powerpc/powernv: Allocate struct pnv_ioda_pe iommu_table dynamically
[linux-2.6-block.git] / arch / powerpc / platforms / powernv / pci-ioda.c
CommitLineData
184cd4a3
BH
1/*
2 * Support PCI/PCIe on PowerNV platforms
3 *
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
cee72d5b 12#undef DEBUG
184cd4a3
BH
13
14#include <linux/kernel.h>
15#include <linux/pci.h>
361f2a2a 16#include <linux/crash_dump.h>
37c367f2 17#include <linux/debugfs.h>
184cd4a3
BH
18#include <linux/delay.h>
19#include <linux/string.h>
20#include <linux/init.h>
21#include <linux/bootmem.h>
22#include <linux/irq.h>
23#include <linux/io.h>
24#include <linux/msi.h>
cd15b048 25#include <linux/memblock.h>
184cd4a3
BH
26
27#include <asm/sections.h>
28#include <asm/io.h>
29#include <asm/prom.h>
30#include <asm/pci-bridge.h>
31#include <asm/machdep.h>
fb1b55d6 32#include <asm/msi_bitmap.h>
184cd4a3
BH
33#include <asm/ppc-pci.h>
34#include <asm/opal.h>
35#include <asm/iommu.h>
36#include <asm/tce.h>
137436c9 37#include <asm/xics.h>
37c367f2 38#include <asm/debug.h>
262af557 39#include <asm/firmware.h>
80c49c7e
IM
40#include <asm/pnv-pci.h>
41
42#include <misc/cxl.h>
184cd4a3
BH
43
44#include "powernv.h"
45#include "pci.h"
46
6d31c2fa
JP
47static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
48 const char *fmt, ...)
49{
50 struct va_format vaf;
51 va_list args;
52 char pfix[32];
53
54 va_start(args, fmt);
55
56 vaf.fmt = fmt;
57 vaf.va = &args;
58
59 if (pe->pdev)
60 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
61 else
62 sprintf(pfix, "%04x:%02x ",
63 pci_domain_nr(pe->pbus), pe->pbus->number);
64
65 printk("%spci %s: [PE# %.3d] %pV",
66 level, pfix, pe->pe_number, &vaf);
67
68 va_end(args);
69}
184cd4a3 70
6d31c2fa
JP
71#define pe_err(pe, fmt, ...) \
72 pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
73#define pe_warn(pe, fmt, ...) \
74 pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
75#define pe_info(pe, fmt, ...) \
76 pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
184cd4a3 77
4e287840
TLSC
78static bool pnv_iommu_bypass_disabled __read_mostly;
79
80static int __init iommu_setup(char *str)
81{
82 if (!str)
83 return -EINVAL;
84
85 while (*str) {
86 if (!strncmp(str, "nobypass", 8)) {
87 pnv_iommu_bypass_disabled = true;
88 pr_info("PowerNV: IOMMU bypass window disabled.\n");
89 break;
90 }
91 str += strcspn(str, ",");
92 if (*str == ',')
93 str++;
94 }
95
96 return 0;
97}
98early_param("iommu", iommu_setup);
99
8e0a1611
AK
100/*
101 * stdcix is only supposed to be used in hypervisor real mode as per
102 * the architecture spec
103 */
104static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
105{
106 __asm__ __volatile__("stdcix %0,0,%1"
107 : : "r" (val), "r" (paddr) : "memory");
108}
109
262af557
GC
110static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
111{
112 return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
113 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
114}
115
4b82ab18
GS
116static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
117{
118 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
119 pr_warn("%s: Invalid PE %d on PHB#%x\n",
120 __func__, pe_no, phb->hose->global_number);
121 return;
122 }
123
124 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) {
125 pr_warn("%s: PE %d was assigned on PHB#%x\n",
126 __func__, pe_no, phb->hose->global_number);
127 return;
128 }
129
130 phb->ioda.pe_array[pe_no].phb = phb;
131 phb->ioda.pe_array[pe_no].pe_number = pe_no;
132}
133
cad5cef6 134static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
184cd4a3
BH
135{
136 unsigned long pe;
137
138 do {
139 pe = find_next_zero_bit(phb->ioda.pe_alloc,
140 phb->ioda.total_pe, 0);
141 if (pe >= phb->ioda.total_pe)
142 return IODA_INVALID_PE;
143 } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
144
4cce9550 145 phb->ioda.pe_array[pe].phb = phb;
184cd4a3
BH
146 phb->ioda.pe_array[pe].pe_number = pe;
147 return pe;
148}
149
cad5cef6 150static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
184cd4a3
BH
151{
152 WARN_ON(phb->ioda.pe_array[pe].pdev);
153
154 memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
155 clear_bit(pe, phb->ioda.pe_alloc);
156}
157
262af557
GC
158/* The default M64 BAR is shared by all PEs */
159static int pnv_ioda2_init_m64(struct pnv_phb *phb)
160{
161 const char *desc;
162 struct resource *r;
163 s64 rc;
164
165 /* Configure the default M64 BAR */
166 rc = opal_pci_set_phb_mem_window(phb->opal_id,
167 OPAL_M64_WINDOW_TYPE,
168 phb->ioda.m64_bar_idx,
169 phb->ioda.m64_base,
170 0, /* unused */
171 phb->ioda.m64_size);
172 if (rc != OPAL_SUCCESS) {
173 desc = "configuring";
174 goto fail;
175 }
176
177 /* Enable the default M64 BAR */
178 rc = opal_pci_phb_mmio_enable(phb->opal_id,
179 OPAL_M64_WINDOW_TYPE,
180 phb->ioda.m64_bar_idx,
181 OPAL_ENABLE_M64_SPLIT);
182 if (rc != OPAL_SUCCESS) {
183 desc = "enabling";
184 goto fail;
185 }
186
187 /* Mark the M64 BAR assigned */
188 set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
189
190 /*
191 * Strip off the segment used by the reserved PE, which is
192 * expected to be 0 or last one of PE capabicity.
193 */
194 r = &phb->hose->mem_resources[1];
195 if (phb->ioda.reserved_pe == 0)
196 r->start += phb->ioda.m64_segsize;
197 else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
198 r->end -= phb->ioda.m64_segsize;
199 else
200 pr_warn(" Cannot strip M64 segment for reserved PE#%d\n",
201 phb->ioda.reserved_pe);
202
203 return 0;
204
205fail:
206 pr_warn(" Failure %lld %s M64 BAR#%d\n",
207 rc, desc, phb->ioda.m64_bar_idx);
208 opal_pci_phb_mmio_enable(phb->opal_id,
209 OPAL_M64_WINDOW_TYPE,
210 phb->ioda.m64_bar_idx,
211 OPAL_DISABLE_M64);
212 return -EIO;
213}
214
5ef73567 215static void pnv_ioda2_reserve_m64_pe(struct pnv_phb *phb)
262af557
GC
216{
217 resource_size_t sgsz = phb->ioda.m64_segsize;
218 struct pci_dev *pdev;
219 struct resource *r;
220 int base, step, i;
221
222 /*
223 * Root bus always has full M64 range and root port has
224 * M64 range used in reality. So we're checking root port
225 * instead of root bus.
226 */
227 list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
4b82ab18
GS
228 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
229 r = &pdev->resource[PCI_BRIDGE_RESOURCES + i];
262af557
GC
230 if (!r->parent ||
231 !pnv_pci_is_mem_pref_64(r->flags))
232 continue;
233
234 base = (r->start - phb->ioda.m64_base) / sgsz;
235 for (step = 0; step < resource_size(r) / sgsz; step++)
4b82ab18 236 pnv_ioda_reserve_pe(phb, base + step);
262af557
GC
237 }
238 }
239}
240
241static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
242 struct pci_bus *bus, int all)
243{
244 resource_size_t segsz = phb->ioda.m64_segsize;
245 struct pci_dev *pdev;
246 struct resource *r;
247 struct pnv_ioda_pe *master_pe, *pe;
248 unsigned long size, *pe_alloc;
249 bool found;
250 int start, i, j;
251
252 /* Root bus shouldn't use M64 */
253 if (pci_is_root_bus(bus))
254 return IODA_INVALID_PE;
255
256 /* We support only one M64 window on each bus */
257 found = false;
258 pci_bus_for_each_resource(bus, r, i) {
259 if (r && r->parent &&
260 pnv_pci_is_mem_pref_64(r->flags)) {
261 found = true;
262 break;
263 }
264 }
265
266 /* No M64 window found ? */
267 if (!found)
268 return IODA_INVALID_PE;
269
270 /* Allocate bitmap */
271 size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
272 pe_alloc = kzalloc(size, GFP_KERNEL);
273 if (!pe_alloc) {
274 pr_warn("%s: Out of memory !\n",
275 __func__);
276 return IODA_INVALID_PE;
277 }
278
279 /*
280 * Figure out reserved PE numbers by the PE
281 * the its child PEs.
282 */
283 start = (r->start - phb->ioda.m64_base) / segsz;
284 for (i = 0; i < resource_size(r) / segsz; i++)
285 set_bit(start + i, pe_alloc);
286
287 if (all)
288 goto done;
289
290 /*
291 * If the PE doesn't cover all subordinate buses,
292 * we need subtract from reserved PEs for children.
293 */
294 list_for_each_entry(pdev, &bus->devices, bus_list) {
295 if (!pdev->subordinate)
296 continue;
297
298 pci_bus_for_each_resource(pdev->subordinate, r, i) {
299 if (!r || !r->parent ||
300 !pnv_pci_is_mem_pref_64(r->flags))
301 continue;
302
303 start = (r->start - phb->ioda.m64_base) / segsz;
304 for (j = 0; j < resource_size(r) / segsz ; j++)
305 clear_bit(start + j, pe_alloc);
306 }
307 }
308
309 /*
310 * the current bus might not own M64 window and that's all
311 * contributed by its child buses. For the case, we needn't
312 * pick M64 dependent PE#.
313 */
314 if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
315 kfree(pe_alloc);
316 return IODA_INVALID_PE;
317 }
318
319 /*
320 * Figure out the master PE and put all slave PEs to master
321 * PE's list to form compound PE.
322 */
323done:
324 master_pe = NULL;
325 i = -1;
326 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
327 phb->ioda.total_pe) {
328 pe = &phb->ioda.pe_array[i];
262af557
GC
329
330 if (!master_pe) {
331 pe->flags |= PNV_IODA_PE_MASTER;
332 INIT_LIST_HEAD(&pe->slaves);
333 master_pe = pe;
334 } else {
335 pe->flags |= PNV_IODA_PE_SLAVE;
336 pe->master = master_pe;
337 list_add_tail(&pe->list, &master_pe->slaves);
338 }
339 }
340
341 kfree(pe_alloc);
342 return master_pe->pe_number;
343}
344
345static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
346{
347 struct pci_controller *hose = phb->hose;
348 struct device_node *dn = hose->dn;
349 struct resource *res;
350 const u32 *r;
351 u64 pci_addr;
352
1665c4a8
GS
353 /* FIXME: Support M64 for P7IOC */
354 if (phb->type != PNV_PHB_IODA2) {
355 pr_info(" Not support M64 window\n");
356 return;
357 }
358
262af557
GC
359 if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
360 pr_info(" Firmware too old to support M64 window\n");
361 return;
362 }
363
364 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
365 if (!r) {
366 pr_info(" No <ibm,opal-m64-window> on %s\n",
367 dn->full_name);
368 return;
369 }
370
262af557
GC
371 res = &hose->mem_resources[1];
372 res->start = of_translate_address(dn, r + 2);
373 res->end = res->start + of_read_number(r + 4, 2) - 1;
374 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
375 pci_addr = of_read_number(r, 2);
376 hose->mem_offset[1] = res->start - pci_addr;
377
378 phb->ioda.m64_size = resource_size(res);
379 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
380 phb->ioda.m64_base = pci_addr;
381
e9863e68
WY
382 pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
383 res->start, res->end, pci_addr);
384
262af557
GC
385 /* Use last M64 BAR to cover M64 window */
386 phb->ioda.m64_bar_idx = 15;
387 phb->init_m64 = pnv_ioda2_init_m64;
5ef73567 388 phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
262af557
GC
389 phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
390}
391
49dec922
GS
392static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
393{
394 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
395 struct pnv_ioda_pe *slave;
396 s64 rc;
397
398 /* Fetch master PE */
399 if (pe->flags & PNV_IODA_PE_SLAVE) {
400 pe = pe->master;
ec8e4e9d
GS
401 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
402 return;
403
49dec922
GS
404 pe_no = pe->pe_number;
405 }
406
407 /* Freeze master PE */
408 rc = opal_pci_eeh_freeze_set(phb->opal_id,
409 pe_no,
410 OPAL_EEH_ACTION_SET_FREEZE_ALL);
411 if (rc != OPAL_SUCCESS) {
412 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
413 __func__, rc, phb->hose->global_number, pe_no);
414 return;
415 }
416
417 /* Freeze slave PEs */
418 if (!(pe->flags & PNV_IODA_PE_MASTER))
419 return;
420
421 list_for_each_entry(slave, &pe->slaves, list) {
422 rc = opal_pci_eeh_freeze_set(phb->opal_id,
423 slave->pe_number,
424 OPAL_EEH_ACTION_SET_FREEZE_ALL);
425 if (rc != OPAL_SUCCESS)
426 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
427 __func__, rc, phb->hose->global_number,
428 slave->pe_number);
429 }
430}
431
e51df2c1 432static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
49dec922
GS
433{
434 struct pnv_ioda_pe *pe, *slave;
435 s64 rc;
436
437 /* Find master PE */
438 pe = &phb->ioda.pe_array[pe_no];
439 if (pe->flags & PNV_IODA_PE_SLAVE) {
440 pe = pe->master;
441 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
442 pe_no = pe->pe_number;
443 }
444
445 /* Clear frozen state for master PE */
446 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
447 if (rc != OPAL_SUCCESS) {
448 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
449 __func__, rc, opt, phb->hose->global_number, pe_no);
450 return -EIO;
451 }
452
453 if (!(pe->flags & PNV_IODA_PE_MASTER))
454 return 0;
455
456 /* Clear frozen state for slave PEs */
457 list_for_each_entry(slave, &pe->slaves, list) {
458 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
459 slave->pe_number,
460 opt);
461 if (rc != OPAL_SUCCESS) {
462 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
463 __func__, rc, opt, phb->hose->global_number,
464 slave->pe_number);
465 return -EIO;
466 }
467 }
468
469 return 0;
470}
471
472static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
473{
474 struct pnv_ioda_pe *slave, *pe;
475 u8 fstate, state;
476 __be16 pcierr;
477 s64 rc;
478
479 /* Sanity check on PE number */
480 if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
481 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
482
483 /*
484 * Fetch the master PE and the PE instance might be
485 * not initialized yet.
486 */
487 pe = &phb->ioda.pe_array[pe_no];
488 if (pe->flags & PNV_IODA_PE_SLAVE) {
489 pe = pe->master;
490 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
491 pe_no = pe->pe_number;
492 }
493
494 /* Check the master PE */
495 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
496 &state, &pcierr, NULL);
497 if (rc != OPAL_SUCCESS) {
498 pr_warn("%s: Failure %lld getting "
499 "PHB#%x-PE#%x state\n",
500 __func__, rc,
501 phb->hose->global_number, pe_no);
502 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
503 }
504
505 /* Check the slave PE */
506 if (!(pe->flags & PNV_IODA_PE_MASTER))
507 return state;
508
509 list_for_each_entry(slave, &pe->slaves, list) {
510 rc = opal_pci_eeh_freeze_status(phb->opal_id,
511 slave->pe_number,
512 &fstate,
513 &pcierr,
514 NULL);
515 if (rc != OPAL_SUCCESS) {
516 pr_warn("%s: Failure %lld getting "
517 "PHB#%x-PE#%x state\n",
518 __func__, rc,
519 phb->hose->global_number, slave->pe_number);
520 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
521 }
522
523 /*
524 * Override the result based on the ascending
525 * priority.
526 */
527 if (fstate > state)
528 state = fstate;
529 }
530
531 return state;
532}
533
184cd4a3
BH
534/* Currently those 2 are only used when MSIs are enabled, this will change
535 * but in the meantime, we need to protect them to avoid warnings
536 */
537#ifdef CONFIG_PCI_MSI
cad5cef6 538static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
184cd4a3
BH
539{
540 struct pci_controller *hose = pci_bus_to_host(dev->bus);
541 struct pnv_phb *phb = hose->private_data;
b72c1f65 542 struct pci_dn *pdn = pci_get_pdn(dev);
184cd4a3
BH
543
544 if (!pdn)
545 return NULL;
546 if (pdn->pe_number == IODA_INVALID_PE)
547 return NULL;
548 return &phb->ioda.pe_array[pdn->pe_number];
549}
184cd4a3
BH
550#endif /* CONFIG_PCI_MSI */
551
b131a842
GS
552static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
553 struct pnv_ioda_pe *parent,
554 struct pnv_ioda_pe *child,
555 bool is_add)
556{
557 const char *desc = is_add ? "adding" : "removing";
558 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
559 OPAL_REMOVE_PE_FROM_DOMAIN;
560 struct pnv_ioda_pe *slave;
561 long rc;
562
563 /* Parent PE affects child PE */
564 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
565 child->pe_number, op);
566 if (rc != OPAL_SUCCESS) {
567 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
568 rc, desc);
569 return -ENXIO;
570 }
571
572 if (!(child->flags & PNV_IODA_PE_MASTER))
573 return 0;
574
575 /* Compound case: parent PE affects slave PEs */
576 list_for_each_entry(slave, &child->slaves, list) {
577 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
578 slave->pe_number, op);
579 if (rc != OPAL_SUCCESS) {
580 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
581 rc, desc);
582 return -ENXIO;
583 }
584 }
585
586 return 0;
587}
588
589static int pnv_ioda_set_peltv(struct pnv_phb *phb,
590 struct pnv_ioda_pe *pe,
591 bool is_add)
592{
593 struct pnv_ioda_pe *slave;
594 struct pci_dev *pdev;
595 int ret;
596
597 /*
598 * Clear PE frozen state. If it's master PE, we need
599 * clear slave PE frozen state as well.
600 */
601 if (is_add) {
602 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
603 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
604 if (pe->flags & PNV_IODA_PE_MASTER) {
605 list_for_each_entry(slave, &pe->slaves, list)
606 opal_pci_eeh_freeze_clear(phb->opal_id,
607 slave->pe_number,
608 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
609 }
610 }
611
612 /*
613 * Associate PE in PELT. We need add the PE into the
614 * corresponding PELT-V as well. Otherwise, the error
615 * originated from the PE might contribute to other
616 * PEs.
617 */
618 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
619 if (ret)
620 return ret;
621
622 /* For compound PEs, any one affects all of them */
623 if (pe->flags & PNV_IODA_PE_MASTER) {
624 list_for_each_entry(slave, &pe->slaves, list) {
625 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
626 if (ret)
627 return ret;
628 }
629 }
630
631 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
632 pdev = pe->pbus->self;
633 else
634 pdev = pe->pdev->bus->self;
635 while (pdev) {
636 struct pci_dn *pdn = pci_get_pdn(pdev);
637 struct pnv_ioda_pe *parent;
638
639 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
640 parent = &phb->ioda.pe_array[pdn->pe_number];
641 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
642 if (ret)
643 return ret;
644 }
645
646 pdev = pdev->bus->self;
647 }
648
649 return 0;
650}
651
cad5cef6 652static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
184cd4a3
BH
653{
654 struct pci_dev *parent;
655 uint8_t bcomp, dcomp, fcomp;
656 long rc, rid_end, rid;
657
658 /* Bus validation ? */
659 if (pe->pbus) {
660 int count;
661
662 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
663 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
664 parent = pe->pbus->self;
fb446ad0
GS
665 if (pe->flags & PNV_IODA_PE_BUS_ALL)
666 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
667 else
668 count = 1;
669
184cd4a3
BH
670 switch(count) {
671 case 1: bcomp = OpalPciBusAll; break;
672 case 2: bcomp = OpalPciBus7Bits; break;
673 case 4: bcomp = OpalPciBus6Bits; break;
674 case 8: bcomp = OpalPciBus5Bits; break;
675 case 16: bcomp = OpalPciBus4Bits; break;
676 case 32: bcomp = OpalPciBus3Bits; break;
677 default:
678 pr_err("%s: Number of subordinate busses %d"
679 " unsupported\n",
680 pci_name(pe->pbus->self), count);
681 /* Do an exact match only */
682 bcomp = OpalPciBusAll;
683 }
684 rid_end = pe->rid + (count << 8);
685 } else {
686 parent = pe->pdev->bus->self;
687 bcomp = OpalPciBusAll;
688 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
689 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
690 rid_end = pe->rid + 1;
691 }
692
631ad691
GS
693 /*
694 * Associate PE in PELT. We need add the PE into the
695 * corresponding PELT-V as well. Otherwise, the error
696 * originated from the PE might contribute to other
697 * PEs.
698 */
184cd4a3
BH
699 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
700 bcomp, dcomp, fcomp, OPAL_MAP_PE);
701 if (rc) {
702 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
703 return -ENXIO;
704 }
631ad691 705
b131a842
GS
706 /* Configure PELTV */
707 pnv_ioda_set_peltv(phb, pe, true);
184cd4a3 708
184cd4a3
BH
709 /* Setup reverse map */
710 for (rid = pe->rid; rid < rid_end; rid++)
711 phb->ioda.pe_rmap[rid] = pe->pe_number;
712
713 /* Setup one MVTs on IODA1 */
4773f76b
GS
714 if (phb->type != PNV_PHB_IODA1) {
715 pe->mve_number = 0;
716 goto out;
717 }
718
719 pe->mve_number = pe->pe_number;
720 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
721 if (rc != OPAL_SUCCESS) {
722 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
723 rc, pe->mve_number);
724 pe->mve_number = -1;
725 } else {
726 rc = opal_pci_set_mve_enable(phb->opal_id,
727 pe->mve_number, OPAL_ENABLE_MVE);
184cd4a3 728 if (rc) {
4773f76b 729 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
184cd4a3
BH
730 rc, pe->mve_number);
731 pe->mve_number = -1;
184cd4a3 732 }
4773f76b 733 }
184cd4a3 734
4773f76b 735out:
184cd4a3
BH
736 return 0;
737}
738
cad5cef6
GKH
739static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
740 struct pnv_ioda_pe *pe)
184cd4a3
BH
741{
742 struct pnv_ioda_pe *lpe;
743
7ebdf956 744 list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
184cd4a3 745 if (lpe->dma_weight < pe->dma_weight) {
7ebdf956 746 list_add_tail(&pe->dma_link, &lpe->dma_link);
184cd4a3
BH
747 return;
748 }
749 }
7ebdf956 750 list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
184cd4a3
BH
751}
752
753static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
754{
755 /* This is quite simplistic. The "base" weight of a device
756 * is 10. 0 means no DMA is to be accounted for it.
757 */
758
759 /* If it's a bridge, no DMA */
760 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
761 return 0;
762
763 /* Reduce the weight of slow USB controllers */
764 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
765 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
766 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
767 return 3;
768
769 /* Increase the weight of RAID (includes Obsidian) */
770 if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
771 return 15;
772
773 /* Default */
774 return 10;
775}
776
fb446ad0 777#if 0
cad5cef6 778static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
184cd4a3
BH
779{
780 struct pci_controller *hose = pci_bus_to_host(dev->bus);
781 struct pnv_phb *phb = hose->private_data;
b72c1f65 782 struct pci_dn *pdn = pci_get_pdn(dev);
184cd4a3
BH
783 struct pnv_ioda_pe *pe;
784 int pe_num;
785
786 if (!pdn) {
787 pr_err("%s: Device tree node not associated properly\n",
788 pci_name(dev));
789 return NULL;
790 }
791 if (pdn->pe_number != IODA_INVALID_PE)
792 return NULL;
793
794 /* PE#0 has been pre-set */
795 if (dev->bus->number == 0)
796 pe_num = 0;
797 else
798 pe_num = pnv_ioda_alloc_pe(phb);
799 if (pe_num == IODA_INVALID_PE) {
800 pr_warning("%s: Not enough PE# available, disabling device\n",
801 pci_name(dev));
802 return NULL;
803 }
804
805 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
806 * pointer in the PE data structure, both should be destroyed at the
807 * same time. However, this needs to be looked at more closely again
808 * once we actually start removing things (Hotplug, SR-IOV, ...)
809 *
810 * At some point we want to remove the PDN completely anyways
811 */
812 pe = &phb->ioda.pe_array[pe_num];
813 pci_dev_get(dev);
814 pdn->pcidev = dev;
815 pdn->pe_number = pe_num;
816 pe->pdev = dev;
817 pe->pbus = NULL;
818 pe->tce32_seg = -1;
819 pe->mve_number = -1;
820 pe->rid = dev->bus->number << 8 | pdn->devfn;
821
822 pe_info(pe, "Associated device to PE\n");
823
824 if (pnv_ioda_configure_pe(phb, pe)) {
825 /* XXX What do we do here ? */
826 if (pe_num)
827 pnv_ioda_free_pe(phb, pe_num);
828 pdn->pe_number = IODA_INVALID_PE;
829 pe->pdev = NULL;
830 pci_dev_put(dev);
831 return NULL;
832 }
833
834 /* Assign a DMA weight to the device */
835 pe->dma_weight = pnv_ioda_dma_weight(dev);
836 if (pe->dma_weight != 0) {
837 phb->ioda.dma_weight += pe->dma_weight;
838 phb->ioda.dma_pe_count++;
839 }
840
841 /* Link the PE */
842 pnv_ioda_link_pe_by_weight(phb, pe);
843
844 return pe;
845}
fb446ad0 846#endif /* Useful for SRIOV case */
184cd4a3
BH
847
848static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
849{
850 struct pci_dev *dev;
851
852 list_for_each_entry(dev, &bus->devices, bus_list) {
b72c1f65 853 struct pci_dn *pdn = pci_get_pdn(dev);
184cd4a3
BH
854
855 if (pdn == NULL) {
856 pr_warn("%s: No device node associated with device !\n",
857 pci_name(dev));
858 continue;
859 }
184cd4a3
BH
860 pdn->pcidev = dev;
861 pdn->pe_number = pe->pe_number;
862 pe->dma_weight += pnv_ioda_dma_weight(dev);
fb446ad0 863 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
184cd4a3
BH
864 pnv_ioda_setup_same_PE(dev->subordinate, pe);
865 }
866}
867
fb446ad0
GS
868/*
869 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
870 * single PCI bus. Another one that contains the primary PCI bus and its
871 * subordinate PCI devices and buses. The second type of PE is normally
872 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
873 */
cad5cef6 874static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
184cd4a3 875{
fb446ad0 876 struct pci_controller *hose = pci_bus_to_host(bus);
184cd4a3 877 struct pnv_phb *phb = hose->private_data;
184cd4a3 878 struct pnv_ioda_pe *pe;
262af557
GC
879 int pe_num = IODA_INVALID_PE;
880
881 /* Check if PE is determined by M64 */
882 if (phb->pick_m64_pe)
883 pe_num = phb->pick_m64_pe(phb, bus, all);
884
885 /* The PE number isn't pinned by M64 */
886 if (pe_num == IODA_INVALID_PE)
887 pe_num = pnv_ioda_alloc_pe(phb);
184cd4a3 888
184cd4a3 889 if (pe_num == IODA_INVALID_PE) {
fb446ad0
GS
890 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
891 __func__, pci_domain_nr(bus), bus->number);
184cd4a3
BH
892 return;
893 }
894
895 pe = &phb->ioda.pe_array[pe_num];
262af557 896 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
184cd4a3
BH
897 pe->pbus = bus;
898 pe->pdev = NULL;
899 pe->tce32_seg = -1;
900 pe->mve_number = -1;
b918c62e 901 pe->rid = bus->busn_res.start << 8;
184cd4a3
BH
902 pe->dma_weight = 0;
903
fb446ad0
GS
904 if (all)
905 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
906 bus->busn_res.start, bus->busn_res.end, pe_num);
907 else
908 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
909 bus->busn_res.start, pe_num);
184cd4a3
BH
910
911 if (pnv_ioda_configure_pe(phb, pe)) {
912 /* XXX What do we do here ? */
913 if (pe_num)
914 pnv_ioda_free_pe(phb, pe_num);
915 pe->pbus = NULL;
916 return;
917 }
918
9e8d4a19
WY
919 pe->tce32_table = kzalloc_node(sizeof(struct iommu_table),
920 GFP_KERNEL, hose->node);
921 pe->tce32_table->data = pe;
922
184cd4a3
BH
923 /* Associate it with all child devices */
924 pnv_ioda_setup_same_PE(bus, pe);
925
7ebdf956
GS
926 /* Put PE to the list */
927 list_add_tail(&pe->list, &phb->ioda.pe_list);
928
184cd4a3
BH
929 /* Account for one DMA PE if at least one DMA capable device exist
930 * below the bridge
931 */
932 if (pe->dma_weight != 0) {
933 phb->ioda.dma_weight += pe->dma_weight;
934 phb->ioda.dma_pe_count++;
935 }
936
937 /* Link the PE */
938 pnv_ioda_link_pe_by_weight(phb, pe);
939}
940
cad5cef6 941static void pnv_ioda_setup_PEs(struct pci_bus *bus)
184cd4a3
BH
942{
943 struct pci_dev *dev;
fb446ad0
GS
944
945 pnv_ioda_setup_bus_PE(bus, 0);
184cd4a3
BH
946
947 list_for_each_entry(dev, &bus->devices, bus_list) {
fb446ad0
GS
948 if (dev->subordinate) {
949 if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
950 pnv_ioda_setup_bus_PE(dev->subordinate, 1);
951 else
952 pnv_ioda_setup_PEs(dev->subordinate);
953 }
954 }
955}
956
957/*
958 * Configure PEs so that the downstream PCI buses and devices
959 * could have their associated PE#. Unfortunately, we didn't
960 * figure out the way to identify the PLX bridge yet. So we
961 * simply put the PCI bus and the subordinate behind the root
962 * port to PE# here. The game rule here is expected to be changed
963 * as soon as we can detected PLX bridge correctly.
964 */
cad5cef6 965static void pnv_pci_ioda_setup_PEs(void)
fb446ad0
GS
966{
967 struct pci_controller *hose, *tmp;
262af557 968 struct pnv_phb *phb;
fb446ad0
GS
969
970 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
262af557
GC
971 phb = hose->private_data;
972
973 /* M64 layout might affect PE allocation */
5ef73567
GS
974 if (phb->reserve_m64_pe)
975 phb->reserve_m64_pe(phb);
262af557 976
fb446ad0 977 pnv_ioda_setup_PEs(hose->bus);
184cd4a3
BH
978 }
979}
980
a8b2f828
GS
981#ifdef CONFIG_PCI_IOV
982int pcibios_sriov_disable(struct pci_dev *pdev)
983{
984 /* Release PCI data */
985 remove_dev_pci_data(pdev);
986 return 0;
987}
988
989int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
990{
991 /* Allocate PCI data */
992 add_dev_pci_data(pdev);
993 return 0;
994}
995#endif /* CONFIG_PCI_IOV */
996
959c9bdd 997static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
184cd4a3 998{
b72c1f65 999 struct pci_dn *pdn = pci_get_pdn(pdev);
959c9bdd 1000 struct pnv_ioda_pe *pe;
184cd4a3 1001
959c9bdd
GS
1002 /*
1003 * The function can be called while the PE#
1004 * hasn't been assigned. Do nothing for the
1005 * case.
1006 */
1007 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1008 return;
184cd4a3 1009
959c9bdd 1010 pe = &phb->ioda.pe_array[pdn->pe_number];
cd15b048 1011 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
9e8d4a19 1012 set_iommu_table_base_and_group(&pdev->dev, pe->tce32_table);
184cd4a3
BH
1013}
1014
cd15b048
BH
1015static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
1016 struct pci_dev *pdev, u64 dma_mask)
1017{
1018 struct pci_dn *pdn = pci_get_pdn(pdev);
1019 struct pnv_ioda_pe *pe;
1020 uint64_t top;
1021 bool bypass = false;
1022
1023 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1024 return -ENODEV;;
1025
1026 pe = &phb->ioda.pe_array[pdn->pe_number];
1027 if (pe->tce_bypass_enabled) {
1028 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1029 bypass = (dma_mask >= top);
1030 }
1031
1032 if (bypass) {
1033 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1034 set_dma_ops(&pdev->dev, &dma_direct_ops);
1035 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1036 } else {
1037 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1038 set_dma_ops(&pdev->dev, &dma_iommu_ops);
9e8d4a19 1039 set_iommu_table_base(&pdev->dev, pe->tce32_table);
cd15b048 1040 }
a32305bf 1041 *pdev->dev.dma_mask = dma_mask;
cd15b048
BH
1042 return 0;
1043}
1044
fe7e85c6
GS
1045static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb,
1046 struct pci_dev *pdev)
1047{
1048 struct pci_dn *pdn = pci_get_pdn(pdev);
1049 struct pnv_ioda_pe *pe;
1050 u64 end, mask;
1051
1052 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1053 return 0;
1054
1055 pe = &phb->ioda.pe_array[pdn->pe_number];
1056 if (!pe->tce_bypass_enabled)
1057 return __dma_get_required_mask(&pdev->dev);
1058
1059
1060 end = pe->tce_bypass_base + memblock_end_of_DRAM();
1061 mask = 1ULL << (fls64(end) - 1);
1062 mask += mask - 1;
1063
1064 return mask;
1065}
1066
dff4a39e
GS
1067static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1068 struct pci_bus *bus,
1069 bool add_to_iommu_group)
74251fe2
BH
1070{
1071 struct pci_dev *dev;
1072
1073 list_for_each_entry(dev, &bus->devices, bus_list) {
dff4a39e
GS
1074 if (add_to_iommu_group)
1075 set_iommu_table_base_and_group(&dev->dev,
9e8d4a19 1076 pe->tce32_table);
dff4a39e 1077 else
9e8d4a19 1078 set_iommu_table_base(&dev->dev, pe->tce32_table);
dff4a39e 1079
74251fe2 1080 if (dev->subordinate)
dff4a39e
GS
1081 pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1082 add_to_iommu_group);
74251fe2
BH
1083 }
1084}
1085
8e0a1611
AK
1086static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
1087 struct iommu_table *tbl,
3ad26e5c 1088 __be64 *startp, __be64 *endp, bool rm)
4cce9550 1089{
3ad26e5c
BH
1090 __be64 __iomem *invalidate = rm ?
1091 (__be64 __iomem *)pe->tce_inval_reg_phys :
1092 (__be64 __iomem *)tbl->it_index;
4cce9550 1093 unsigned long start, end, inc;
b0376c9b 1094 const unsigned shift = tbl->it_page_shift;
4cce9550
GS
1095
1096 start = __pa(startp);
1097 end = __pa(endp);
1098
1099 /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1100 if (tbl->it_busno) {
b0376c9b
AK
1101 start <<= shift;
1102 end <<= shift;
1103 inc = 128ull << shift;
4cce9550
GS
1104 start |= tbl->it_busno;
1105 end |= tbl->it_busno;
1106 } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1107 /* p7ioc-style invalidation, 2 TCEs per write */
1108 start |= (1ull << 63);
1109 end |= (1ull << 63);
1110 inc = 16;
1111 } else {
1112 /* Default (older HW) */
1113 inc = 128;
1114 }
1115
1116 end |= inc - 1; /* round up end to be different than start */
1117
1118 mb(); /* Ensure above stores are visible */
1119 while (start <= end) {
8e0a1611 1120 if (rm)
3ad26e5c 1121 __raw_rm_writeq(cpu_to_be64(start), invalidate);
8e0a1611 1122 else
3ad26e5c 1123 __raw_writeq(cpu_to_be64(start), invalidate);
4cce9550
GS
1124 start += inc;
1125 }
1126
1127 /*
1128 * The iommu layer will do another mb() for us on build()
1129 * and we don't care on free()
1130 */
1131}
1132
1133static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
1134 struct iommu_table *tbl,
3ad26e5c 1135 __be64 *startp, __be64 *endp, bool rm)
4cce9550
GS
1136{
1137 unsigned long start, end, inc;
3ad26e5c
BH
1138 __be64 __iomem *invalidate = rm ?
1139 (__be64 __iomem *)pe->tce_inval_reg_phys :
1140 (__be64 __iomem *)tbl->it_index;
b0376c9b 1141 const unsigned shift = tbl->it_page_shift;
4cce9550
GS
1142
1143 /* We'll invalidate DMA address in PE scope */
b0376c9b 1144 start = 0x2ull << 60;
4cce9550
GS
1145 start |= (pe->pe_number & 0xFF);
1146 end = start;
1147
1148 /* Figure out the start, end and step */
1149 inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
b0376c9b 1150 start |= (inc << shift);
4cce9550 1151 inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
b0376c9b
AK
1152 end |= (inc << shift);
1153 inc = (0x1ull << shift);
4cce9550
GS
1154 mb();
1155
1156 while (start <= end) {
8e0a1611 1157 if (rm)
3ad26e5c 1158 __raw_rm_writeq(cpu_to_be64(start), invalidate);
8e0a1611 1159 else
3ad26e5c 1160 __raw_writeq(cpu_to_be64(start), invalidate);
4cce9550
GS
1161 start += inc;
1162 }
1163}
1164
1165void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
3ad26e5c 1166 __be64 *startp, __be64 *endp, bool rm)
4cce9550 1167{
9e8d4a19 1168 struct pnv_ioda_pe *pe = tbl->data;
4cce9550
GS
1169 struct pnv_phb *phb = pe->phb;
1170
1171 if (phb->type == PNV_PHB_IODA1)
8e0a1611 1172 pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
4cce9550 1173 else
8e0a1611 1174 pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
4cce9550
GS
1175}
1176
cad5cef6
GKH
1177static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1178 struct pnv_ioda_pe *pe, unsigned int base,
1179 unsigned int segs)
184cd4a3
BH
1180{
1181
1182 struct page *tce_mem = NULL;
1183 const __be64 *swinvp;
1184 struct iommu_table *tbl;
1185 unsigned int i;
1186 int64_t rc;
1187 void *addr;
1188
1189 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
1190#define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8)
1191
1192 /* XXX FIXME: Handle 64-bit only DMA devices */
1193 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1194 /* XXX FIXME: Allocate multi-level tables on PHB3 */
1195
1196 /* We shouldn't already have a 32-bit DMA associated */
1197 if (WARN_ON(pe->tce32_seg >= 0))
1198 return;
1199
1200 /* Grab a 32-bit TCE table */
1201 pe->tce32_seg = base;
1202 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1203 (base << 28), ((base + segs) << 28) - 1);
1204
1205 /* XXX Currently, we allocate one big contiguous table for the
1206 * TCEs. We only really need one chunk per 256M of TCE space
1207 * (ie per segment) but that's an optimization for later, it
1208 * requires some added smarts with our get/put_tce implementation
1209 */
1210 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1211 get_order(TCE32_TABLE_SIZE * segs));
1212 if (!tce_mem) {
1213 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1214 goto fail;
1215 }
1216 addr = page_address(tce_mem);
1217 memset(addr, 0, TCE32_TABLE_SIZE * segs);
1218
1219 /* Configure HW */
1220 for (i = 0; i < segs; i++) {
1221 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1222 pe->pe_number,
1223 base + i, 1,
1224 __pa(addr) + TCE32_TABLE_SIZE * i,
1225 TCE32_TABLE_SIZE, 0x1000);
1226 if (rc) {
1227 pe_err(pe, " Failed to configure 32-bit TCE table,"
1228 " err %ld\n", rc);
1229 goto fail;
1230 }
1231 }
1232
1233 /* Setup linux iommu table */
9e8d4a19 1234 tbl = pe->tce32_table;
184cd4a3 1235 pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
8fa5d454 1236 base << 28, IOMMU_PAGE_SHIFT_4K);
184cd4a3
BH
1237
1238 /* OPAL variant of P7IOC SW invalidated TCEs */
1239 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1240 if (swinvp) {
1241 /* We need a couple more fields -- an address and a data
1242 * to or. Since the bus is only printed out on table free
1243 * errors, and on the first pass the data will be a relative
1244 * bus number, print that out instead.
1245 */
8e0a1611
AK
1246 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1247 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1248 8);
65fd766b
GS
1249 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1250 TCE_PCI_SWINV_FREE |
1251 TCE_PCI_SWINV_PAIR);
184cd4a3
BH
1252 }
1253 iommu_init_table(tbl, phb->hose->node);
e9bc03fe 1254 iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
184cd4a3 1255
74251fe2 1256 if (pe->pdev)
d905c5df 1257 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
74251fe2 1258 else
dff4a39e 1259 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
74251fe2 1260
184cd4a3
BH
1261 return;
1262 fail:
1263 /* XXX Failure: Try to fallback to 64-bit only ? */
1264 if (pe->tce32_seg >= 0)
1265 pe->tce32_seg = -1;
1266 if (tce_mem)
1267 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1268}
1269
cd15b048
BH
1270static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
1271{
9e8d4a19 1272 struct pnv_ioda_pe *pe = tbl->data;
cd15b048
BH
1273 uint16_t window_id = (pe->pe_number << 1 ) + 1;
1274 int64_t rc;
1275
1276 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1277 if (enable) {
1278 phys_addr_t top = memblock_end_of_DRAM();
1279
1280 top = roundup_pow_of_two(top);
1281 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1282 pe->pe_number,
1283 window_id,
1284 pe->tce_bypass_base,
1285 top);
1286 } else {
1287 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1288 pe->pe_number,
1289 window_id,
1290 pe->tce_bypass_base,
1291 0);
1292
1293 /*
dff4a39e
GS
1294 * EEH needs the mapping between IOMMU table and group
1295 * of those VFIO/KVM pass-through devices. We can postpone
1296 * resetting DMA ops until the DMA mask is configured in
1297 * host side.
cd15b048 1298 */
dff4a39e
GS
1299 if (pe->pdev)
1300 set_iommu_table_base(&pe->pdev->dev, tbl);
1301 else
1302 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
cd15b048
BH
1303 }
1304 if (rc)
1305 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1306 else
1307 pe->tce_bypass_enabled = enable;
1308}
1309
1310static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
1311 struct pnv_ioda_pe *pe)
1312{
1313 /* TVE #1 is selected by PCI address bit 59 */
1314 pe->tce_bypass_base = 1ull << 59;
1315
1316 /* Install set_bypass callback for VFIO */
9e8d4a19 1317 pe->tce32_table->set_bypass = pnv_pci_ioda2_set_bypass;
cd15b048
BH
1318
1319 /* Enable bypass by default */
9e8d4a19 1320 pnv_pci_ioda2_set_bypass(pe->tce32_table, true);
cd15b048
BH
1321}
1322
373f5657
GS
1323static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1324 struct pnv_ioda_pe *pe)
1325{
1326 struct page *tce_mem = NULL;
1327 void *addr;
1328 const __be64 *swinvp;
1329 struct iommu_table *tbl;
1330 unsigned int tce_table_size, end;
1331 int64_t rc;
1332
1333 /* We shouldn't already have a 32-bit DMA associated */
1334 if (WARN_ON(pe->tce32_seg >= 0))
1335 return;
1336
1337 /* The PE will reserve all possible 32-bits space */
1338 pe->tce32_seg = 0;
1339 end = (1 << ilog2(phb->ioda.m32_pci_base));
1340 tce_table_size = (end / 0x1000) * 8;
1341 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1342 end);
1343
1344 /* Allocate TCE table */
1345 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1346 get_order(tce_table_size));
1347 if (!tce_mem) {
1348 pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
1349 goto fail;
1350 }
1351 addr = page_address(tce_mem);
1352 memset(addr, 0, tce_table_size);
1353
1354 /*
1355 * Map TCE table through TVT. The TVE index is the PE number
1356 * shifted by 1 bit for 32-bits DMA space.
1357 */
1358 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1359 pe->pe_number << 1, 1, __pa(addr),
1360 tce_table_size, 0x1000);
1361 if (rc) {
1362 pe_err(pe, "Failed to configure 32-bit TCE table,"
1363 " err %ld\n", rc);
1364 goto fail;
1365 }
1366
1367 /* Setup linux iommu table */
9e8d4a19 1368 tbl = pe->tce32_table;
8fa5d454
AK
1369 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0,
1370 IOMMU_PAGE_SHIFT_4K);
373f5657
GS
1371
1372 /* OPAL variant of PHB3 invalidated TCEs */
1373 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1374 if (swinvp) {
1375 /* We need a couple more fields -- an address and a data
1376 * to or. Since the bus is only printed out on table free
1377 * errors, and on the first pass the data will be a relative
1378 * bus number, print that out instead.
1379 */
8e0a1611
AK
1380 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1381 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1382 8);
65fd766b 1383 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
373f5657
GS
1384 }
1385 iommu_init_table(tbl, phb->hose->node);
e9bc03fe 1386 iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
373f5657 1387
74251fe2 1388 if (pe->pdev)
d905c5df 1389 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
74251fe2 1390 else
dff4a39e 1391 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
74251fe2 1392
cd15b048 1393 /* Also create a bypass window */
4e287840
TLSC
1394 if (!pnv_iommu_bypass_disabled)
1395 pnv_pci_ioda2_setup_bypass_pe(phb, pe);
1396
373f5657
GS
1397 return;
1398fail:
1399 if (pe->tce32_seg >= 0)
1400 pe->tce32_seg = -1;
1401 if (tce_mem)
1402 __free_pages(tce_mem, get_order(tce_table_size));
1403}
1404
cad5cef6 1405static void pnv_ioda_setup_dma(struct pnv_phb *phb)
184cd4a3
BH
1406{
1407 struct pci_controller *hose = phb->hose;
1408 unsigned int residual, remaining, segs, tw, base;
1409 struct pnv_ioda_pe *pe;
1410
1411 /* If we have more PE# than segments available, hand out one
1412 * per PE until we run out and let the rest fail. If not,
1413 * then we assign at least one segment per PE, plus more based
1414 * on the amount of devices under that PE
1415 */
1416 if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
1417 residual = 0;
1418 else
1419 residual = phb->ioda.tce32_count -
1420 phb->ioda.dma_pe_count;
1421
1422 pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
1423 hose->global_number, phb->ioda.tce32_count);
1424 pr_info("PCI: %d PE# for a total weight of %d\n",
1425 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
1426
1427 /* Walk our PE list and configure their DMA segments, hand them
1428 * out one base segment plus any residual segments based on
1429 * weight
1430 */
1431 remaining = phb->ioda.tce32_count;
1432 tw = phb->ioda.dma_weight;
1433 base = 0;
7ebdf956 1434 list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
184cd4a3
BH
1435 if (!pe->dma_weight)
1436 continue;
1437 if (!remaining) {
1438 pe_warn(pe, "No DMA32 resources available\n");
1439 continue;
1440 }
1441 segs = 1;
1442 if (residual) {
1443 segs += ((pe->dma_weight * residual) + (tw / 2)) / tw;
1444 if (segs > remaining)
1445 segs = remaining;
1446 }
373f5657
GS
1447
1448 /*
1449 * For IODA2 compliant PHB3, we needn't care about the weight.
1450 * The all available 32-bits DMA space will be assigned to
1451 * the specific PE.
1452 */
1453 if (phb->type == PNV_PHB_IODA1) {
1454 pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
1455 pe->dma_weight, segs);
1456 pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
1457 } else {
1458 pe_info(pe, "Assign DMA32 space\n");
1459 segs = 0;
1460 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1461 }
1462
184cd4a3
BH
1463 remaining -= segs;
1464 base += segs;
1465 }
1466}
1467
1468#ifdef CONFIG_PCI_MSI
137436c9
GS
1469static void pnv_ioda2_msi_eoi(struct irq_data *d)
1470{
1471 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1472 struct irq_chip *chip = irq_data_get_irq_chip(d);
1473 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
1474 ioda.irq_chip);
1475 int64_t rc;
1476
1477 rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
1478 WARN_ON_ONCE(rc);
1479
1480 icp_native_eoi(d);
1481}
1482
fd9a1c26
IM
1483
1484static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
1485{
1486 struct irq_data *idata;
1487 struct irq_chip *ichip;
1488
1489 if (phb->type != PNV_PHB_IODA2)
1490 return;
1491
1492 if (!phb->ioda.irq_chip_init) {
1493 /*
1494 * First time we setup an MSI IRQ, we need to setup the
1495 * corresponding IRQ chip to route correctly.
1496 */
1497 idata = irq_get_irq_data(virq);
1498 ichip = irq_data_get_irq_chip(idata);
1499 phb->ioda.irq_chip_init = 1;
1500 phb->ioda.irq_chip = *ichip;
1501 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
1502 }
1503 irq_set_chip(virq, &phb->ioda.irq_chip);
1504}
1505
80c49c7e
IM
1506#ifdef CONFIG_CXL_BASE
1507
6f963ec2 1508struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
80c49c7e
IM
1509{
1510 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1511
6f963ec2 1512 return of_node_get(hose->dn);
80c49c7e 1513}
6f963ec2 1514EXPORT_SYMBOL(pnv_pci_get_phb_node);
80c49c7e 1515
1212aa1c 1516int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
80c49c7e
IM
1517{
1518 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1519 struct pnv_phb *phb = hose->private_data;
1520 struct pnv_ioda_pe *pe;
1521 int rc;
1522
1523 pe = pnv_ioda_get_pe(dev);
1524 if (!pe)
1525 return -ENODEV;
1526
1527 pe_info(pe, "Switching PHB to CXL\n");
1528
1212aa1c 1529 rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
80c49c7e
IM
1530 if (rc)
1531 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
1532
1533 return rc;
1534}
1212aa1c 1535EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
80c49c7e
IM
1536
1537/* Find PHB for cxl dev and allocate MSI hwirqs?
1538 * Returns the absolute hardware IRQ number
1539 */
1540int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
1541{
1542 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1543 struct pnv_phb *phb = hose->private_data;
1544 int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
1545
1546 if (hwirq < 0) {
1547 dev_warn(&dev->dev, "Failed to find a free MSI\n");
1548 return -ENOSPC;
1549 }
1550
1551 return phb->msi_base + hwirq;
1552}
1553EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
1554
1555void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
1556{
1557 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1558 struct pnv_phb *phb = hose->private_data;
1559
1560 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
1561}
1562EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
1563
1564void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
1565 struct pci_dev *dev)
1566{
1567 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1568 struct pnv_phb *phb = hose->private_data;
1569 int i, hwirq;
1570
1571 for (i = 1; i < CXL_IRQ_RANGES; i++) {
1572 if (!irqs->range[i])
1573 continue;
1574 pr_devel("cxl release irq range 0x%x: offset: 0x%lx limit: %ld\n",
1575 i, irqs->offset[i],
1576 irqs->range[i]);
1577 hwirq = irqs->offset[i] - phb->msi_base;
1578 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
1579 irqs->range[i]);
1580 }
1581}
1582EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
1583
1584int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
1585 struct pci_dev *dev, int num)
1586{
1587 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1588 struct pnv_phb *phb = hose->private_data;
1589 int i, hwirq, try;
1590
1591 memset(irqs, 0, sizeof(struct cxl_irq_ranges));
1592
1593 /* 0 is reserved for the multiplexed PSL DSI interrupt */
1594 for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
1595 try = num;
1596 while (try) {
1597 hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
1598 if (hwirq >= 0)
1599 break;
1600 try /= 2;
1601 }
1602 if (!try)
1603 goto fail;
1604
1605 irqs->offset[i] = phb->msi_base + hwirq;
1606 irqs->range[i] = try;
1607 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx limit: %li\n",
1608 i, irqs->offset[i], irqs->range[i]);
1609 num -= try;
1610 }
1611 if (num)
1612 goto fail;
1613
1614 return 0;
1615fail:
1616 pnv_cxl_release_hwirq_ranges(irqs, dev);
1617 return -ENOSPC;
1618}
1619EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
1620
1621int pnv_cxl_get_irq_count(struct pci_dev *dev)
1622{
1623 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1624 struct pnv_phb *phb = hose->private_data;
1625
1626 return phb->msi_bmp.irq_count;
1627}
1628EXPORT_SYMBOL(pnv_cxl_get_irq_count);
1629
1630int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
1631 unsigned int virq)
1632{
1633 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1634 struct pnv_phb *phb = hose->private_data;
1635 unsigned int xive_num = hwirq - phb->msi_base;
1636 struct pnv_ioda_pe *pe;
1637 int rc;
1638
1639 if (!(pe = pnv_ioda_get_pe(dev)))
1640 return -ENODEV;
1641
1642 /* Assign XIVE to PE */
1643 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1644 if (rc) {
1645 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
1646 "hwirq 0x%x XIVE 0x%x PE\n",
1647 pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
1648 return -EIO;
1649 }
1650 set_msi_irq_chip(phb, virq);
1651
1652 return 0;
1653}
1654EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
1655#endif
1656
184cd4a3 1657static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
137436c9
GS
1658 unsigned int hwirq, unsigned int virq,
1659 unsigned int is_64, struct msi_msg *msg)
184cd4a3
BH
1660{
1661 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
1662 unsigned int xive_num = hwirq - phb->msi_base;
3a1a4661 1663 __be32 data;
184cd4a3
BH
1664 int rc;
1665
1666 /* No PE assigned ? bail out ... no MSI for you ! */
1667 if (pe == NULL)
1668 return -ENXIO;
1669
1670 /* Check if we have an MVE */
1671 if (pe->mve_number < 0)
1672 return -ENXIO;
1673
b72c1f65 1674 /* Force 32-bit MSI on some broken devices */
36074381 1675 if (dev->no_64bit_msi)
b72c1f65
BH
1676 is_64 = 0;
1677
184cd4a3
BH
1678 /* Assign XIVE to PE */
1679 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1680 if (rc) {
1681 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
1682 pci_name(dev), rc, xive_num);
1683 return -EIO;
1684 }
1685
1686 if (is_64) {
3a1a4661
BH
1687 __be64 addr64;
1688
184cd4a3
BH
1689 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
1690 &addr64, &data);
1691 if (rc) {
1692 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
1693 pci_name(dev), rc);
1694 return -EIO;
1695 }
3a1a4661
BH
1696 msg->address_hi = be64_to_cpu(addr64) >> 32;
1697 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
184cd4a3 1698 } else {
3a1a4661
BH
1699 __be32 addr32;
1700
184cd4a3
BH
1701 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
1702 &addr32, &data);
1703 if (rc) {
1704 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
1705 pci_name(dev), rc);
1706 return -EIO;
1707 }
1708 msg->address_hi = 0;
3a1a4661 1709 msg->address_lo = be32_to_cpu(addr32);
184cd4a3 1710 }
3a1a4661 1711 msg->data = be32_to_cpu(data);
184cd4a3 1712
fd9a1c26 1713 set_msi_irq_chip(phb, virq);
137436c9 1714
184cd4a3
BH
1715 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
1716 " address=%x_%08x data=%x PE# %d\n",
1717 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
1718 msg->address_hi, msg->address_lo, data, pe->pe_number);
1719
1720 return 0;
1721}
1722
1723static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
1724{
fb1b55d6 1725 unsigned int count;
184cd4a3
BH
1726 const __be32 *prop = of_get_property(phb->hose->dn,
1727 "ibm,opal-msi-ranges", NULL);
1728 if (!prop) {
1729 /* BML Fallback */
1730 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
1731 }
1732 if (!prop)
1733 return;
1734
1735 phb->msi_base = be32_to_cpup(prop);
fb1b55d6
GS
1736 count = be32_to_cpup(prop + 1);
1737 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
184cd4a3
BH
1738 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
1739 phb->hose->global_number);
1740 return;
1741 }
fb1b55d6 1742
184cd4a3
BH
1743 phb->msi_setup = pnv_pci_ioda_msi_setup;
1744 phb->msi32_support = 1;
1745 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
fb1b55d6 1746 count, phb->msi_base);
184cd4a3
BH
1747}
1748#else
1749static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
1750#endif /* CONFIG_PCI_MSI */
1751
11685bec
GS
1752/*
1753 * This function is supposed to be called on basis of PE from top
1754 * to bottom style. So the the I/O or MMIO segment assigned to
1755 * parent PE could be overrided by its child PEs if necessary.
1756 */
cad5cef6
GKH
1757static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
1758 struct pnv_ioda_pe *pe)
11685bec
GS
1759{
1760 struct pnv_phb *phb = hose->private_data;
1761 struct pci_bus_region region;
1762 struct resource *res;
1763 int i, index;
1764 int rc;
1765
1766 /*
1767 * NOTE: We only care PCI bus based PE for now. For PCI
1768 * device based PE, for example SRIOV sensitive VF should
1769 * be figured out later.
1770 */
1771 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
1772
1773 pci_bus_for_each_resource(pe->pbus, res, i) {
1774 if (!res || !res->flags ||
1775 res->start > res->end)
1776 continue;
1777
1778 if (res->flags & IORESOURCE_IO) {
1779 region.start = res->start - phb->ioda.io_pci_base;
1780 region.end = res->end - phb->ioda.io_pci_base;
1781 index = region.start / phb->ioda.io_segsize;
1782
1783 while (index < phb->ioda.total_pe &&
1784 region.start <= region.end) {
1785 phb->ioda.io_segmap[index] = pe->pe_number;
1786 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1787 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
1788 if (rc != OPAL_SUCCESS) {
1789 pr_err("%s: OPAL error %d when mapping IO "
1790 "segment #%d to PE#%d\n",
1791 __func__, rc, index, pe->pe_number);
1792 break;
1793 }
1794
1795 region.start += phb->ioda.io_segsize;
1796 index++;
1797 }
1798 } else if (res->flags & IORESOURCE_MEM) {
1799 region.start = res->start -
3fd47f06 1800 hose->mem_offset[0] -
11685bec
GS
1801 phb->ioda.m32_pci_base;
1802 region.end = res->end -
3fd47f06 1803 hose->mem_offset[0] -
11685bec
GS
1804 phb->ioda.m32_pci_base;
1805 index = region.start / phb->ioda.m32_segsize;
1806
1807 while (index < phb->ioda.total_pe &&
1808 region.start <= region.end) {
1809 phb->ioda.m32_segmap[index] = pe->pe_number;
1810 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1811 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
1812 if (rc != OPAL_SUCCESS) {
1813 pr_err("%s: OPAL error %d when mapping M32 "
1814 "segment#%d to PE#%d",
1815 __func__, rc, index, pe->pe_number);
1816 break;
1817 }
1818
1819 region.start += phb->ioda.m32_segsize;
1820 index++;
1821 }
1822 }
1823 }
1824}
1825
cad5cef6 1826static void pnv_pci_ioda_setup_seg(void)
11685bec
GS
1827{
1828 struct pci_controller *tmp, *hose;
1829 struct pnv_phb *phb;
1830 struct pnv_ioda_pe *pe;
1831
1832 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1833 phb = hose->private_data;
1834 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
1835 pnv_ioda_setup_pe_seg(hose, pe);
1836 }
1837 }
1838}
1839
cad5cef6 1840static void pnv_pci_ioda_setup_DMA(void)
13395c48
GS
1841{
1842 struct pci_controller *hose, *tmp;
db1266c8 1843 struct pnv_phb *phb;
13395c48
GS
1844
1845 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1846 pnv_ioda_setup_dma(hose->private_data);
db1266c8
GS
1847
1848 /* Mark the PHB initialization done */
1849 phb = hose->private_data;
1850 phb->initialized = 1;
13395c48
GS
1851 }
1852}
1853
37c367f2
GS
1854static void pnv_pci_ioda_create_dbgfs(void)
1855{
1856#ifdef CONFIG_DEBUG_FS
1857 struct pci_controller *hose, *tmp;
1858 struct pnv_phb *phb;
1859 char name[16];
1860
1861 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1862 phb = hose->private_data;
1863
1864 sprintf(name, "PCI%04x", hose->global_number);
1865 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
1866 if (!phb->dbgfs)
1867 pr_warning("%s: Error on creating debugfs on PHB#%x\n",
1868 __func__, hose->global_number);
1869 }
1870#endif /* CONFIG_DEBUG_FS */
1871}
1872
cad5cef6 1873static void pnv_pci_ioda_fixup(void)
fb446ad0
GS
1874{
1875 pnv_pci_ioda_setup_PEs();
11685bec 1876 pnv_pci_ioda_setup_seg();
13395c48 1877 pnv_pci_ioda_setup_DMA();
e9cc17d4 1878
37c367f2
GS
1879 pnv_pci_ioda_create_dbgfs();
1880
e9cc17d4 1881#ifdef CONFIG_EEH
e9cc17d4 1882 eeh_init();
dadcd6d6 1883 eeh_addr_cache_build();
e9cc17d4 1884#endif
fb446ad0
GS
1885}
1886
271fd03a
GS
1887/*
1888 * Returns the alignment for I/O or memory windows for P2P
1889 * bridges. That actually depends on how PEs are segmented.
1890 * For now, we return I/O or M32 segment size for PE sensitive
1891 * P2P bridges. Otherwise, the default values (4KiB for I/O,
1892 * 1MiB for memory) will be returned.
1893 *
1894 * The current PCI bus might be put into one PE, which was
1895 * create against the parent PCI bridge. For that case, we
1896 * needn't enlarge the alignment so that we can save some
1897 * resources.
1898 */
1899static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
1900 unsigned long type)
1901{
1902 struct pci_dev *bridge;
1903 struct pci_controller *hose = pci_bus_to_host(bus);
1904 struct pnv_phb *phb = hose->private_data;
1905 int num_pci_bridges = 0;
1906
1907 bridge = bus->self;
1908 while (bridge) {
1909 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1910 num_pci_bridges++;
1911 if (num_pci_bridges >= 2)
1912 return 1;
1913 }
1914
1915 bridge = bridge->bus->self;
1916 }
1917
262af557
GC
1918 /* We fail back to M32 if M64 isn't supported */
1919 if (phb->ioda.m64_segsize &&
1920 pnv_pci_is_mem_pref_64(type))
1921 return phb->ioda.m64_segsize;
271fd03a
GS
1922 if (type & IORESOURCE_MEM)
1923 return phb->ioda.m32_segsize;
1924
1925 return phb->ioda.io_segsize;
1926}
1927
184cd4a3
BH
1928/* Prevent enabling devices for which we couldn't properly
1929 * assign a PE
1930 */
cad5cef6 1931static int pnv_pci_enable_device_hook(struct pci_dev *dev)
184cd4a3 1932{
db1266c8
GS
1933 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1934 struct pnv_phb *phb = hose->private_data;
1935 struct pci_dn *pdn;
184cd4a3 1936
db1266c8
GS
1937 /* The function is probably called while the PEs have
1938 * not be created yet. For example, resource reassignment
1939 * during PCI probe period. We just skip the check if
1940 * PEs isn't ready.
1941 */
1942 if (!phb->initialized)
1943 return 0;
1944
b72c1f65 1945 pdn = pci_get_pdn(dev);
184cd4a3
BH
1946 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1947 return -EINVAL;
db1266c8 1948
184cd4a3
BH
1949 return 0;
1950}
1951
1952static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1953 u32 devfn)
1954{
1955 return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1956}
1957
73ed148a
BH
1958static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
1959{
d1a85eee 1960 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
73ed148a
BH
1961 OPAL_ASSERT_RESET);
1962}
1963
e51df2c1
AB
1964static void __init pnv_pci_init_ioda_phb(struct device_node *np,
1965 u64 hub_id, int ioda_type)
184cd4a3
BH
1966{
1967 struct pci_controller *hose;
184cd4a3 1968 struct pnv_phb *phb;
8184616f 1969 unsigned long size, m32map_off, pemap_off, iomap_off = 0;
c681b93c 1970 const __be64 *prop64;
3a1a4661 1971 const __be32 *prop32;
f1b7cc3e 1972 int len;
184cd4a3
BH
1973 u64 phb_id;
1974 void *aux;
1975 long rc;
1976
58d714ec 1977 pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
184cd4a3
BH
1978
1979 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1980 if (!prop64) {
1981 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
1982 return;
1983 }
1984 phb_id = be64_to_cpup(prop64);
1985 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
1986
e39f223f 1987 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
58d714ec
GS
1988
1989 /* Allocate PCI controller */
58d714ec
GS
1990 phb->hose = hose = pcibios_alloc_controller(np);
1991 if (!phb->hose) {
1992 pr_err(" Can't allocate PCI controller for %s\n",
184cd4a3 1993 np->full_name);
e39f223f 1994 memblock_free(__pa(phb), sizeof(struct pnv_phb));
184cd4a3
BH
1995 return;
1996 }
1997
1998 spin_lock_init(&phb->lock);
f1b7cc3e
GS
1999 prop32 = of_get_property(np, "bus-range", &len);
2000 if (prop32 && len == 8) {
3a1a4661
BH
2001 hose->first_busno = be32_to_cpu(prop32[0]);
2002 hose->last_busno = be32_to_cpu(prop32[1]);
f1b7cc3e
GS
2003 } else {
2004 pr_warn(" Broken <bus-range> on %s\n", np->full_name);
2005 hose->first_busno = 0;
2006 hose->last_busno = 0xff;
2007 }
184cd4a3 2008 hose->private_data = phb;
e9cc17d4 2009 phb->hub_id = hub_id;
184cd4a3 2010 phb->opal_id = phb_id;
aa0c033f 2011 phb->type = ioda_type;
184cd4a3 2012
cee72d5b
BH
2013 /* Detect specific models for error handling */
2014 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2015 phb->model = PNV_PHB_MODEL_P7IOC;
f3d40c25 2016 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
aa0c033f 2017 phb->model = PNV_PHB_MODEL_PHB3;
cee72d5b
BH
2018 else
2019 phb->model = PNV_PHB_MODEL_UNKNOWN;
2020
aa0c033f 2021 /* Parse 32-bit and IO ranges (if any) */
2f1ec02e 2022 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
184cd4a3 2023
aa0c033f 2024 /* Get registers */
184cd4a3
BH
2025 phb->regs = of_iomap(np, 0);
2026 if (phb->regs == NULL)
2027 pr_err(" Failed to map registers !\n");
2028
184cd4a3 2029 /* Initialize more IODA stuff */
36954dc7 2030 phb->ioda.total_pe = 1;
aa0c033f 2031 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
36954dc7 2032 if (prop32)
3a1a4661 2033 phb->ioda.total_pe = be32_to_cpup(prop32);
36954dc7
GS
2034 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
2035 if (prop32)
2036 phb->ioda.reserved_pe = be32_to_cpup(prop32);
262af557
GC
2037
2038 /* Parse 64-bit MMIO range */
2039 pnv_ioda_parse_m64_window(phb);
2040
184cd4a3 2041 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
aa0c033f 2042 /* FW Has already off top 64k of M32 space (MSI space) */
184cd4a3
BH
2043 phb->ioda.m32_size += 0x10000;
2044
2045 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
3fd47f06 2046 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
184cd4a3
BH
2047 phb->ioda.io_size = hose->pci_io_size;
2048 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
2049 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2050
c35d2a8c 2051 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
184cd4a3
BH
2052 size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
2053 m32map_off = size;
e47747f4 2054 size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
c35d2a8c
GS
2055 if (phb->type == PNV_PHB_IODA1) {
2056 iomap_off = size;
2057 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
2058 }
184cd4a3
BH
2059 pemap_off = size;
2060 size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
e39f223f 2061 aux = memblock_virt_alloc(size, 0);
184cd4a3
BH
2062 phb->ioda.pe_alloc = aux;
2063 phb->ioda.m32_segmap = aux + m32map_off;
c35d2a8c
GS
2064 if (phb->type == PNV_PHB_IODA1)
2065 phb->ioda.io_segmap = aux + iomap_off;
184cd4a3 2066 phb->ioda.pe_array = aux + pemap_off;
36954dc7 2067 set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
184cd4a3 2068
7ebdf956 2069 INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
184cd4a3
BH
2070 INIT_LIST_HEAD(&phb->ioda.pe_list);
2071
2072 /* Calculate how many 32-bit TCE segments we have */
2073 phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
2074
aa0c033f 2075#if 0 /* We should really do that ... */
184cd4a3
BH
2076 rc = opal_pci_set_phb_mem_window(opal->phb_id,
2077 window_type,
2078 window_num,
2079 starting_real_address,
2080 starting_pci_address,
2081 segment_size);
2082#endif
2083
262af557
GC
2084 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2085 phb->ioda.total_pe, phb->ioda.reserved_pe,
2086 phb->ioda.m32_size, phb->ioda.m32_segsize);
2087 if (phb->ioda.m64_size)
2088 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
2089 phb->ioda.m64_size, phb->ioda.m64_segsize);
2090 if (phb->ioda.io_size)
2091 pr_info(" IO: 0x%x [segment=0x%x]\n",
2092 phb->ioda.io_size, phb->ioda.io_segsize);
2093
184cd4a3 2094
184cd4a3 2095 phb->hose->ops = &pnv_pci_ops;
49dec922
GS
2096 phb->get_pe_state = pnv_ioda_get_pe_state;
2097 phb->freeze_pe = pnv_ioda_freeze_pe;
2098 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
184cd4a3
BH
2099
2100 /* Setup RID -> PE mapping function */
2101 phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
2102
2103 /* Setup TCEs */
2104 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
cd15b048 2105 phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
fe7e85c6 2106 phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask;
184cd4a3 2107
73ed148a
BH
2108 /* Setup shutdown function for kexec */
2109 phb->shutdown = pnv_pci_ioda_shutdown;
2110
184cd4a3
BH
2111 /* Setup MSI support */
2112 pnv_pci_init_ioda_msis(phb);
2113
c40a4210
GS
2114 /*
2115 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2116 * to let the PCI core do resource assignment. It's supposed
2117 * that the PCI core will do correct I/O and MMIO alignment
2118 * for the P2P bridge bars so that each PCI bus (excluding
2119 * the child P2P bridges) can form individual PE.
184cd4a3 2120 */
fb446ad0 2121 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
184cd4a3 2122 ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
271fd03a 2123 ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
d92a208d 2124 ppc_md.pcibios_reset_secondary_bus = pnv_pci_reset_secondary_bus;
c40a4210 2125 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
184cd4a3
BH
2126
2127 /* Reset IODA tables to a clean state */
d1a85eee 2128 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
184cd4a3 2129 if (rc)
f11fe552 2130 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
361f2a2a
GS
2131
2132 /* If we're running in kdump kerenl, the previous kerenl never
2133 * shutdown PCI devices correctly. We already got IODA table
2134 * cleaned out. So we have to issue PHB reset to stop all PCI
2135 * transactions from previous kerenl.
2136 */
2137 if (is_kdump_kernel()) {
2138 pr_info(" Issue PHB reset ...\n");
cadf364d
GS
2139 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2140 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
361f2a2a 2141 }
262af557 2142
9e9e8935
GS
2143 /* Remove M64 resource if we can't configure it successfully */
2144 if (!phb->init_m64 || phb->init_m64(phb))
262af557 2145 hose->mem_resources[1].flags = 0;
aa0c033f
GS
2146}
2147
67975005 2148void __init pnv_pci_init_ioda2_phb(struct device_node *np)
aa0c033f 2149{
e9cc17d4 2150 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
184cd4a3
BH
2151}
2152
2153void __init pnv_pci_init_ioda_hub(struct device_node *np)
2154{
2155 struct device_node *phbn;
c681b93c 2156 const __be64 *prop64;
184cd4a3
BH
2157 u64 hub_id;
2158
2159 pr_info("Probing IODA IO-Hub %s\n", np->full_name);
2160
2161 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
2162 if (!prop64) {
2163 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
2164 return;
2165 }
2166 hub_id = be64_to_cpup(prop64);
2167 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
2168
2169 /* Count child PHBs */
2170 for_each_child_of_node(np, phbn) {
2171 /* Look for IODA1 PHBs */
2172 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
e9cc17d4 2173 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
184cd4a3
BH
2174 }
2175}