powerpc/64s/radix: make ptep_get_and_clear_full non-atomic for the full case
[linux-2.6-block.git] / arch / powerpc / mm / pgtable-book3s64.c
CommitLineData
3df33f12
AK
1/*
2 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 */
9
10#include <linux/sched.h>
589ee628 11#include <linux/mm_types.h>
59879d54 12#include <linux/memblock.h>
fa4531f7 13#include <misc/cxl-base.h>
589ee628 14
3df33f12
AK
15#include <asm/pgalloc.h>
16#include <asm/tlb.h>
59879d54
AK
17#include <asm/trace.h>
18#include <asm/powernv.h>
3df33f12
AK
19
20#include "mmu_decl.h"
21#include <trace/events/thp.h>
22
8a6c697b
AK
23unsigned long __pmd_frag_nr;
24EXPORT_SYMBOL(__pmd_frag_nr);
25unsigned long __pmd_frag_size_shift;
26EXPORT_SYMBOL(__pmd_frag_size_shift);
27
eea8148c
ME
28int (*register_process_table)(unsigned long base, unsigned long page_size,
29 unsigned long tbl_size);
30
3df33f12
AK
31#ifdef CONFIG_TRANSPARENT_HUGEPAGE
32/*
33 * This is called when relaxing access to a hugepage. It's also called in the page
34 * fault path when we don't hit any of the major fault cases, ie, a minor
35 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
36 * handled those two for us, we additionally deal with missing execute
37 * permission here on some processors
38 */
39int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
40 pmd_t *pmdp, pmd_t entry, int dirty)
41{
42 int changed;
43#ifdef CONFIG_DEBUG_VM
ebd31197 44 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
af60a4cf 45 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
3df33f12
AK
46#endif
47 changed = !pmd_same(*(pmdp), entry);
48 if (changed) {
e4c1112c
AK
49 /*
50 * We can use MMU_PAGE_2M here, because only radix
51 * path look at the psize.
52 */
53 __ptep_set_access_flags(vma, pmdp_ptep(pmdp),
54 pmd_pte(entry), address, MMU_PAGE_2M);
3df33f12
AK
55 }
56 return changed;
57}
58
59int pmdp_test_and_clear_young(struct vm_area_struct *vma,
60 unsigned long address, pmd_t *pmdp)
61{
62 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
63}
64/*
65 * set a new huge pmd. We should not be called for updating
66 * an existing pmd entry. That should go via pmd_hugepage_update.
67 */
68void set_pmd_at(struct mm_struct *mm, unsigned long addr,
69 pmd_t *pmdp, pmd_t pmd)
70{
71#ifdef CONFIG_DEBUG_VM
72 WARN_ON(pte_present(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
af60a4cf 73 assert_spin_locked(pmd_lockptr(mm, pmdp));
ebd31197 74 WARN_ON(!(pmd_trans_huge(pmd) || pmd_devmap(pmd)));
3df33f12
AK
75#endif
76 trace_hugepage_set_pmd(addr, pmd_val(pmd));
77 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
78}
fa4531f7
AK
79
80static void do_nothing(void *unused)
81{
82
83}
84/*
85 * Serialize against find_current_mm_pte which does lock-less
86 * lookup in page tables with local interrupts disabled. For huge pages
87 * it casts pmd_t to pte_t. Since format of pte_t is different from
88 * pmd_t we want to prevent transit from pmd pointing to page table
89 * to pmd pointing to huge page (and back) while interrupts are disabled.
90 * We clear pmd to possibly replace it with page table pointer in
91 * different code paths. So make sure we wait for the parallel
92 * find_current_mm_pte to finish.
93 */
94void serialize_against_pte_lookup(struct mm_struct *mm)
95{
96 smp_mb();
0f4bc093 97 smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
fa4531f7
AK
98}
99
3df33f12
AK
100/*
101 * We use this to invalidate a pmdp entry before switching from a
102 * hugepte to regular pmd entry.
103 */
8cc931e0 104pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
3df33f12
AK
105 pmd_t *pmdp)
106{
8cc931e0
AK
107 unsigned long old_pmd;
108
109 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0);
d8e91e93 110 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
3df33f12
AK
111 /*
112 * This ensures that generic code that rely on IRQ disabling
113 * to prevent a parallel THP split work as expected.
114 */
fa4531f7 115 serialize_against_pte_lookup(vma->vm_mm);
8cc931e0 116 return __pmd(old_pmd);
3df33f12
AK
117}
118
119static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
120{
121 return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
122}
123
124pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
125{
126 unsigned long pmdv;
127
128 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
129 return pmd_set_protbits(__pmd(pmdv), pgprot);
130}
131
132pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
133{
134 return pfn_pmd(page_to_pfn(page), pgprot);
135}
136
137pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
138{
139 unsigned long pmdv;
140
141 pmdv = pmd_val(pmd);
142 pmdv &= _HPAGE_CHG_MASK;
143 return pmd_set_protbits(__pmd(pmdv), newprot);
144}
145
146/*
147 * This is called at the end of handling a user page fault, when the
148 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
149 * We use it to preload an HPTE into the hash table corresponding to
150 * the updated linux HUGE PMD entry.
151 */
152void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
153 pmd_t *pmd)
154{
155 return;
156}
157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
fe036a06
BH
158
159/* For use by kexec */
160void mmu_cleanup_all(void)
161{
162 if (radix_enabled())
163 radix__mmu_cleanup_all();
164 else if (mmu_hash_ops.hpte_clear_all)
165 mmu_hash_ops.hpte_clear_all();
166}
32b53c01
RA
167
168#ifdef CONFIG_MEMORY_HOTPLUG
f437c517 169int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid)
32b53c01
RA
170{
171 if (radix_enabled())
29ab6c47 172 return radix__create_section_mapping(start, end, nid);
32b53c01 173
29ab6c47 174 return hash__create_section_mapping(start, end, nid);
32b53c01
RA
175}
176
bde709a7 177int __meminit remove_section_mapping(unsigned long start, unsigned long end)
32b53c01
RA
178{
179 if (radix_enabled())
4b5d62ca 180 return radix__remove_section_mapping(start, end);
32b53c01
RA
181
182 return hash__remove_section_mapping(start, end);
183}
184#endif /* CONFIG_MEMORY_HOTPLUG */
59879d54
AK
185
186void __init mmu_partition_table_init(void)
187{
188 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
189 unsigned long ptcr;
190
191 BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
192 partition_tb = __va(memblock_alloc_base(patb_size, patb_size,
193 MEMBLOCK_ALLOC_ANYWHERE));
194
195 /* Initialize the Partition Table with no entries */
196 memset((void *)partition_tb, 0, patb_size);
197
198 /*
199 * update partition table control register,
200 * 64 K size.
201 */
202 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
203 mtspr(SPRN_PTCR, ptcr);
204 powernv_set_nmmu_ptcr(ptcr);
205}
206
207void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
208 unsigned long dw1)
209{
210 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
211
212 partition_tb[lpid].patb0 = cpu_to_be64(dw0);
213 partition_tb[lpid].patb1 = cpu_to_be64(dw1);
214
215 /*
216 * Global flush of TLBs and partition table caches for this lpid.
217 * The type of flush (hash or radix) depends on what the previous
218 * use of this partition ID was, not the new use.
219 */
220 asm volatile("ptesync" : : : "memory");
221 if (old & PATB_HR) {
222 asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
223 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
224 asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
225 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
226 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1);
227 } else {
228 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
229 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
230 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
231 }
232 /* do we need fixup here ?*/
233 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
234}
235EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
1c7ec8a4 236
8a6c697b
AK
237static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
238{
239 void *pmd_frag, *ret;
240
241 spin_lock(&mm->page_table_lock);
242 ret = mm->context.pmd_frag;
243 if (ret) {
244 pmd_frag = ret + PMD_FRAG_SIZE;
245 /*
246 * If we have taken up all the fragments mark PTE page NULL
247 */
248 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
249 pmd_frag = NULL;
250 mm->context.pmd_frag = pmd_frag;
251 }
252 spin_unlock(&mm->page_table_lock);
253 return (pmd_t *)ret;
254}
255
256static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
257{
258 void *ret = NULL;
259 struct page *page;
260 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
261
262 if (mm == &init_mm)
263 gfp &= ~__GFP_ACCOUNT;
264 page = alloc_page(gfp);
265 if (!page)
266 return NULL;
267 if (!pgtable_pmd_page_ctor(page)) {
268 __free_pages(page, 0);
269 return NULL;
270 }
271
272 ret = page_address(page);
273 /*
274 * if we support only one fragment just return the
275 * allocated page.
276 */
277 if (PMD_FRAG_NR == 1)
278 return ret;
279
280 spin_lock(&mm->page_table_lock);
281 /*
282 * If we find pgtable_page set, we return
283 * the allocated page with single fragement
284 * count.
285 */
286 if (likely(!mm->context.pmd_frag)) {
287 set_page_count(page, PMD_FRAG_NR);
288 mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
289 }
290 spin_unlock(&mm->page_table_lock);
291
292 return (pmd_t *)ret;
293}
294
295pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
296{
297 pmd_t *pmd;
298
299 pmd = get_pmd_from_cache(mm);
300 if (pmd)
301 return pmd;
302
303 return __alloc_for_pmdcache(mm);
304}
305
306void pmd_fragment_free(unsigned long *pmd)
307{
308 struct page *page = virt_to_page(pmd);
309
310 if (put_page_testzero(page)) {
311 pgtable_pmd_page_dtor(page);
312 free_unref_page(page);
313 }
314}
315
70234676
AK
316static pte_t *get_pte_from_cache(struct mm_struct *mm)
317{
318 void *pte_frag, *ret;
319
320 spin_lock(&mm->page_table_lock);
321 ret = mm->context.pte_frag;
322 if (ret) {
323 pte_frag = ret + PTE_FRAG_SIZE;
324 /*
325 * If we have taken up all the fragments mark PTE page NULL
326 */
327 if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
328 pte_frag = NULL;
329 mm->context.pte_frag = pte_frag;
330 }
331 spin_unlock(&mm->page_table_lock);
332 return (pte_t *)ret;
333}
334
335static pte_t *__alloc_for_ptecache(struct mm_struct *mm, int kernel)
336{
337 void *ret = NULL;
338 struct page *page;
339
340 if (!kernel) {
341 page = alloc_page(PGALLOC_GFP | __GFP_ACCOUNT);
342 if (!page)
343 return NULL;
344 if (!pgtable_page_ctor(page)) {
345 __free_page(page);
346 return NULL;
347 }
348 } else {
349 page = alloc_page(PGALLOC_GFP);
350 if (!page)
351 return NULL;
352 }
353
1c7ec8a4 354
70234676 355 ret = page_address(page);
1c7ec8a4
AK
356 /*
357 * if we support only one fragment just return the
358 * allocated page.
359 */
360 if (PTE_FRAG_NR == 1)
361 return ret;
70234676
AK
362 spin_lock(&mm->page_table_lock);
363 /*
364 * If we find pgtable_page set, we return
365 * the allocated page with single fragement
366 * count.
367 */
368 if (likely(!mm->context.pte_frag)) {
369 set_page_count(page, PTE_FRAG_NR);
370 mm->context.pte_frag = ret + PTE_FRAG_SIZE;
371 }
372 spin_unlock(&mm->page_table_lock);
373
374 return (pte_t *)ret;
375}
376
377pte_t *pte_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
378{
379 pte_t *pte;
380
381 pte = get_pte_from_cache(mm);
382 if (pte)
383 return pte;
384
385 return __alloc_for_ptecache(mm, kernel);
386}
387
70234676
AK
388void pte_fragment_free(unsigned long *table, int kernel)
389{
390 struct page *page = virt_to_page(table);
391
392 if (put_page_testzero(page)) {
393 if (!kernel)
394 pgtable_page_dtor(page);
395 free_unref_page(page);
396 }
397}
398
0c4d2680
AK
399static inline void pgtable_free(void *table, int index)
400{
401 switch (index) {
402 case PTE_INDEX:
403 pte_fragment_free(table, 0);
404 break;
405 case PMD_INDEX:
738f9645 406 pmd_fragment_free(table);
0c4d2680
AK
407 break;
408 case PUD_INDEX:
409 kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table);
410 break;
411 /* We don't free pgd table via RCU callback */
412 default:
413 BUG();
414 }
415}
416
70234676 417#ifdef CONFIG_SMP
0c4d2680 418void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
70234676
AK
419{
420 unsigned long pgf = (unsigned long)table;
421
0c4d2680
AK
422 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
423 pgf |= index;
70234676
AK
424 tlb_remove_table(tlb, (void *)pgf);
425}
426
427void __tlb_remove_table(void *_table)
428{
429 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
0c4d2680 430 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
70234676 431
0c4d2680 432 return pgtable_free(table, index);
70234676
AK
433}
434#else
0c4d2680 435void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
70234676 436{
0c4d2680 437 return pgtable_free(table, index);
70234676
AK
438}
439#endif