powerpc/mm: Fix missing _PAGE_NON_IDEMPOTENT in pgtable dump
[linux-2.6-block.git] / arch / powerpc / mm / dump_linuxpagetables.c
CommitLineData
8eb07b18
RG
1/*
2 * Copyright 2016, Rashmica Gupta, IBM Corp.
3 *
4 * This traverses the kernel pagetables and dumps the
5 * information about the used sections of memory to
6 * /sys/kernel/debug/kernel_pagetables.
7 *
8 * Derived from the arm64 implementation:
9 * Copyright (c) 2014, The Linux Foundation, Laura Abbott.
10 * (C) Copyright 2008 Intel Corporation, Arjan van de Ven.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; version 2
15 * of the License.
16 */
17#include <linux/debugfs.h>
18#include <linux/fs.h>
19#include <linux/io.h>
20#include <linux/mm.h>
21#include <linux/sched.h>
22#include <linux/seq_file.h>
23#include <asm/fixmap.h>
24#include <asm/pgtable.h>
25#include <linux/const.h>
26#include <asm/page.h>
27#include <asm/pgalloc.h>
28
29/*
30 * To visualise what is happening,
31 *
32 * - PTRS_PER_P** = how many entries there are in the corresponding P**
33 * - P**_SHIFT = how many bits of the address we use to index into the
34 * corresponding P**
35 * - P**_SIZE is how much memory we can access through the table - not the
36 * size of the table itself.
37 * P**={PGD, PUD, PMD, PTE}
38 *
39 *
40 * Each entry of the PGD points to a PUD. Each entry of a PUD points to a
41 * PMD. Each entry of a PMD points to a PTE. And every PTE entry points to
42 * a page.
43 *
44 * In the case where there are only 3 levels, the PUD is folded into the
45 * PGD: every PUD has only one entry which points to the PMD.
46 *
47 * The page dumper groups page table entries of the same type into a single
48 * description. It uses pg_state to track the range information while
49 * iterating over the PTE entries. When the continuity is broken it then
50 * dumps out a description of the range - ie PTEs that are virtually contiguous
51 * with the same PTE flags are chunked together. This is to make it clear how
52 * different areas of the kernel virtual memory are used.
53 *
54 */
55struct pg_state {
56 struct seq_file *seq;
57 const struct addr_marker *marker;
58 unsigned long start_address;
59 unsigned int level;
60 u64 current_flags;
61};
62
63struct addr_marker {
64 unsigned long start_address;
65 const char *name;
66};
67
68static struct addr_marker address_markers[] = {
69 { 0, "Start of kernel VM" },
70 { 0, "vmalloc() Area" },
71 { 0, "vmalloc() End" },
72 { 0, "isa I/O start" },
73 { 0, "isa I/O end" },
74 { 0, "phb I/O start" },
75 { 0, "phb I/O end" },
76 { 0, "I/O remap start" },
77 { 0, "I/O remap end" },
78 { 0, "vmemmap start" },
79 { -1, NULL },
80};
81
82struct flag_info {
83 u64 mask;
84 u64 val;
85 const char *set;
86 const char *clear;
87 bool is_val;
88 int shift;
89};
90
91static const struct flag_info flag_array[] = {
92 {
93#ifdef CONFIG_PPC_STD_MMU_64
94 .mask = _PAGE_PRIVILEGED,
95 .val = 0,
96#else
97 .mask = _PAGE_USER,
98 .val = _PAGE_USER,
99#endif
100 .set = "user",
101 .clear = " ",
102 }, {
103 .mask = _PAGE_RW,
104 .val = _PAGE_RW,
105 .set = "rw",
106 .clear = "ro",
107 }, {
108 .mask = _PAGE_EXEC,
109 .val = _PAGE_EXEC,
110 .set = " X ",
111 .clear = " ",
112 }, {
113 .mask = _PAGE_PTE,
114 .val = _PAGE_PTE,
115 .set = "pte",
116 .clear = " ",
117 }, {
118 .mask = _PAGE_PRESENT,
119 .val = _PAGE_PRESENT,
120 .set = "present",
121 .clear = " ",
122 }, {
123#ifdef CONFIG_PPC_STD_MMU_64
124 .mask = H_PAGE_HASHPTE,
125 .val = H_PAGE_HASHPTE,
126#else
127 .mask = _PAGE_HASHPTE,
128 .val = _PAGE_HASHPTE,
129#endif
130 .set = "hpte",
131 .clear = " ",
132 }, {
133#ifndef CONFIG_PPC_STD_MMU_64
134 .mask = _PAGE_GUARDED,
135 .val = _PAGE_GUARDED,
136 .set = "guarded",
137 .clear = " ",
138 }, {
139#endif
140 .mask = _PAGE_DIRTY,
141 .val = _PAGE_DIRTY,
142 .set = "dirty",
143 .clear = " ",
144 }, {
145 .mask = _PAGE_ACCESSED,
146 .val = _PAGE_ACCESSED,
147 .set = "accessed",
148 .clear = " ",
149 }, {
150#ifndef CONFIG_PPC_STD_MMU_64
151 .mask = _PAGE_WRITETHRU,
152 .val = _PAGE_WRITETHRU,
153 .set = "write through",
154 .clear = " ",
155 }, {
156#endif
70538eaa 157#ifndef CONFIG_PPC_BOOK3S_64
8eb07b18
RG
158 .mask = _PAGE_NO_CACHE,
159 .val = _PAGE_NO_CACHE,
160 .set = "no cache",
161 .clear = " ",
162 }, {
70538eaa
OH
163#else
164 .mask = _PAGE_NON_IDEMPOTENT,
165 .val = _PAGE_NON_IDEMPOTENT,
166 .set = "non-idempotent",
167 .clear = " ",
168 }, {
169 .mask = _PAGE_TOLERANT,
170 .val = _PAGE_TOLERANT,
171 .set = "tolerant",
172 .clear = " ",
173 }, {
174#endif
dd5ac03e 175#ifdef CONFIG_PPC_BOOK3S_64
8eb07b18
RG
176 .mask = H_PAGE_BUSY,
177 .val = H_PAGE_BUSY,
178 .set = "busy",
179 }, {
180#ifdef CONFIG_PPC_64K_PAGES
181 .mask = H_PAGE_COMBO,
182 .val = H_PAGE_COMBO,
183 .set = "combo",
184 }, {
185 .mask = H_PAGE_4K_PFN,
186 .val = H_PAGE_4K_PFN,
187 .set = "4K_pfn",
188 }, {
189#endif
190 .mask = H_PAGE_F_GIX,
191 .val = H_PAGE_F_GIX,
192 .set = "f_gix",
193 .is_val = true,
194 .shift = H_PAGE_F_GIX_SHIFT,
195 }, {
196 .mask = H_PAGE_F_SECOND,
197 .val = H_PAGE_F_SECOND,
198 .set = "f_second",
199 }, {
dd5ac03e 200#endif
8eb07b18
RG
201 .mask = _PAGE_SPECIAL,
202 .val = _PAGE_SPECIAL,
203 .set = "special",
204 }
205};
206
207struct pgtable_level {
208 const struct flag_info *flag;
209 size_t num;
210 u64 mask;
211};
212
213static struct pgtable_level pg_level[] = {
214 {
215 }, { /* pgd */
216 .flag = flag_array,
217 .num = ARRAY_SIZE(flag_array),
218 }, { /* pud */
219 .flag = flag_array,
220 .num = ARRAY_SIZE(flag_array),
221 }, { /* pmd */
222 .flag = flag_array,
223 .num = ARRAY_SIZE(flag_array),
224 }, { /* pte */
225 .flag = flag_array,
226 .num = ARRAY_SIZE(flag_array),
227 },
228};
229
230static void dump_flag_info(struct pg_state *st, const struct flag_info
231 *flag, u64 pte, int num)
232{
233 unsigned int i;
234
235 for (i = 0; i < num; i++, flag++) {
236 const char *s = NULL;
237 u64 val;
238
239 /* flag not defined so don't check it */
240 if (flag->mask == 0)
241 continue;
242 /* Some 'flags' are actually values */
243 if (flag->is_val) {
244 val = pte & flag->val;
245 if (flag->shift)
246 val = val >> flag->shift;
247 seq_printf(st->seq, " %s:%llx", flag->set, val);
248 } else {
249 if ((pte & flag->mask) == flag->val)
250 s = flag->set;
251 else
252 s = flag->clear;
253 if (s)
254 seq_printf(st->seq, " %s", s);
255 }
256 st->current_flags &= ~flag->mask;
257 }
258 if (st->current_flags != 0)
259 seq_printf(st->seq, " unknown flags:%llx", st->current_flags);
260}
261
262static void dump_addr(struct pg_state *st, unsigned long addr)
263{
264 static const char units[] = "KMGTPE";
265 const char *unit = units;
266 unsigned long delta;
267
268 seq_printf(st->seq, "0x%016lx-0x%016lx ", st->start_address, addr-1);
269 delta = (addr - st->start_address) >> 10;
270 /* Work out what appropriate unit to use */
271 while (!(delta & 1023) && unit[1]) {
272 delta >>= 10;
273 unit++;
274 }
275 seq_printf(st->seq, "%9lu%c", delta, *unit);
276
277}
278
279static void note_page(struct pg_state *st, unsigned long addr,
280 unsigned int level, u64 val)
281{
282 u64 flag = val & pg_level[level].mask;
283 /* At first no level is set */
284 if (!st->level) {
285 st->level = level;
286 st->current_flags = flag;
287 st->start_address = addr;
288 seq_printf(st->seq, "---[ %s ]---\n", st->marker->name);
289 /*
290 * Dump the section of virtual memory when:
291 * - the PTE flags from one entry to the next differs.
292 * - we change levels in the tree.
293 * - the address is in a different section of memory and is thus
294 * used for a different purpose, regardless of the flags.
295 */
296 } else if (flag != st->current_flags || level != st->level ||
297 addr >= st->marker[1].start_address) {
298
299 /* Check the PTE flags */
300 if (st->current_flags) {
301 dump_addr(st, addr);
302
303 /* Dump all the flags */
304 if (pg_level[st->level].flag)
305 dump_flag_info(st, pg_level[st->level].flag,
306 st->current_flags,
307 pg_level[st->level].num);
308
309 seq_puts(st->seq, "\n");
310 }
311
312 /*
313 * Address indicates we have passed the end of the
314 * current section of virtual memory
315 */
316 while (addr >= st->marker[1].start_address) {
317 st->marker++;
318 seq_printf(st->seq, "---[ %s ]---\n", st->marker->name);
319 }
320 st->start_address = addr;
321 st->current_flags = flag;
322 st->level = level;
323 }
324}
325
326static void walk_pte(struct pg_state *st, pmd_t *pmd, unsigned long start)
327{
328 pte_t *pte = pte_offset_kernel(pmd, 0);
329 unsigned long addr;
330 unsigned int i;
331
332 for (i = 0; i < PTRS_PER_PTE; i++, pte++) {
333 addr = start + i * PAGE_SIZE;
334 note_page(st, addr, 4, pte_val(*pte));
335
336 }
337}
338
339static void walk_pmd(struct pg_state *st, pud_t *pud, unsigned long start)
340{
341 pmd_t *pmd = pmd_offset(pud, 0);
342 unsigned long addr;
343 unsigned int i;
344
345 for (i = 0; i < PTRS_PER_PMD; i++, pmd++) {
346 addr = start + i * PMD_SIZE;
347 if (!pmd_none(*pmd))
348 /* pmd exists */
349 walk_pte(st, pmd, addr);
350 else
351 note_page(st, addr, 3, pmd_val(*pmd));
352 }
353}
354
355static void walk_pud(struct pg_state *st, pgd_t *pgd, unsigned long start)
356{
357 pud_t *pud = pud_offset(pgd, 0);
358 unsigned long addr;
359 unsigned int i;
360
361 for (i = 0; i < PTRS_PER_PUD; i++, pud++) {
362 addr = start + i * PUD_SIZE;
363 if (!pud_none(*pud))
364 /* pud exists */
365 walk_pmd(st, pud, addr);
366 else
367 note_page(st, addr, 2, pud_val(*pud));
368 }
369}
370
371static void walk_pagetables(struct pg_state *st)
372{
373 pgd_t *pgd = pgd_offset_k(0UL);
374 unsigned int i;
375 unsigned long addr;
376
377 /*
378 * Traverse the linux pagetable structure and dump pages that are in
379 * the hash pagetable.
380 */
381 for (i = 0; i < PTRS_PER_PGD; i++, pgd++) {
382 addr = KERN_VIRT_START + i * PGDIR_SIZE;
383 if (!pgd_none(*pgd))
384 /* pgd exists */
385 walk_pud(st, pgd, addr);
386 else
387 note_page(st, addr, 1, pgd_val(*pgd));
388 }
389}
390
391static void populate_markers(void)
392{
393 address_markers[0].start_address = PAGE_OFFSET;
394 address_markers[1].start_address = VMALLOC_START;
395 address_markers[2].start_address = VMALLOC_END;
396 address_markers[3].start_address = ISA_IO_BASE;
397 address_markers[4].start_address = ISA_IO_END;
398 address_markers[5].start_address = PHB_IO_BASE;
399 address_markers[6].start_address = PHB_IO_END;
400 address_markers[7].start_address = IOREMAP_BASE;
401 address_markers[8].start_address = IOREMAP_END;
402#ifdef CONFIG_PPC_STD_MMU_64
403 address_markers[9].start_address = H_VMEMMAP_BASE;
404#else
405 address_markers[9].start_address = VMEMMAP_BASE;
406#endif
407}
408
409static int ptdump_show(struct seq_file *m, void *v)
410{
411 struct pg_state st = {
412 .seq = m,
413 .start_address = KERN_VIRT_START,
414 .marker = address_markers,
415 };
416 /* Traverse kernel page tables */
417 walk_pagetables(&st);
418 note_page(&st, 0, 0, 0);
419 return 0;
420}
421
422
423static int ptdump_open(struct inode *inode, struct file *file)
424{
425 return single_open(file, ptdump_show, NULL);
426}
427
428static const struct file_operations ptdump_fops = {
429 .open = ptdump_open,
430 .read = seq_read,
431 .llseek = seq_lseek,
432 .release = single_release,
433};
434
435static void build_pgtable_complete_mask(void)
436{
437 unsigned int i, j;
438
439 for (i = 0; i < ARRAY_SIZE(pg_level); i++)
440 if (pg_level[i].flag)
441 for (j = 0; j < pg_level[i].num; j++)
442 pg_level[i].mask |= pg_level[i].flag[j].mask;
443}
444
445static int ptdump_init(void)
446{
447 struct dentry *debugfs_file;
448
449 populate_markers();
450 build_pgtable_complete_mask();
451 debugfs_file = debugfs_create_file("kernel_pagetables", 0400, NULL,
452 NULL, &ptdump_fops);
453 return debugfs_file ? 0 : -ENOMEM;
454}
455device_initcall(ptdump_init);