kern_level) \
59static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...) \
60{ \
61 struct va_format vaf; \
62 va_list args; \
63 int r; \
64 \
65 va_start(args, fmt); \
66 \
67 vaf.fmt = fmt; \
68 vaf.va = &args; \
69 \
70 r = __pe_printk(kern_level, pe, &vaf); \
71 va_end(args); \
72 \
73 return r; \
74} \
75
76define_pe_printk_level(pe_err, KERN_ERR);
77define_pe_printk_level(pe_warn, KERN_WARNING);
78define_pe_printk_level(pe_info, KERN_INFO);
79
80
81/* Calculate resource usage & alignment requirement of a single
82 * device. This will also assign all resources within the device
83 * for a given type starting at 0 for the biggest one and then
84 * assigning in decreasing order of size.
85 */
86static void __devinit pnv_ioda_calc_dev(struct pci_dev *dev, unsigned int flags,
87 resource_size_t *size,
88 resource_size_t *align)
89{
90 resource_size_t start;
91 struct resource *r;
92 int i;
93
94 pr_devel(" -> CDR %s\n", pci_name(dev));
95
96 *size = *align = 0;
97
98 /* Clear the resources out and mark them all unset */
99 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
100 r = &dev->resource[i];
101 if (!(r->flags & flags))
102 continue;
103 if (r->start) {
104 r->end -= r->start;
105 r->start = 0;
106 }
107 r->flags |= IORESOURCE_UNSET;
108 }
109
110 /* We currently keep all memory resources together, we
111 * will handle prefetch & 64-bit separately in the future
112 * but for now we stick everybody in M32
113 */
114 start = 0;
115 for (;;) {
116 resource_size_t max_size = 0;
117 int max_no = -1;
118
119 /* Find next biggest resource */
120 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
121 r = &dev->resource[i];
122 if (!(r->flags & IORESOURCE_UNSET) ||
123 !(r->flags & flags))
124 continue;
125 if (resource_size(r) > max_size) {
126 max_size = resource_size(r);
127 max_no = i;
128 }
129 }
130 if (max_no < 0)
131 break;
132 r = &dev->resource[max_no];
133 if (max_size > *align)
134 *align = max_size;
135 *size += max_size;
136 r->start = start;
137 start += max_size;
138 r->end = r->start + max_size - 1;
139 r->flags &= ~IORESOURCE_UNSET;
140 pr_devel(" -> R%d %016llx..%016llx\n",
141 max_no, r->start, r->end);
142 }
143 pr_devel(" <- CDR %s size=%llx align=%llx\n",
144 pci_name(dev), *size, *align);
145}
146
147/* Allocate a resource "wrap" for a given device or bridge and
148 * insert it at the right position in the sorted list
149 */
150static void __devinit pnv_ioda_add_wrap(struct list_head *list,
151 struct pci_bus *bus,
152 struct pci_dev *dev,
153 resource_size_t size,
154 resource_size_t align)
155{
156 struct resource_wrap *w1, *w = kzalloc(sizeof(*w), GFP_KERNEL);
157
158 w->size = size;
159 w->align = align;
160 w->dev = dev;
161 w->bus = bus;
162
163 list_for_each_entry(w1, list, link) {
164 if (w1->align < align) {
165 list_add_tail(&w->link, &w1->link);
166 return;
167 }
168 }
169 list_add_tail(&w->link, list);
170}
171
172/* Offset device resources of a given type */
173static void __devinit pnv_ioda_offset_dev(struct pci_dev *dev,
174 unsigned int flags,
175 resource_size_t offset)
176{
177 struct resource *r;
178 int i;
179
180 pr_devel(" -> ODR %s [%x] +%016llx\n", pci_name(dev), flags, offset);
181
182 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
183 r = &dev->resource[i];
184 if (r->flags & flags) {
185 dev->resource[i].start += offset;
186 dev->resource[i].end += offset;
187 }
188 }
189
190 pr_devel(" <- ODR %s [%x] +%016llx\n", pci_name(dev), flags, offset);
191}
192
193/* Offset bus resources (& all children) of a given type */
194static void __devinit pnv_ioda_offset_bus(struct pci_bus *bus,
195 unsigned int flags,
196 resource_size_t offset)
197{
198 struct resource *r;
199 struct pci_dev *dev;
200 struct pci_bus *cbus;
201 int i;
202
203 pr_devel(" -> OBR %s [%x] +%016llx\n",
204 bus->self ? pci_name(bus->self) : "root", flags, offset);
205
f7ea82be 206 pci_bus_for_each_resource(bus, r, i) {
184cd4a3 207 if (r && (r->flags & flags)) {
f7ea82be
BH
208 r->start += offset;
209 r->end += offset;
184cd4a3
BH
210 }
211 }
212 list_for_each_entry(dev, &bus->devices, bus_list)
213 pnv_ioda_offset_dev(dev, flags, offset);
214 list_for_each_entry(cbus, &bus->children, node)
215 pnv_ioda_offset_bus(cbus, flags, offset);
216
217 pr_devel(" <- OBR %s [%x]\n",
218 bus->self ? pci_name(bus->self) : "root", flags);
219}
220
221/* This is the guts of our IODA resource allocation. This is called
222 * recursively for each bus in the system. It calculates all the
223 * necessary size and requirements for children and assign them
224 * resources such that:
225 *
226 * - Each function fits in it's own contiguous set of IO/M32
227 * segment
228 *
229 * - All segments behind a P2P bridge are contiguous and obey
230 * alignment constraints of those bridges
231 */
232static void __devinit pnv_ioda_calc_bus(struct pci_bus *bus, unsigned int flags,
233 resource_size_t *size,
234 resource_size_t *align)
235{
236 struct pci_controller *hose = pci_bus_to_host(bus);
237 struct pnv_phb *phb = hose->private_data;
238 resource_size_t dev_size, dev_align, start;
239 resource_size_t min_align, min_balign;
240 struct pci_dev *cdev;
241 struct pci_bus *cbus;
242 struct list_head head;
243 struct resource_wrap *w;
244 unsigned int bres;
245
246 *size = *align = 0;
247
248 pr_devel("-> CBR %s [%x]\n",
249 bus->self ? pci_name(bus->self) : "root", flags);
250
251 /* Calculate alignment requirements based on the type
252 * of resource we are working on
253 */
254 if (flags & IORESOURCE_IO) {
255 bres = 0;
256 min_align = phb->ioda.io_segsize;
257 min_balign = 0x1000;
258 } else {
259 bres = 1;
260 min_align = phb->ioda.m32_segsize;
261 min_balign = 0x100000;
262 }
263
264 /* Gather all our children resources ordered by alignment */
265 INIT_LIST_HEAD(&head);
266
267 /* - Busses */
268 list_for_each_entry(cbus, &bus->children, node) {
269 pnv_ioda_calc_bus(cbus, flags, &dev_size, &dev_align);
270 pnv_ioda_add_wrap(&head, cbus, NULL, dev_size, dev_align);
271 }
272
273 /* - Devices */
274 list_for_each_entry(cdev, &bus->devices, bus_list) {
275 pnv_ioda_calc_dev(cdev, flags, &dev_size, &dev_align);
276 /* Align them to segment size */
277 if (dev_align < min_align)
278 dev_align = min_align;
279 pnv_ioda_add_wrap(&head, NULL, cdev, dev_size, dev_align);
280 }
281 if (list_empty(&head))
282 goto empty;
283
284 /* Now we can do two things: assign offsets to them within that
285 * level and get our total alignment & size requirements. The
286 * assignment algorithm is going to be uber-trivial for now, we
287 * can try to be smarter later at filling out holes.
288 */
f7ea82be
BH
289 if (bus->self) {
290 /* No offset for downstream bridges */
291 start = 0;
292 } else {
293 /* Offset from the root */
294 if (flags & IORESOURCE_IO)
295 /* Don't hand out IO 0 */
296 start = hose->io_resource.start + 0x1000;
297 else
298 start = hose->mem_resources[0].start;
299 }
184cd4a3
BH
300 while(!list_empty(&head)) {
301 w = list_first_entry(&head, struct resource_wrap, link);
302 list_del(&w->link);
303 if (w->size) {
304 if (start) {
305 start = ALIGN(start, w->align);
306 if (w->dev)
307 pnv_ioda_offset_dev(w->dev,flags,start);
308 else if (w->bus)
309 pnv_ioda_offset_bus(w->bus,flags,start);
310 }
311 if (w->align > *align)
312 *align = w->align;
313 }
314 start += w->size;
315 kfree(w);
316 }
317 *size = start;
318
319 /* Align and setup bridge resources */
320 *align = max_t(resource_size_t, *align,
321 max_t(resource_size_t, min_align, min_balign));
322 *size = ALIGN(*size,
323 max_t(resource_size_t, min_align, min_balign));
324 empty:
325 /* Only setup P2P's, not the PHB itself */
326 if (bus->self) {
f7ea82be
BH
327 struct resource *res = bus->resource[bres];
328
329 if (WARN_ON(res == NULL))
330 return;
184cd4a3 331
f7ea82be
BH
332 /*
333 * FIXME: We should probably export and call
334 * pci_bridge_check_ranges() to properly re-initialize
335 * the PCI portion of the flags here, and to detect
336 * what the bridge actually supports.
337 */
338 res->start = 0;
339 res->flags = (*size) ? flags : 0;
340 res->end = (*size) ? (*size - 1) : 0;
184cd4a3
BH
341 }
342
343 pr_devel("<- CBR %s [%x] *size=%016llx *align=%016llx\n",
344 bus->self ? pci_name(bus->self) : "root", flags,*size,*align);
345}
346
347static struct pci_dn *pnv_ioda_get_pdn(struct pci_dev *dev)
348{
349 struct device_node *np;
350
351 np = pci_device_to_OF_node(dev);
352 if (!np)
353 return NULL;
354 return PCI_DN(np);
355}
356
357static void __devinit pnv_ioda_setup_pe_segments(struct pci_dev *dev)
358{
359 struct pci_controller *hose = pci_bus_to_host(dev->bus);
360 struct pnv_phb *phb = hose->private_data;
361 struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
362 unsigned int pe, i;
363 resource_size_t pos;
364 struct resource io_res;
365 struct resource m32_res;
366 struct pci_bus_region region;
367 int rc;
368
369 /* Anything not referenced in the device-tree gets PE#0 */
370 pe = pdn ? pdn->pe_number : 0;
371
372 /* Calculate the device min/max */
373 io_res.start = m32_res.start = (resource_size_t)-1;
374 io_res.end = m32_res.end = 0;
375 io_res.flags = IORESOURCE_IO;
376 m32_res.flags = IORESOURCE_MEM;
377
378 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
379 struct resource *r = NULL;
380 if (dev->resource[i].flags & IORESOURCE_IO)
381 r = &io_res;
382 if (dev->resource[i].flags & IORESOURCE_MEM)
383 r = &m32_res;
384 if (!r)
385 continue;
386 if (dev->resource[i].start < r->start)
387 r->start = dev->resource[i].start;
388 if (dev->resource[i].end > r->end)
389 r->end = dev->resource[i].end;
390 }
391
392 /* Setup IO segments */
393 if (io_res.start < io_res.end) {
394 pcibios_resource_to_bus(dev, &region, &io_res);
395 pos = region.start;
396 i = pos / phb->ioda.io_segsize;
397 while(i < phb->ioda.total_pe && pos <= region.end) {
398 if (phb->ioda.io_segmap[i]) {
399 pr_err("%s: Trying to use IO seg #%d which is"
400 " already used by PE# %d\n",
401 pci_name(dev), i,
402 phb->ioda.io_segmap[i]);
403 /* XXX DO SOMETHING TO DISABLE DEVICE ? */
404 break;
405 }
406 phb->ioda.io_segmap[i] = pe;
407 rc = opal_pci_map_pe_mmio_window(phb->opal_id, pe,
408 OPAL_IO_WINDOW_TYPE,
409 0, i);
410 if (rc != OPAL_SUCCESS) {
411 pr_err("%s: OPAL error %d setting up mapping"
412 " for IO seg# %d\n",
413 pci_name(dev), rc, i);
414 /* XXX DO SOMETHING TO DISABLE DEVICE ? */
415 break;
416 }
417 pos += phb->ioda.io_segsize;
418 i++;
419 };
420 }
421
422 /* Setup M32 segments */
423 if (m32_res.start < m32_res.end) {
424 pcibios_resource_to_bus(dev, &region, &m32_res);
425 pos = region.start;
426 i = pos / phb->ioda.m32_segsize;
427 while(i < phb->ioda.total_pe && pos <= region.end) {
428 if (phb->ioda.m32_segmap[i]) {
429 pr_err("%s: Trying to use M32 seg #%d which is"
430 " already used by PE# %d\n",
431 pci_name(dev), i,
432 phb->ioda.m32_segmap[i]);
433 /* XXX DO SOMETHING TO DISABLE DEVICE ? */
434 break;
435 }
436 phb->ioda.m32_segmap[i] = pe;
437 rc = opal_pci_map_pe_mmio_window(phb->opal_id, pe,
438 OPAL_M32_WINDOW_TYPE,
439 0, i);
440 if (rc != OPAL_SUCCESS) {
441 pr_err("%s: OPAL error %d setting up mapping"
442 " for M32 seg# %d\n",
443 pci_name(dev), rc, i);
444 /* XXX DO SOMETHING TO DISABLE DEVICE ? */
445 break;
446 }
447 pos += phb->ioda.m32_segsize;
448 i++;
449 }
450 }
451}
452
453/* Check if a resource still fits in the total IO or M32 range
454 * for a given PHB
455 */
456static int __devinit pnv_ioda_resource_fit(struct pci_controller *hose,
457 struct resource *r)
458{
459 struct resource *bounds;
460
461 if (r->flags & IORESOURCE_IO)
462 bounds = &hose->io_resource;
463 else if (r->flags & IORESOURCE_MEM)
464 bounds = &hose->mem_resources[0];
465 else
466 return 1;
467
468 if (r->start >= bounds->start && r->end <= bounds->end)
469 return 1;
470 r->flags = 0;
471 return 0;
472}
473
474static void __devinit pnv_ioda_update_resources(struct pci_bus *bus)
475{
476 struct pci_controller *hose = pci_bus_to_host(bus);
477 struct pci_bus *cbus;
478 struct pci_dev *cdev;
479 unsigned int i;
184cd4a3 480
cee72d5b
BH
481 /* We used to clear all device enables here. However it looks like
482 * clearing MEM enable causes Obsidian (IPR SCS) to go bonkers,
483 * and shoot fatal errors to the PHB which in turns fences itself
484 * and we can't recover from that ... yet. So for now, let's leave
485 * the enables as-is and hope for the best.
486 */
184cd4a3
BH
487
488 /* Check if bus resources fit in our IO or M32 range */
489 for (i = 0; bus->self && (i < 2); i++) {
490 struct resource *r = bus->resource[i];
491 if (r && !pnv_ioda_resource_fit(hose, r))
492 pr_err("%s: Bus %d resource %d disabled, no room\n",
493 pci_name(bus->self), bus->number, i);
494 }
495
496 /* Update self if it's not a PHB */
497 if (bus->self)
498 pci_setup_bridge(bus);
499
500 /* Update child devices */
501 list_for_each_entry(cdev, &bus->devices, bus_list) {
502 /* Check if resource fits, if not, disabled it */
503 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
504 struct resource *r = &cdev->resource[i];
505 if (!pnv_ioda_resource_fit(hose, r))
506 pr_err("%s: Resource %d disabled, no room\n",
507 pci_name(cdev), i);
508 }
509
510 /* Assign segments */
511 pnv_ioda_setup_pe_segments(cdev);
512
513 /* Update HW BARs */
514 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
515 pci_update_resource(cdev, i);
516 }
517
518 /* Update child busses */
519 list_for_each_entry(cbus, &bus->children, node)
520 pnv_ioda_update_resources(cbus);
521}
522
523static int __devinit pnv_ioda_alloc_pe(struct pnv_phb *phb)
524{
525 unsigned long pe;
526
527 do {
528 pe = find_next_zero_bit(phb->ioda.pe_alloc,
529 phb->ioda.total_pe, 0);
530 if (pe >= phb->ioda.total_pe)
531 return IODA_INVALID_PE;
532 } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
533
534 phb->ioda.pe_array[pe].pe_number = pe;
535 return pe;
536}
537
538static void __devinit pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
539{
540 WARN_ON(phb->ioda.pe_array[pe].pdev);
541
542 memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
543 clear_bit(pe, phb->ioda.pe_alloc);
544}
545
546/* Currently those 2 are only used when MSIs are enabled, this will change
547 * but in the meantime, we need to protect them to avoid warnings
548 */
549#ifdef CONFIG_PCI_MSI
fb446ad0 550static struct pnv_ioda_pe * __devinit pnv_ioda_get_pe(struct pci_dev *dev)
184cd4a3
BH
551{
552 struct pci_controller *hose = pci_bus_to_host(dev->bus);
553 struct pnv_phb *phb = hose->private_data;
554 struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
555
556 if (!pdn)
557 return NULL;
558 if (pdn->pe_number == IODA_INVALID_PE)
559 return NULL;
560 return &phb->ioda.pe_array[pdn->pe_number];
561}
184cd4a3
BH
562#endif /* CONFIG_PCI_MSI */
563
564static int __devinit pnv_ioda_configure_pe(struct pnv_phb *phb,
565 struct pnv_ioda_pe *pe)
566{
567 struct pci_dev *parent;
568 uint8_t bcomp, dcomp, fcomp;
569 long rc, rid_end, rid;
570
571 /* Bus validation ? */
572 if (pe->pbus) {
573 int count;
574
575 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
576 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
577 parent = pe->pbus->self;
fb446ad0
GS
578 if (pe->flags & PNV_IODA_PE_BUS_ALL)
579 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
580 else
581 count = 1;
582
184cd4a3
BH
583 switch(count) {
584 case 1: bcomp = OpalPciBusAll; break;
585 case 2: bcomp = OpalPciBus7Bits; break;
586 case 4: bcomp = OpalPciBus6Bits; break;
587 case 8: bcomp = OpalPciBus5Bits; break;
588 case 16: bcomp = OpalPciBus4Bits; break;
589 case 32: bcomp = OpalPciBus3Bits; break;
590 default:
591 pr_err("%s: Number of subordinate busses %d"
592 " unsupported\n",
593 pci_name(pe->pbus->self), count);
594 /* Do an exact match only */
595 bcomp = OpalPciBusAll;
596 }
597 rid_end = pe->rid + (count << 8);
598 } else {
599 parent = pe->pdev->bus->self;
600 bcomp = OpalPciBusAll;
601 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
602 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
603 rid_end = pe->rid + 1;
604 }
605
606 /* Associate PE in PELT */
607 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
608 bcomp, dcomp, fcomp, OPAL_MAP_PE);
609 if (rc) {
610 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
611 return -ENXIO;
612 }
613 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
614 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
615
616 /* Add to all parents PELT-V */
617 while (parent) {
618 struct pci_dn *pdn = pnv_ioda_get_pdn(parent);
619 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
620 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
cee72d5b 621 pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
184cd4a3
BH
622 /* XXX What to do in case of error ? */
623 }
624 parent = parent->bus->self;
625 }
626 /* Setup reverse map */
627 for (rid = pe->rid; rid < rid_end; rid++)
628 phb->ioda.pe_rmap[rid] = pe->pe_number;
629
630 /* Setup one MVTs on IODA1 */
631 if (phb->type == PNV_PHB_IODA1) {
632 pe->mve_number = pe->pe_number;
633 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
634 pe->pe_number);
635 if (rc) {
636 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
637 rc, pe->mve_number);
638 pe->mve_number = -1;
639 } else {
640 rc = opal_pci_set_mve_enable(phb->opal_id,
cee72d5b 641 pe->mve_number, OPAL_ENABLE_MVE);
184cd4a3
BH
642 if (rc) {
643 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
644 rc, pe->mve_number);
645 pe->mve_number = -1;
646 }
647 }
648 } else if (phb->type == PNV_PHB_IODA2)
649 pe->mve_number = 0;
650
651 return 0;
652}
653
654static void __devinit pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
655 struct pnv_ioda_pe *pe)
656{
657 struct pnv_ioda_pe *lpe;
658
7ebdf956 659 list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
184cd4a3 660 if (lpe->dma_weight < pe->dma_weight) {
7ebdf956 661 list_add_tail(&pe->dma_link, &lpe->dma_link);
184cd4a3
BH
662 return;
663 }
664 }
7ebdf956 665 list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
184cd4a3
BH
666}
667
668static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
669{
670 /* This is quite simplistic. The "base" weight of a device
671 * is 10. 0 means no DMA is to be accounted for it.
672 */
673
674 /* If it's a bridge, no DMA */
675 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
676 return 0;
677
678 /* Reduce the weight of slow USB controllers */
679 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
680 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
681 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
682 return 3;
683
684 /* Increase the weight of RAID (includes Obsidian) */
685 if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
686 return 15;
687
688 /* Default */
689 return 10;
690}
691
fb446ad0 692#if 0
184cd4a3
BH
693static struct pnv_ioda_pe * __devinit pnv_ioda_setup_dev_PE(struct pci_dev *dev)
694{
695 struct pci_controller *hose = pci_bus_to_host(dev->bus);
696 struct pnv_phb *phb = hose->private_data;
697 struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
698 struct pnv_ioda_pe *pe;
699 int pe_num;
700
701 if (!pdn) {
702 pr_err("%s: Device tree node not associated properly\n",
703 pci_name(dev));
704 return NULL;
705 }
706 if (pdn->pe_number != IODA_INVALID_PE)
707 return NULL;
708
709 /* PE#0 has been pre-set */
710 if (dev->bus->number == 0)
711 pe_num = 0;
712 else
713 pe_num = pnv_ioda_alloc_pe(phb);
714 if (pe_num == IODA_INVALID_PE) {
715 pr_warning("%s: Not enough PE# available, disabling device\n",
716 pci_name(dev));
717 return NULL;
718 }
719
720 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
721 * pointer in the PE data structure, both should be destroyed at the
722 * same time. However, this needs to be looked at more closely again
723 * once we actually start removing things (Hotplug, SR-IOV, ...)
724 *
725 * At some point we want to remove the PDN completely anyways
726 */
727 pe = &phb->ioda.pe_array[pe_num];
728 pci_dev_get(dev);
729 pdn->pcidev = dev;
730 pdn->pe_number = pe_num;
731 pe->pdev = dev;
732 pe->pbus = NULL;
733 pe->tce32_seg = -1;
734 pe->mve_number = -1;
735 pe->rid = dev->bus->number << 8 | pdn->devfn;
736
737 pe_info(pe, "Associated device to PE\n");
738
739 if (pnv_ioda_configure_pe(phb, pe)) {
740 /* XXX What do we do here ? */
741 if (pe_num)
742 pnv_ioda_free_pe(phb, pe_num);
743 pdn->pe_number = IODA_INVALID_PE;
744 pe->pdev = NULL;
745 pci_dev_put(dev);
746 return NULL;
747 }
748
749 /* Assign a DMA weight to the device */
750 pe->dma_weight = pnv_ioda_dma_weight(dev);
751 if (pe->dma_weight != 0) {
752 phb->ioda.dma_weight += pe->dma_weight;
753 phb->ioda.dma_pe_count++;
754 }
755
756 /* Link the PE */
757 pnv_ioda_link_pe_by_weight(phb, pe);
758
759 return pe;
760}
fb446ad0 761#endif /* Useful for SRIOV case */
184cd4a3
BH
762
763static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
764{
765 struct pci_dev *dev;
766
767 list_for_each_entry(dev, &bus->devices, bus_list) {
768 struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
769
770 if (pdn == NULL) {
771 pr_warn("%s: No device node associated with device !\n",
772 pci_name(dev));
773 continue;
774 }
775 pci_dev_get(dev);
776 pdn->pcidev = dev;
777 pdn->pe_number = pe->pe_number;
778 pe->dma_weight += pnv_ioda_dma_weight(dev);
fb446ad0 779 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
184cd4a3
BH
780 pnv_ioda_setup_same_PE(dev->subordinate, pe);
781 }
782}
783
fb446ad0
GS
784/*
785 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
786 * single PCI bus. Another one that contains the primary PCI bus and its
787 * subordinate PCI devices and buses. The second type of PE is normally
788 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
789 */
790static void __devinit pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
184cd4a3 791{
fb446ad0 792 struct pci_controller *hose = pci_bus_to_host(bus);
184cd4a3 793 struct pnv_phb *phb = hose->private_data;
184cd4a3
BH
794 struct pnv_ioda_pe *pe;
795 int pe_num;
796
184cd4a3
BH
797 pe_num = pnv_ioda_alloc_pe(phb);
798 if (pe_num == IODA_INVALID_PE) {
fb446ad0
GS
799 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
800 __func__, pci_domain_nr(bus), bus->number);
184cd4a3
BH
801 return;
802 }
803
804 pe = &phb->ioda.pe_array[pe_num];
fb446ad0 805 pe->flags = (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
184cd4a3
BH
806 pe->pbus = bus;
807 pe->pdev = NULL;
808 pe->tce32_seg = -1;
809 pe->mve_number = -1;
b918c62e 810 pe->rid = bus->busn_res.start << 8;
184cd4a3
BH
811 pe->dma_weight = 0;
812
fb446ad0
GS
813 if (all)
814 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
815 bus->busn_res.start, bus->busn_res.end, pe_num);
816 else
817 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
818 bus->busn_res.start, pe_num);
184cd4a3
BH
819
820 if (pnv_ioda_configure_pe(phb, pe)) {
821 /* XXX What do we do here ? */
822 if (pe_num)
823 pnv_ioda_free_pe(phb, pe_num);
824 pe->pbus = NULL;
825 return;
826 }
827
828 /* Associate it with all child devices */
829 pnv_ioda_setup_same_PE(bus, pe);
830
7ebdf956
GS
831 /* Put PE to the list */
832 list_add_tail(&pe->list, &phb->ioda.pe_list);
833
184cd4a3
BH
834 /* Account for one DMA PE if at least one DMA capable device exist
835 * below the bridge
836 */
837 if (pe->dma_weight != 0) {
838 phb->ioda.dma_weight += pe->dma_weight;
839 phb->ioda.dma_pe_count++;
840 }
841
842 /* Link the PE */
843 pnv_ioda_link_pe_by_weight(phb, pe);
844}
845
846static void __devinit pnv_ioda_setup_PEs(struct pci_bus *bus)
847{
848 struct pci_dev *dev;
fb446ad0
GS
849
850 pnv_ioda_setup_bus_PE(bus, 0);
184cd4a3
BH
851
852 list_for_each_entry(dev, &bus->devices, bus_list) {
fb446ad0
GS
853 if (dev->subordinate) {
854 if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
855 pnv_ioda_setup_bus_PE(dev->subordinate, 1);
856 else
857 pnv_ioda_setup_PEs(dev->subordinate);
858 }
859 }
860}
861
862/*
863 * Configure PEs so that the downstream PCI buses and devices
864 * could have their associated PE#. Unfortunately, we didn't
865 * figure out the way to identify the PLX bridge yet. So we
866 * simply put the PCI bus and the subordinate behind the root
867 * port to PE# here. The game rule here is expected to be changed
868 * as soon as we can detected PLX bridge correctly.
869 */
870static void __devinit pnv_pci_ioda_setup_PEs(void)
871{
872 struct pci_controller *hose, *tmp;
873
874 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
875 pnv_ioda_setup_PEs(hose->bus);
184cd4a3
BH
876 }
877}
878
879static void __devinit pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb,
880 struct pci_dev *dev)
881{
882 /* We delay DMA setup after we have assigned all PE# */
883}
884
885static void __devinit pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
886 struct pci_bus *bus)
887{
888 struct pci_dev *dev;
889
890 list_for_each_entry(dev, &bus->devices, bus_list) {
891 set_iommu_table_base(&dev->dev, &pe->tce32_table);
892 if (dev->subordinate)
893 pnv_ioda_setup_bus_dma(pe, dev->subordinate);
894 }
895}
896
897static void __devinit pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
898 struct pnv_ioda_pe *pe,
899 unsigned int base,
900 unsigned int segs)
901{
902
903 struct page *tce_mem = NULL;
904 const __be64 *swinvp;
905 struct iommu_table *tbl;
906 unsigned int i;
907 int64_t rc;
908 void *addr;
909
910 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
911#define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8)
912
913 /* XXX FIXME: Handle 64-bit only DMA devices */
914 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
915 /* XXX FIXME: Allocate multi-level tables on PHB3 */
916
917 /* We shouldn't already have a 32-bit DMA associated */
918 if (WARN_ON(pe->tce32_seg >= 0))
919 return;
920
921 /* Grab a 32-bit TCE table */
922 pe->tce32_seg = base;
923 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
924 (base << 28), ((base + segs) << 28) - 1);
925
926 /* XXX Currently, we allocate one big contiguous table for the
927 * TCEs. We only really need one chunk per 256M of TCE space
928 * (ie per segment) but that's an optimization for later, it
929 * requires some added smarts with our get/put_tce implementation
930 */
931 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
932 get_order(TCE32_TABLE_SIZE * segs));
933 if (!tce_mem) {
934 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
935 goto fail;
936 }
937 addr = page_address(tce_mem);
938 memset(addr, 0, TCE32_TABLE_SIZE * segs);
939
940 /* Configure HW */
941 for (i = 0; i < segs; i++) {
942 rc = opal_pci_map_pe_dma_window(phb->opal_id,
943 pe->pe_number,
944 base + i, 1,
945 __pa(addr) + TCE32_TABLE_SIZE * i,
946 TCE32_TABLE_SIZE, 0x1000);
947 if (rc) {
948 pe_err(pe, " Failed to configure 32-bit TCE table,"
949 " err %ld\n", rc);
950 goto fail;
951 }
952 }
953
954 /* Setup linux iommu table */
955 tbl = &pe->tce32_table;
956 pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
957 base << 28);
958
959 /* OPAL variant of P7IOC SW invalidated TCEs */
960 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
961 if (swinvp) {
962 /* We need a couple more fields -- an address and a data
963 * to or. Since the bus is only printed out on table free
964 * errors, and on the first pass the data will be a relative
965 * bus number, print that out instead.
966 */
967 tbl->it_busno = 0;
968 tbl->it_index = (unsigned long)ioremap(be64_to_cpup(swinvp), 8);
969 tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE
970 | TCE_PCI_SWINV_PAIR;
971 }
972 iommu_init_table(tbl, phb->hose->node);
973
974 if (pe->pdev)
975 set_iommu_table_base(&pe->pdev->dev, tbl);
976 else
977 pnv_ioda_setup_bus_dma(pe, pe->pbus);
978
979 return;
980 fail:
981 /* XXX Failure: Try to fallback to 64-bit only ? */
982 if (pe->tce32_seg >= 0)
983 pe->tce32_seg = -1;
984 if (tce_mem)
985 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
986}
987
988static void __devinit pnv_ioda_setup_dma(struct pnv_phb *phb)
989{
990 struct pci_controller *hose = phb->hose;
991 unsigned int residual, remaining, segs, tw, base;
992 struct pnv_ioda_pe *pe;
993
994 /* If we have more PE# than segments available, hand out one
995 * per PE until we run out and let the rest fail. If not,
996 * then we assign at least one segment per PE, plus more based
997 * on the amount of devices under that PE
998 */
999 if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
1000 residual = 0;
1001 else
1002 residual = phb->ioda.tce32_count -
1003 phb->ioda.dma_pe_count;
1004
1005 pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
1006 hose->global_number, phb->ioda.tce32_count);
1007 pr_info("PCI: %d PE# for a total weight of %d\n",
1008 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
1009
1010 /* Walk our PE list and configure their DMA segments, hand them
1011 * out one base segment plus any residual segments based on
1012 * weight
1013 */
1014 remaining = phb->ioda.tce32_count;
1015 tw = phb->ioda.dma_weight;
1016 base = 0;
7ebdf956 1017 list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
184cd4a3
BH
1018 if (!pe->dma_weight)
1019 continue;
1020 if (!remaining) {
1021 pe_warn(pe, "No DMA32 resources available\n");
1022 continue;
1023 }
1024 segs = 1;
1025 if (residual) {
1026 segs += ((pe->dma_weight * residual) + (tw / 2)) / tw;
1027 if (segs > remaining)
1028 segs = remaining;
1029 }
1030 pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
1031 pe->dma_weight, segs);
1032 pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
1033 remaining -= segs;
1034 base += segs;
1035 }
1036}
1037
1038#ifdef CONFIG_PCI_MSI
1039static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
1040 unsigned int hwirq, unsigned int is_64,
1041 struct msi_msg *msg)
1042{
1043 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
1044 unsigned int xive_num = hwirq - phb->msi_base;
1045 uint64_t addr64;
1046 uint32_t addr32, data;
1047 int rc;
1048
1049 /* No PE assigned ? bail out ... no MSI for you ! */
1050 if (pe == NULL)
1051 return -ENXIO;
1052
1053 /* Check if we have an MVE */
1054 if (pe->mve_number < 0)
1055 return -ENXIO;
1056
1057 /* Assign XIVE to PE */
1058 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1059 if (rc) {
1060 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
1061 pci_name(dev), rc, xive_num);
1062 return -EIO;
1063 }
1064
1065 if (is_64) {
1066 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
1067 &addr64, &data);
1068 if (rc) {
1069 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
1070 pci_name(dev), rc);
1071 return -EIO;
1072 }
1073 msg->address_hi = addr64 >> 32;
1074 msg->address_lo = addr64 & 0xfffffffful;
1075 } else {
1076 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
1077 &addr32, &data);
1078 if (rc) {
1079 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
1080 pci_name(dev), rc);
1081 return -EIO;
1082 }
1083 msg->address_hi = 0;
1084 msg->address_lo = addr32;
1085 }
1086 msg->data = data;
1087
1088 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
1089 " address=%x_%08x data=%x PE# %d\n",
1090 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
1091 msg->address_hi, msg->address_lo, data, pe->pe_number);
1092
1093 return 0;
1094}
1095
1096static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
1097{
1098 unsigned int bmap_size;
1099 const __be32 *prop = of_get_property(phb->hose->dn,
1100 "ibm,opal-msi-ranges", NULL);
1101 if (!prop) {
1102 /* BML Fallback */
1103 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
1104 }
1105 if (!prop)
1106 return;
1107
1108 phb->msi_base = be32_to_cpup(prop);
1109 phb->msi_count = be32_to_cpup(prop + 1);
1110 bmap_size = BITS_TO_LONGS(phb->msi_count) * sizeof(unsigned long);
1111 phb->msi_map = zalloc_maybe_bootmem(bmap_size, GFP_KERNEL);
1112 if (!phb->msi_map) {
1113 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
1114 phb->hose->global_number);
1115 return;
1116 }
1117 phb->msi_setup = pnv_pci_ioda_msi_setup;
1118 phb->msi32_support = 1;
1119 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1120 phb->msi_count, phb->msi_base);
1121}
1122#else
1123static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
1124#endif /* CONFIG_PCI_MSI */
1125
1126/* This is the starting point of our IODA specific resource
1127 * allocation process
1128 */
1129static void __devinit pnv_pci_ioda_fixup_phb(struct pci_controller *hose)
1130{
1131 resource_size_t size, align;
1132 struct pci_bus *child;
1133
1134 /* Associate PEs per functions */
1135 pnv_ioda_setup_PEs(hose->bus);
1136
1137 /* Calculate all resources */
1138 pnv_ioda_calc_bus(hose->bus, IORESOURCE_IO, &size, &align);
1139 pnv_ioda_calc_bus(hose->bus, IORESOURCE_MEM, &size, &align);
1140
1141 /* Apply then to HW */
1142 pnv_ioda_update_resources(hose->bus);
1143
1144 /* Setup DMA */
1145 pnv_ioda_setup_dma(hose->private_data);
1146
1147 /* Configure PCI Express settings */
1148 list_for_each_entry(child, &hose->bus->children, node) {
1149 struct pci_dev *self = child->self;
1150 if (!self)
1151 continue;
1152 pcie_bus_configure_settings(child, self->pcie_mpss);
1153 }
1154}
1155
11685bec
GS
1156/*
1157 * This function is supposed to be called on basis of PE from top
1158 * to bottom style. So the the I/O or MMIO segment assigned to
1159 * parent PE could be overrided by its child PEs if necessary.
1160 */
1161static void __devinit pnv_ioda_setup_pe_seg(struct pci_controller *hose,
1162 struct pnv_ioda_pe *pe)
1163{
1164 struct pnv_phb *phb = hose->private_data;
1165 struct pci_bus_region region;
1166 struct resource *res;
1167 int i, index;
1168 int rc;
1169
1170 /*
1171 * NOTE: We only care PCI bus based PE for now. For PCI
1172 * device based PE, for example SRIOV sensitive VF should
1173 * be figured out later.
1174 */
1175 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
1176
1177 pci_bus_for_each_resource(pe->pbus, res, i) {
1178 if (!res || !res->flags ||
1179 res->start > res->end)
1180 continue;
1181
1182 if (res->flags & IORESOURCE_IO) {
1183 region.start = res->start - phb->ioda.io_pci_base;
1184 region.end = res->end - phb->ioda.io_pci_base;
1185 index = region.start / phb->ioda.io_segsize;
1186
1187 while (index < phb->ioda.total_pe &&
1188 region.start <= region.end) {
1189 phb->ioda.io_segmap[index] = pe->pe_number;
1190 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1191 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
1192 if (rc != OPAL_SUCCESS) {
1193 pr_err("%s: OPAL error %d when mapping IO "
1194 "segment #%d to PE#%d\n",
1195 __func__, rc, index, pe->pe_number);
1196 break;
1197 }
1198
1199 region.start += phb->ioda.io_segsize;
1200 index++;
1201 }
1202 } else if (res->flags & IORESOURCE_MEM) {
1203 region.start = res->start -
1204 hose->pci_mem_offset -
1205 phb->ioda.m32_pci_base;
1206 region.end = res->end -
1207 hose->pci_mem_offset -
1208 phb->ioda.m32_pci_base;
1209 index = region.start / phb->ioda.m32_segsize;
1210
1211 while (index < phb->ioda.total_pe &&
1212 region.start <= region.end) {
1213 phb->ioda.m32_segmap[index] = pe->pe_number;
1214 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1215 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
1216 if (rc != OPAL_SUCCESS) {
1217 pr_err("%s: OPAL error %d when mapping M32 "
1218 "segment#%d to PE#%d",
1219 __func__, rc, index, pe->pe_number);
1220 break;
1221 }
1222
1223 region.start += phb->ioda.m32_segsize;
1224 index++;
1225 }
1226 }
1227 }
1228}
1229
1230static void __devinit pnv_pci_ioda_setup_seg(void)
1231{
1232 struct pci_controller *tmp, *hose;
1233 struct pnv_phb *phb;
1234 struct pnv_ioda_pe *pe;
1235
1236 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1237 phb = hose->private_data;
1238 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
1239 pnv_ioda_setup_pe_seg(hose, pe);
1240 }
1241 }
1242}
1243
13395c48
GS
1244static void __devinit pnv_pci_ioda_setup_DMA(void)
1245{
1246 struct pci_controller *hose, *tmp;
db1266c8 1247 struct pnv_phb *phb;
13395c48
GS
1248
1249 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1250 pnv_ioda_setup_dma(hose->private_data);
db1266c8
GS
1251
1252 /* Mark the PHB initialization done */
1253 phb = hose->private_data;
1254 phb->initialized = 1;
13395c48
GS
1255 }
1256}
1257
fb446ad0
GS
1258static void __devinit pnv_pci_ioda_fixup(void)
1259{
1260 pnv_pci_ioda_setup_PEs();
11685bec 1261 pnv_pci_ioda_setup_seg();
13395c48 1262 pnv_pci_ioda_setup_DMA();
fb446ad0
GS
1263}
1264
271fd03a
GS
1265/*
1266 * Returns the alignment for I/O or memory windows for P2P
1267 * bridges. That actually depends on how PEs are segmented.
1268 * For now, we return I/O or M32 segment size for PE sensitive
1269 * P2P bridges. Otherwise, the default values (4KiB for I/O,
1270 * 1MiB for memory) will be returned.
1271 *
1272 * The current PCI bus might be put into one PE, which was
1273 * create against the parent PCI bridge. For that case, we
1274 * needn't enlarge the alignment so that we can save some
1275 * resources.
1276 */
1277static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
1278 unsigned long type)
1279{
1280 struct pci_dev *bridge;
1281 struct pci_controller *hose = pci_bus_to_host(bus);
1282 struct pnv_phb *phb = hose->private_data;
1283 int num_pci_bridges = 0;
1284
1285 bridge = bus->self;
1286 while (bridge) {
1287 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1288 num_pci_bridges++;
1289 if (num_pci_bridges >= 2)
1290 return 1;
1291 }
1292
1293 bridge = bridge->bus->self;
1294 }
1295
1296 /* We need support prefetchable memory window later */
1297 if (type & IORESOURCE_MEM)
1298 return phb->ioda.m32_segsize;
1299
1300 return phb->ioda.io_segsize;
1301}
1302
184cd4a3
BH
1303/* Prevent enabling devices for which we couldn't properly
1304 * assign a PE
1305 */
1306static int __devinit pnv_pci_enable_device_hook(struct pci_dev *dev)
1307{
db1266c8
GS
1308 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1309 struct pnv_phb *phb = hose->private_data;
1310 struct pci_dn *pdn;
184cd4a3 1311
db1266c8
GS
1312 /* The function is probably called while the PEs have
1313 * not be created yet. For example, resource reassignment
1314 * during PCI probe period. We just skip the check if
1315 * PEs isn't ready.
1316 */
1317 if (!phb->initialized)
1318 return 0;
1319
1320 pdn = pnv_ioda_get_pdn(dev);
184cd4a3
BH
1321 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1322 return -EINVAL;
db1266c8 1323
184cd4a3
BH
1324 return 0;
1325}
1326
1327static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1328 u32 devfn)
1329{
1330 return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1331}
1332
1333void __init pnv_pci_init_ioda1_phb(struct device_node *np)
1334{
1335 struct pci_controller *hose;
1336 static int primary = 1;
1337 struct pnv_phb *phb;
1338 unsigned long size, m32map_off, iomap_off, pemap_off;
1339 const u64 *prop64;
1340 u64 phb_id;
1341 void *aux;
1342 long rc;
1343
1344 pr_info(" Initializing IODA OPAL PHB %s\n", np->full_name);
1345
1346 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1347 if (!prop64) {
1348 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
1349 return;
1350 }
1351 phb_id = be64_to_cpup(prop64);
1352 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
1353
1354 phb = alloc_bootmem(sizeof(struct pnv_phb));
1355 if (phb) {
1356 memset(phb, 0, sizeof(struct pnv_phb));
1357 phb->hose = hose = pcibios_alloc_controller(np);
1358 }
1359 if (!phb || !phb->hose) {
1360 pr_err("PCI: Failed to allocate PCI controller for %s\n",
1361 np->full_name);
1362 return;
1363 }
1364
1365 spin_lock_init(&phb->lock);
1366 /* XXX Use device-tree */
1367 hose->first_busno = 0;
1368 hose->last_busno = 0xff;
1369 hose->private_data = phb;
1370 phb->opal_id = phb_id;
1371 phb->type = PNV_PHB_IODA1;
1372
cee72d5b
BH
1373 /* Detect specific models for error handling */
1374 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
1375 phb->model = PNV_PHB_MODEL_P7IOC;
1376 else
1377 phb->model = PNV_PHB_MODEL_UNKNOWN;
1378
184cd4a3
BH
1379 /* We parse "ranges" now since we need to deduce the register base
1380 * from the IO base
1381 */
1382 pci_process_bridge_OF_ranges(phb->hose, np, primary);
1383 primary = 0;
1384
1385 /* Magic formula from Milton */
1386 phb->regs = of_iomap(np, 0);
1387 if (phb->regs == NULL)
1388 pr_err(" Failed to map registers !\n");
1389
1390
1391 /* XXX This is hack-a-thon. This needs to be changed so that:
1392 * - we obtain stuff like PE# etc... from device-tree
1393 * - we properly re-allocate M32 ourselves
1394 * (the OFW one isn't very good)
1395 */
1396
1397 /* Initialize more IODA stuff */
1398 phb->ioda.total_pe = 128;
1399
1400 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
1401 /* OFW Has already off top 64k of M32 space (MSI space) */
1402 phb->ioda.m32_size += 0x10000;
1403
1404 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
1405 phb->ioda.m32_pci_base = hose->mem_resources[0].start -
1406 hose->pci_mem_offset;
1407 phb->ioda.io_size = hose->pci_io_size;
1408 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
1409 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
1410
1411 /* Allocate aux data & arrays */
1412 size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
1413 m32map_off = size;
1414 size += phb->ioda.total_pe;
1415 iomap_off = size;
1416 size += phb->ioda.total_pe;
1417 pemap_off = size;
1418 size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
1419 aux = alloc_bootmem(size);
1420 memset(aux, 0, size);
1421 phb->ioda.pe_alloc = aux;
1422 phb->ioda.m32_segmap = aux + m32map_off;
1423 phb->ioda.io_segmap = aux + iomap_off;
1424 phb->ioda.pe_array = aux + pemap_off;
1425 set_bit(0, phb->ioda.pe_alloc);
1426
7ebdf956 1427 INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
184cd4a3
BH
1428 INIT_LIST_HEAD(&phb->ioda.pe_list);
1429
1430 /* Calculate how many 32-bit TCE segments we have */
1431 phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
1432
1433 /* Clear unusable m64 */
1434 hose->mem_resources[1].flags = 0;
1435 hose->mem_resources[1].start = 0;
1436 hose->mem_resources[1].end = 0;
1437 hose->mem_resources[2].flags = 0;
1438 hose->mem_resources[2].start = 0;
1439 hose->mem_resources[2].end = 0;
1440
1441#if 0
1442 rc = opal_pci_set_phb_mem_window(opal->phb_id,
1443 window_type,
1444 window_num,
1445 starting_real_address,
1446 starting_pci_address,
1447 segment_size);
1448#endif
1449
1450 pr_info(" %d PE's M32: 0x%x [segment=0x%x] IO: 0x%x [segment=0x%x]\n",
1451 phb->ioda.total_pe,
1452 phb->ioda.m32_size, phb->ioda.m32_segsize,
1453 phb->ioda.io_size, phb->ioda.io_segsize);
1454
1455 if (phb->regs) {
1456 pr_devel(" BUID = 0x%016llx\n", in_be64(phb->regs + 0x100));
1457 pr_devel(" PHB2_CR = 0x%016llx\n", in_be64(phb->regs + 0x160));
1458 pr_devel(" IO_BAR = 0x%016llx\n", in_be64(phb->regs + 0x170));
1459 pr_devel(" IO_BAMR = 0x%016llx\n", in_be64(phb->regs + 0x178));
1460 pr_devel(" IO_SAR = 0x%016llx\n", in_be64(phb->regs + 0x180));
1461 pr_devel(" M32_BAR = 0x%016llx\n", in_be64(phb->regs + 0x190));
1462 pr_devel(" M32_BAMR = 0x%016llx\n", in_be64(phb->regs + 0x198));
1463 pr_devel(" M32_SAR = 0x%016llx\n", in_be64(phb->regs + 0x1a0));
1464 }
1465 phb->hose->ops = &pnv_pci_ops;
1466
1467 /* Setup RID -> PE mapping function */
1468 phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
1469
1470 /* Setup TCEs */
1471 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
1472
1473 /* Setup MSI support */
1474 pnv_pci_init_ioda_msis(phb);
1475
673c9756 1476 /* We set both PCI_PROBE_ONLY and PCI_REASSIGN_ALL_RSRC. This is an
184cd4a3
BH
1477 * odd combination which essentially means that we skip all resource
1478 * fixups and assignments in the generic code, and do it all
1479 * ourselves here
1480 */
184cd4a3 1481 ppc_md.pcibios_fixup_phb = pnv_pci_ioda_fixup_phb;
fb446ad0 1482 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
184cd4a3 1483 ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
271fd03a 1484 ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
673c9756 1485 pci_add_flags(PCI_PROBE_ONLY | PCI_REASSIGN_ALL_RSRC);
184cd4a3
BH
1486
1487 /* Reset IODA tables to a clean state */
f11fe552 1488 rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
184cd4a3 1489 if (rc)
f11fe552 1490 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
184cd4a3
BH
1491 opal_pci_set_pe(phb_id, 0, 0, 7, 1, 1 , OPAL_MAP_PE);
1492}
1493
1494void __init pnv_pci_init_ioda_hub(struct device_node *np)
1495{
1496 struct device_node *phbn;
1497 const u64 *prop64;
1498 u64 hub_id;
1499
1500 pr_info("Probing IODA IO-Hub %s\n", np->full_name);
1501
1502 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
1503 if (!prop64) {
1504 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
1505 return;
1506 }
1507 hub_id = be64_to_cpup(prop64);
1508 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
1509
1510 /* Count child PHBs */
1511 for_each_child_of_node(np, phbn) {
1512 /* Look for IODA1 PHBs */
1513 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
1514 pnv_pci_init_ioda1_phb(phbn);
1515 }
1516}