mm/gup: change GUP fast to use flags rather than a write 'bool'
[linux-2.6-block.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
CommitLineData
de56a948
PM
1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16 */
17
18#include <linux/types.h>
19#include <linux/string.h>
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/highmem.h>
23#include <linux/gfp.h>
24#include <linux/slab.h>
25#include <linux/hugetlb.h>
8936dda4 26#include <linux/vmalloc.h>
2c9097e4 27#include <linux/srcu.h>
a2932923
PM
28#include <linux/anon_inodes.h>
29#include <linux/file.h>
e23a808b 30#include <linux/debugfs.h>
de56a948 31
de56a948
PM
32#include <asm/kvm_ppc.h>
33#include <asm/kvm_book3s.h>
f64e8084 34#include <asm/book3s/64/mmu-hash.h>
de56a948
PM
35#include <asm/hvcall.h>
36#include <asm/synch.h>
37#include <asm/ppc-opcode.h>
38#include <asm/cputable.h>
94171b19 39#include <asm/pte-walk.h>
de56a948 40
3c78f78a
SW
41#include "trace_hv.h"
42
5e985969
DG
43//#define DEBUG_RESIZE_HPT 1
44
45#ifdef DEBUG_RESIZE_HPT
46#define resize_hpt_debug(resize, ...) \
47 do { \
48 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \
49 printk(__VA_ARGS__); \
50 } while (0)
51#else
52#define resize_hpt_debug(resize, ...) \
53 do { } while (0)
54#endif
55
7ed661bf
PM
56static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
57 long pte_index, unsigned long pteh,
58 unsigned long ptel, unsigned long *pte_idx_ret);
5e985969
DG
59
60struct kvm_resize_hpt {
61 /* These fields read-only after init */
62 struct kvm *kvm;
63 struct work_struct work;
64 u32 order;
65
66 /* These fields protected by kvm->lock */
3073774e
SP
67
68 /* Possible values and their usage:
69 * <0 an error occurred during allocation,
70 * -EBUSY allocation is in the progress,
71 * 0 allocation made successfuly.
72 */
5e985969 73 int error;
b5baa687 74
3073774e
SP
75 /* Private to the work thread, until error != -EBUSY,
76 * then protected by kvm->lock.
77 */
b5baa687 78 struct kvm_hpt_info hpt;
5e985969
DG
79};
80
aae0777f 81int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
de56a948 82{
792fc497 83 unsigned long hpt = 0;
aae0777f 84 int cma = 0;
fa61a4e3 85 struct page *page = NULL;
aae0777f
DG
86 struct revmap_entry *rev;
87 unsigned long npte;
de56a948 88
aae0777f
DG
89 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
90 return -EINVAL;
32fad281 91
db9a290d 92 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
792fc497
AK
93 if (page) {
94 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
02a68d05 95 memset((void *)hpt, 0, (1ul << order));
aae0777f 96 cma = 1;
de56a948 97 }
32fad281 98
aae0777f 99 if (!hpt)
dcda9b04 100 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
aae0777f 101 |__GFP_NOWARN, order - PAGE_SHIFT);
32fad281
PM
102
103 if (!hpt)
104 return -ENOMEM;
105
aae0777f
DG
106 /* HPTEs are 2**4 bytes long */
107 npte = 1ul << (order - 4);
a56ee9f8 108
8936dda4 109 /* Allocate reverse map array */
42bc47b3 110 rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
8936dda4 111 if (!rev) {
aae0777f
DG
112 if (cma)
113 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
114 else
115 free_pages(hpt, order - PAGE_SHIFT);
116 return -ENOMEM;
8936dda4 117 }
8936dda4 118
aae0777f
DG
119 info->order = order;
120 info->virt = hpt;
121 info->cma = cma;
122 info->rev = rev;
de56a948 123
de56a948 124 return 0;
aae0777f 125}
8936dda4 126
aae0777f
DG
127void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
128{
129 atomic64_set(&kvm->arch.mmio_update, 0);
130 kvm->arch.hpt = *info;
131 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
132
3a4f1760
TH
133 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
134 info->virt, (long)info->order, kvm->arch.lpid);
de56a948
PM
135}
136
f98a8bf9 137long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
32fad281
PM
138{
139 long err = -EBUSY;
f98a8bf9 140 struct kvm_hpt_info info;
32fad281
PM
141
142 mutex_lock(&kvm->lock);
1b151ce4
PM
143 if (kvm->arch.mmu_ready) {
144 kvm->arch.mmu_ready = 0;
145 /* order mmu_ready vs. vcpus_running */
32fad281
PM
146 smp_mb();
147 if (atomic_read(&kvm->arch.vcpus_running)) {
1b151ce4 148 kvm->arch.mmu_ready = 1;
32fad281
PM
149 goto out;
150 }
151 }
18c3640c
PM
152 if (kvm_is_radix(kvm)) {
153 err = kvmppc_switch_mmu_to_hpt(kvm);
154 if (err)
155 goto out;
156 }
157
f98a8bf9
DG
158 if (kvm->arch.hpt.order == order) {
159 /* We already have a suitable HPT */
160
32fad281 161 /* Set the entire HPT to 0, i.e. invalid HPTEs */
3f9d4f5a 162 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
a64fd707
PM
163 /*
164 * Reset all the reverse-mapping chains for all memslots
165 */
166 kvmppc_rmap_reset(kvm);
32fad281 167 err = 0;
f98a8bf9 168 goto out;
32fad281 169 }
f98a8bf9 170
ef427198 171 if (kvm->arch.hpt.virt) {
f98a8bf9 172 kvmppc_free_hpt(&kvm->arch.hpt);
ef427198
PM
173 kvmppc_rmap_reset(kvm);
174 }
f98a8bf9
DG
175
176 err = kvmppc_allocate_hpt(&info, order);
177 if (err < 0)
178 goto out;
179 kvmppc_set_hpt(kvm, &info);
180
181out:
ecba8297
DG
182 if (err == 0)
183 /* Ensure that each vcpu will flush its TLB on next entry. */
184 cpumask_setall(&kvm->arch.need_tlb_flush);
185
32fad281
PM
186 mutex_unlock(&kvm->lock);
187 return err;
188}
189
aae0777f 190void kvmppc_free_hpt(struct kvm_hpt_info *info)
de56a948 191{
aae0777f 192 vfree(info->rev);
18c3640c 193 info->rev = NULL;
aae0777f
DG
194 if (info->cma)
195 kvm_free_hpt_cma(virt_to_page(info->virt),
196 1 << (info->order - PAGE_SHIFT));
197 else if (info->virt)
198 free_pages(info->virt, info->order - PAGE_SHIFT);
199 info->virt = 0;
200 info->order = 0;
de56a948
PM
201}
202
da9d1d7f
PM
203/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
204static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
205{
206 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
207}
208
209/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
210static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
211{
212 return (pgsize == 0x10000) ? 0x1000 : 0;
213}
214
215void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
216 unsigned long porder)
de56a948
PM
217{
218 unsigned long i;
b2b2f165 219 unsigned long npages;
c77162de
PM
220 unsigned long hp_v, hp_r;
221 unsigned long addr, hash;
da9d1d7f
PM
222 unsigned long psize;
223 unsigned long hp0, hp1;
7ed661bf 224 unsigned long idx_ret;
c77162de 225 long ret;
32fad281 226 struct kvm *kvm = vcpu->kvm;
de56a948 227
da9d1d7f
PM
228 psize = 1ul << porder;
229 npages = memslot->npages >> (porder - PAGE_SHIFT);
de56a948
PM
230
231 /* VRMA can't be > 1TB */
8936dda4
PM
232 if (npages > 1ul << (40 - porder))
233 npages = 1ul << (40 - porder);
de56a948 234 /* Can't use more than 1 HPTE per HPTEG */
3d089f84
DG
235 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
236 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
de56a948 237
da9d1d7f
PM
238 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
239 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
240 hp1 = hpte1_pgsize_encoding(psize) |
241 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
242
de56a948 243 for (i = 0; i < npages; ++i) {
c77162de 244 addr = i << porder;
de56a948 245 /* can't use hpt_hash since va > 64 bits */
3d089f84
DG
246 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
247 & kvmppc_hpt_mask(&kvm->arch.hpt);
de56a948
PM
248 /*
249 * We assume that the hash table is empty and no
250 * vcpus are using it at this stage. Since we create
251 * at most one HPTE per HPTEG, we just assume entry 7
252 * is available and use it.
253 */
8936dda4 254 hash = (hash << 3) + 7;
da9d1d7f
PM
255 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
256 hp_r = hp1 | addr;
7ed661bf
PM
257 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
258 &idx_ret);
c77162de
PM
259 if (ret != H_SUCCESS) {
260 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
261 addr, ret);
262 break;
263 }
de56a948
PM
264 }
265}
266
267int kvmppc_mmu_hv_init(void)
268{
9e368f29
PM
269 unsigned long host_lpid, rsvd_lpid;
270
b7557451
NP
271 if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
272 return -EINVAL;
273
c17b98cf 274 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
f3c99f97
PM
275 host_lpid = 0;
276 if (cpu_has_feature(CPU_FTR_HVMODE))
277 host_lpid = mfspr(SPRN_LPID);
c17b98cf 278 rsvd_lpid = LPID_RSVD;
9e368f29 279
043cc4d7
SW
280 kvmppc_init_lpid(rsvd_lpid + 1);
281
282 kvmppc_claim_lpid(host_lpid);
9e368f29 283 /* rsvd_lpid is reserved for use in partition switching */
043cc4d7 284 kvmppc_claim_lpid(rsvd_lpid);
de56a948
PM
285
286 return 0;
287}
288
de56a948
PM
289static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
290{
e4e38121
MN
291 unsigned long msr = vcpu->arch.intr_msr;
292
293 /* If transactional, change to suspend mode on IRQ delivery */
294 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
295 msr |= MSR_TS_S;
296 else
297 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
298 kvmppc_set_msr(vcpu, msr);
de56a948
PM
299}
300
025c9511 301static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
7ed661bf
PM
302 long pte_index, unsigned long pteh,
303 unsigned long ptel, unsigned long *pte_idx_ret)
c77162de 304{
c77162de
PM
305 long ret;
306
342d3db7
PM
307 /* Protect linux PTE lookup from page table destruction */
308 rcu_read_lock_sched(); /* this disables preemption too */
7ed661bf
PM
309 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
310 current->mm->pgd, false, pte_idx_ret);
342d3db7 311 rcu_read_unlock_sched();
c77162de
PM
312 if (ret == H_TOO_HARD) {
313 /* this can't happen */
314 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
315 ret = H_RESOURCE; /* or something */
316 }
317 return ret;
318
319}
320
697d3899
PM
321static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
322 gva_t eaddr)
323{
324 u64 mask;
325 int i;
326
327 for (i = 0; i < vcpu->arch.slb_nr; i++) {
328 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
329 continue;
330
331 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
332 mask = ESID_MASK_1T;
333 else
334 mask = ESID_MASK;
335
336 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
337 return &vcpu->arch.slb[i];
338 }
339 return NULL;
340}
341
342static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
343 unsigned long ea)
344{
345 unsigned long ra_mask;
346
8dc6cca5 347 ra_mask = kvmppc_actual_pgsz(v, r) - 1;
697d3899
PM
348 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
349}
350
de56a948 351static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
93b159b4 352 struct kvmppc_pte *gpte, bool data, bool iswrite)
de56a948 353{
697d3899
PM
354 struct kvm *kvm = vcpu->kvm;
355 struct kvmppc_slb *slbe;
356 unsigned long slb_v;
357 unsigned long pp, key;
abb7c7dd 358 unsigned long v, orig_v, gr;
6f22bd32 359 __be64 *hptep;
46dec40f 360 long int index;
697d3899
PM
361 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
362
18c3640c
PM
363 if (kvm_is_radix(vcpu->kvm))
364 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
365
697d3899
PM
366 /* Get SLB entry */
367 if (virtmode) {
368 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
369 if (!slbe)
370 return -EINVAL;
371 slb_v = slbe->origv;
372 } else {
373 /* real mode access */
374 slb_v = vcpu->kvm->arch.vrma_slb_v;
375 }
376
91648ec0 377 preempt_disable();
697d3899
PM
378 /* Find the HPTE in the hash table */
379 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
380 HPTE_V_VALID | HPTE_V_ABSENT);
91648ec0 381 if (index < 0) {
382 preempt_enable();
697d3899 383 return -ENOENT;
91648ec0 384 }
3f9d4f5a 385 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
abb7c7dd
PM
386 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
387 if (cpu_has_feature(CPU_FTR_ARCH_300))
388 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
3f9d4f5a 389 gr = kvm->arch.hpt.rev[index].guest_rpte;
697d3899 390
abb7c7dd 391 unlock_hpte(hptep, orig_v);
91648ec0 392 preempt_enable();
697d3899
PM
393
394 gpte->eaddr = eaddr;
395 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
396
397 /* Get PP bits and key for permission check */
398 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
399 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
400 key &= slb_v;
401
402 /* Calculate permissions */
403 gpte->may_read = hpte_read_permission(pp, key);
404 gpte->may_write = hpte_write_permission(pp, key);
405 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
406
407 /* Storage key permission check for POWER7 */
c17b98cf 408 if (data && virtmode) {
697d3899
PM
409 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
410 if (amrfield & 1)
411 gpte->may_read = 0;
412 if (amrfield & 2)
413 gpte->may_write = 0;
414 }
415
416 /* Get the guest physical address */
417 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
418 return 0;
419}
420
421/*
422 * Quick test for whether an instruction is a load or a store.
423 * If the instruction is a load or a store, then this will indicate
424 * which it is, at least on server processors. (Embedded processors
425 * have some external PID instructions that don't follow the rule
426 * embodied here.) If the instruction isn't a load or store, then
427 * this doesn't return anything useful.
428 */
429static int instruction_is_store(unsigned int instr)
430{
431 unsigned int mask;
432
433 mask = 0x10000000;
434 if ((instr & 0xfc000000) == 0x7c000000)
435 mask = 0x100; /* major opcode 31 */
436 return (instr & mask) != 0;
437}
438
5a319350
PM
439int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
440 unsigned long gpa, gva_t ea, int is_store)
697d3899 441{
697d3899 442 u32 last_inst;
697d3899 443
1b642257
SJS
444 /*
445 * Fast path - check if the guest physical address corresponds to a
446 * device on the FAST_MMIO_BUS, if so we can avoid loading the
447 * instruction all together, then we can just handle it and return.
448 */
449 if (is_store) {
450 int idx, ret;
451
452 idx = srcu_read_lock(&vcpu->kvm->srcu);
453 ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
454 NULL);
455 srcu_read_unlock(&vcpu->kvm->srcu, idx);
456 if (!ret) {
457 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
458 return RESUME_GUEST;
459 }
460 }
461
51f04726 462 /*
697d3899
PM
463 * If we fail, we just return to the guest and try executing it again.
464 */
51f04726
MC
465 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
466 EMULATE_DONE)
467 return RESUME_GUEST;
697d3899
PM
468
469 /*
470 * WARNING: We do not know for sure whether the instruction we just
471 * read from memory is the same that caused the fault in the first
472 * place. If the instruction we read is neither an load or a store,
473 * then it can't access memory, so we don't need to worry about
474 * enforcing access permissions. So, assuming it is a load or
475 * store, we just check that its direction (load or store) is
476 * consistent with the original fault, since that's what we
477 * checked the access permissions against. If there is a mismatch
478 * we just return and retry the instruction.
479 */
480
51f04726 481 if (instruction_is_store(last_inst) != !!is_store)
697d3899
PM
482 return RESUME_GUEST;
483
484 /*
485 * Emulated accesses are emulated by looking at the hash for
486 * translation once, then performing the access later. The
487 * translation could be invalidated in the meantime in which
488 * point performing the subsequent memory access on the old
489 * physical address could possibly be a security hole for the
490 * guest (but not the host).
491 *
492 * This is less of an issue for MMIO stores since they aren't
493 * globally visible. It could be an issue for MMIO loads to
494 * a certain extent but we'll ignore it for now.
495 */
496
497 vcpu->arch.paddr_accessed = gpa;
6020c0f6 498 vcpu->arch.vaddr_accessed = ea;
697d3899
PM
499 return kvmppc_emulate_mmio(run, vcpu);
500}
501
502int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
503 unsigned long ea, unsigned long dsisr)
504{
505 struct kvm *kvm = vcpu->kvm;
6f22bd32 506 unsigned long hpte[3], r;
abb7c7dd 507 unsigned long hnow_v, hnow_r;
6f22bd32 508 __be64 *hptep;
342d3db7 509 unsigned long mmu_seq, psize, pte_size;
1066f772 510 unsigned long gpa_base, gfn_base;
70bddfef 511 unsigned long gpa, gfn, hva, pfn;
697d3899 512 struct kvm_memory_slot *memslot;
342d3db7 513 unsigned long *rmap;
697d3899 514 struct revmap_entry *rev;
342d3db7
PM
515 struct page *page, *pages[1];
516 long index, ret, npages;
30bda41a 517 bool is_ci;
4cf302bc 518 unsigned int writing, write_ok;
342d3db7 519 struct vm_area_struct *vma;
bad3b507 520 unsigned long rcbits;
a56ee9f8 521 long mmio_update;
697d3899 522
5a319350
PM
523 if (kvm_is_radix(kvm))
524 return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr);
525
697d3899
PM
526 /*
527 * Real-mode code has already searched the HPT and found the
528 * entry we're interested in. Lock the entry and check that
529 * it hasn't changed. If it has, just return and re-execute the
530 * instruction.
531 */
532 if (ea != vcpu->arch.pgfault_addr)
533 return RESUME_GUEST;
a56ee9f8
YX
534
535 if (vcpu->arch.pgfault_cache) {
536 mmio_update = atomic64_read(&kvm->arch.mmio_update);
537 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
538 r = vcpu->arch.pgfault_cache->rpte;
8dc6cca5
PM
539 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
540 r);
a56ee9f8
YX
541 gpa_base = r & HPTE_R_RPN & ~(psize - 1);
542 gfn_base = gpa_base >> PAGE_SHIFT;
543 gpa = gpa_base | (ea & (psize - 1));
544 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
545 dsisr & DSISR_ISSTORE);
546 }
547 }
697d3899 548 index = vcpu->arch.pgfault_index;
3f9d4f5a
DG
549 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
550 rev = &kvm->arch.hpt.rev[index];
697d3899
PM
551 preempt_disable();
552 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
553 cpu_relax();
6f22bd32
AG
554 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
555 hpte[1] = be64_to_cpu(hptep[1]);
342d3db7 556 hpte[2] = r = rev->guest_rpte;
a4bd6eb0 557 unlock_hpte(hptep, hpte[0]);
697d3899
PM
558 preempt_enable();
559
abb7c7dd
PM
560 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
561 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
562 hpte[1] = hpte_new_to_old_r(hpte[1]);
563 }
697d3899
PM
564 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
565 hpte[1] != vcpu->arch.pgfault_hpte[1])
566 return RESUME_GUEST;
567
568 /* Translate the logical address and get the page */
8dc6cca5 569 psize = kvmppc_actual_pgsz(hpte[0], r);
1066f772
PM
570 gpa_base = r & HPTE_R_RPN & ~(psize - 1);
571 gfn_base = gpa_base >> PAGE_SHIFT;
572 gpa = gpa_base | (ea & (psize - 1));
70bddfef 573 gfn = gpa >> PAGE_SHIFT;
697d3899
PM
574 memslot = gfn_to_memslot(kvm, gfn);
575
3c78f78a
SW
576 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
577
697d3899 578 /* No memslot means it's an emulated MMIO region */
70bddfef 579 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
6020c0f6 580 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
697d3899 581 dsisr & DSISR_ISSTORE);
697d3899 582
1066f772
PM
583 /*
584 * This should never happen, because of the slot_is_aligned()
585 * check in kvmppc_do_h_enter().
586 */
587 if (gfn_base < memslot->base_gfn)
588 return -EFAULT;
589
342d3db7
PM
590 /* used to check for invalidations in progress */
591 mmu_seq = kvm->mmu_notifier_seq;
592 smp_rmb();
593
3c78f78a 594 ret = -EFAULT;
30bda41a 595 is_ci = false;
342d3db7
PM
596 pfn = 0;
597 page = NULL;
598 pte_size = PAGE_SIZE;
4cf302bc
PM
599 writing = (dsisr & DSISR_ISSTORE) != 0;
600 /* If writing != 0, then the HPTE must allow writing, if we get here */
601 write_ok = writing;
342d3db7 602 hva = gfn_to_hva_memslot(memslot, gfn);
73b0140b 603 npages = get_user_pages_fast(hva, 1, writing ? FOLL_WRITE : 0, pages);
342d3db7
PM
604 if (npages < 1) {
605 /* Check if it's an I/O mapping */
606 down_read(&current->mm->mmap_sem);
607 vma = find_vma(current->mm, hva);
608 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
609 (vma->vm_flags & VM_PFNMAP)) {
610 pfn = vma->vm_pgoff +
611 ((hva - vma->vm_start) >> PAGE_SHIFT);
612 pte_size = psize;
30bda41a 613 is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
4cf302bc 614 write_ok = vma->vm_flags & VM_WRITE;
342d3db7
PM
615 }
616 up_read(&current->mm->mmap_sem);
617 if (!pfn)
3c78f78a 618 goto out_put;
342d3db7
PM
619 } else {
620 page = pages[0];
caaa4c80 621 pfn = page_to_pfn(page);
342d3db7
PM
622 if (PageHuge(page)) {
623 page = compound_head(page);
624 pte_size <<= compound_order(page);
625 }
4cf302bc
PM
626 /* if the guest wants write access, see if that is OK */
627 if (!writing && hpte_is_writable(r)) {
628 pte_t *ptep, pte;
691e95fd 629 unsigned long flags;
4cf302bc
PM
630 /*
631 * We need to protect against page table destruction
7d6e7f7f 632 * hugepage split and collapse.
4cf302bc 633 */
691e95fd 634 local_irq_save(flags);
94171b19
AK
635 ptep = find_current_mm_pte(current->mm->pgd,
636 hva, NULL, NULL);
db7cb5b9 637 if (ptep) {
7d6e7f7f 638 pte = kvmppc_read_update_linux_pte(ptep, 1);
d19469e8 639 if (__pte_write(pte))
4cf302bc
PM
640 write_ok = 1;
641 }
691e95fd 642 local_irq_restore(flags);
4cf302bc 643 }
342d3db7
PM
644 }
645
342d3db7
PM
646 if (psize > pte_size)
647 goto out_put;
648
649 /* Check WIMG vs. the actual page we're accessing */
30bda41a
AK
650 if (!hpte_cache_flags_ok(r, is_ci)) {
651 if (is_ci)
3c78f78a 652 goto out_put;
342d3db7
PM
653 /*
654 * Allow guest to map emulated device memory as
655 * uncacheable, but actually make it cacheable.
656 */
657 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
658 }
659
caaa4c80
PM
660 /*
661 * Set the HPTE to point to pfn.
662 * Since the pfn is at PAGE_SIZE granularity, make sure we
663 * don't mask out lower-order bits if psize < PAGE_SIZE.
664 */
665 if (psize < PAGE_SIZE)
666 psize = PAGE_SIZE;
f0585982
YX
667 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
668 ((pfn << PAGE_SHIFT) & ~(psize - 1));
4cf302bc
PM
669 if (hpte_is_writable(r) && !write_ok)
670 r = hpte_make_readonly(r);
342d3db7
PM
671 ret = RESUME_GUEST;
672 preempt_disable();
673 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
674 cpu_relax();
abb7c7dd
PM
675 hnow_v = be64_to_cpu(hptep[0]);
676 hnow_r = be64_to_cpu(hptep[1]);
677 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
678 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
679 hnow_r = hpte_new_to_old_r(hnow_r);
680 }
38c53af8
PM
681
682 /*
683 * If the HPT is being resized, don't update the HPTE,
684 * instead let the guest retry after the resize operation is complete.
072df813 685 * The synchronization for mmu_ready test vs. set is provided
38c53af8
PM
686 * by the HPTE lock.
687 */
072df813 688 if (!kvm->arch.mmu_ready)
38c53af8
PM
689 goto out_unlock;
690
abb7c7dd
PM
691 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
692 rev->guest_rpte != hpte[2])
342d3db7
PM
693 /* HPTE has been changed under us; let the guest retry */
694 goto out_unlock;
695 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
696
1066f772
PM
697 /* Always put the HPTE in the rmap chain for the page base address */
698 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
342d3db7
PM
699 lock_rmap(rmap);
700
701 /* Check if we might have been invalidated; let the guest retry if so */
702 ret = RESUME_GUEST;
8ca40a70 703 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
342d3db7
PM
704 unlock_rmap(rmap);
705 goto out_unlock;
706 }
4cf302bc 707
bad3b507
PM
708 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
709 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
710 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
711
6f22bd32 712 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
4cf302bc
PM
713 /* HPTE was previously valid, so we need to invalidate it */
714 unlock_rmap(rmap);
6f22bd32 715 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
4cf302bc 716 kvmppc_invalidate_hpte(kvm, hptep, index);
bad3b507 717 /* don't lose previous R and C bits */
6f22bd32 718 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
4cf302bc
PM
719 } else {
720 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
721 }
342d3db7 722
abb7c7dd
PM
723 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
724 r = hpte_old_to_new_r(hpte[0], r);
725 hpte[0] = hpte_old_to_new_v(hpte[0]);
726 }
6f22bd32 727 hptep[1] = cpu_to_be64(r);
342d3db7 728 eieio();
a4bd6eb0 729 __unlock_hpte(hptep, hpte[0]);
342d3db7
PM
730 asm volatile("ptesync" : : : "memory");
731 preempt_enable();
4cf302bc 732 if (page && hpte_is_writable(r))
342d3db7
PM
733 SetPageDirty(page);
734
735 out_put:
3c78f78a
SW
736 trace_kvm_page_fault_exit(vcpu, hpte, ret);
737
de6c0b02
DG
738 if (page) {
739 /*
740 * We drop pages[0] here, not page because page might
741 * have been set to the head page of a compound, but
742 * we have to drop the reference on the correct tail
743 * page to match the get inside gup()
744 */
745 put_page(pages[0]);
746 }
342d3db7
PM
747 return ret;
748
749 out_unlock:
a4bd6eb0 750 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
342d3db7
PM
751 preempt_enable();
752 goto out_put;
753}
754
18c3640c 755void kvmppc_rmap_reset(struct kvm *kvm)
a64fd707
PM
756{
757 struct kvm_memslots *slots;
758 struct kvm_memory_slot *memslot;
759 int srcu_idx;
760
761 srcu_idx = srcu_read_lock(&kvm->srcu);
9f6b8029 762 slots = kvm_memslots(kvm);
a64fd707 763 kvm_for_each_memslot(memslot, slots) {
234ff0b7
PM
764 /* Mutual exclusion with kvm_unmap_hva_range etc. */
765 spin_lock(&kvm->mmu_lock);
a64fd707
PM
766 /*
767 * This assumes it is acceptable to lose reference and
768 * change bits across a reset.
769 */
770 memset(memslot->arch.rmap, 0,
771 memslot->npages * sizeof(*memslot->arch.rmap));
234ff0b7 772 spin_unlock(&kvm->mmu_lock);
a64fd707
PM
773 }
774 srcu_read_unlock(&kvm->srcu, srcu_idx);
775}
776
01756099
PM
777typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
778 unsigned long gfn);
779
84504ef3
TY
780static int kvm_handle_hva_range(struct kvm *kvm,
781 unsigned long start,
782 unsigned long end,
01756099 783 hva_handler_fn handler)
342d3db7
PM
784{
785 int ret;
786 int retval = 0;
787 struct kvm_memslots *slots;
788 struct kvm_memory_slot *memslot;
789
790 slots = kvm_memslots(kvm);
791 kvm_for_each_memslot(memslot, slots) {
84504ef3
TY
792 unsigned long hva_start, hva_end;
793 gfn_t gfn, gfn_end;
794
795 hva_start = max(start, memslot->userspace_addr);
796 hva_end = min(end, memslot->userspace_addr +
797 (memslot->npages << PAGE_SHIFT));
798 if (hva_start >= hva_end)
799 continue;
800 /*
801 * {gfn(page) | page intersects with [hva_start, hva_end)} =
802 * {gfn, gfn+1, ..., gfn_end-1}.
803 */
804 gfn = hva_to_gfn_memslot(hva_start, memslot);
805 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
342d3db7 806
84504ef3 807 for (; gfn < gfn_end; ++gfn) {
01756099 808 ret = handler(kvm, memslot, gfn);
342d3db7
PM
809 retval |= ret;
810 }
811 }
812
813 return retval;
814}
815
84504ef3 816static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
01756099 817 hva_handler_fn handler)
84504ef3
TY
818{
819 return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
820}
821
639e4597
DG
822/* Must be called with both HPTE and rmap locked */
823static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
e641a317 824 struct kvm_memory_slot *memslot,
639e4597
DG
825 unsigned long *rmapp, unsigned long gfn)
826{
827 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
828 struct revmap_entry *rev = kvm->arch.hpt.rev;
829 unsigned long j, h;
830 unsigned long ptel, psize, rcbits;
831
832 j = rev[i].forw;
833 if (j == i) {
834 /* chain is now empty */
835 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
836 } else {
837 /* remove i from chain */
838 h = rev[i].back;
839 rev[h].forw = j;
840 rev[j].back = h;
841 rev[i].forw = rev[i].back = i;
842 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
843 }
844
845 /* Now check and modify the HPTE */
846 ptel = rev[i].guest_rpte;
8dc6cca5 847 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
639e4597
DG
848 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
849 hpte_rpn(ptel, psize) == gfn) {
850 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
851 kvmppc_invalidate_hpte(kvm, hptep, i);
852 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
853 /* Harvest R and C */
854 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
855 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
e641a317
PM
856 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
857 kvmppc_update_dirty_map(memslot, gfn, psize);
639e4597
DG
858 if (rcbits & ~rev[i].guest_rpte) {
859 rev[i].guest_rpte = ptel | rcbits;
860 note_hpte_modification(kvm, &rev[i]);
861 }
862 }
863}
864
01756099 865static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
342d3db7
PM
866 unsigned long gfn)
867{
639e4597 868 unsigned long i;
6f22bd32 869 __be64 *hptep;
01756099 870 unsigned long *rmapp;
342d3db7 871
01756099 872 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
342d3db7 873 for (;;) {
bad3b507 874 lock_rmap(rmapp);
342d3db7 875 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
bad3b507 876 unlock_rmap(rmapp);
342d3db7
PM
877 break;
878 }
879
880 /*
881 * To avoid an ABBA deadlock with the HPTE lock bit,
bad3b507
PM
882 * we can't spin on the HPTE lock while holding the
883 * rmap chain lock.
342d3db7
PM
884 */
885 i = *rmapp & KVMPPC_RMAP_INDEX;
3f9d4f5a 886 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
bad3b507
PM
887 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
888 /* unlock rmap before spinning on the HPTE lock */
889 unlock_rmap(rmapp);
6f22bd32 890 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
bad3b507
PM
891 cpu_relax();
892 continue;
893 }
342d3db7 894
e641a317 895 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
bad3b507 896 unlock_rmap(rmapp);
a4bd6eb0 897 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
342d3db7
PM
898 }
899 return 0;
900}
901
3a167bea 902int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
b3ae2096 903{
01756099
PM
904 hva_handler_fn handler;
905
906 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
907 kvm_handle_hva_range(kvm, start, end, handler);
b3ae2096
TY
908 return 0;
909}
910
3a167bea
AK
911void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
912 struct kvm_memory_slot *memslot)
dfe49dbd 913{
dfe49dbd
PM
914 unsigned long gfn;
915 unsigned long n;
01756099 916 unsigned long *rmapp;
dfe49dbd 917
dfe49dbd 918 gfn = memslot->base_gfn;
01756099 919 rmapp = memslot->arch.rmap;
5af3e9d0
PM
920 if (kvm_is_radix(kvm)) {
921 kvmppc_radix_flush_memslot(kvm, memslot);
922 return;
923 }
924
01756099 925 for (n = memslot->npages; n; --n, ++gfn) {
dfe49dbd
PM
926 /*
927 * Testing the present bit without locking is OK because
928 * the memslot has been marked invalid already, and hence
929 * no new HPTEs referencing this page can be created,
930 * thus the present bit can't go from 0 to 1.
931 */
932 if (*rmapp & KVMPPC_RMAP_PRESENT)
01756099 933 kvm_unmap_rmapp(kvm, memslot, gfn);
dfe49dbd 934 ++rmapp;
dfe49dbd
PM
935 }
936}
937
01756099 938static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
342d3db7
PM
939 unsigned long gfn)
940{
3f9d4f5a 941 struct revmap_entry *rev = kvm->arch.hpt.rev;
55514893 942 unsigned long head, i, j;
6f22bd32 943 __be64 *hptep;
55514893 944 int ret = 0;
01756099 945 unsigned long *rmapp;
55514893 946
01756099 947 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
55514893
PM
948 retry:
949 lock_rmap(rmapp);
950 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
951 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
952 ret = 1;
953 }
954 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
955 unlock_rmap(rmapp);
956 return ret;
957 }
958
959 i = head = *rmapp & KVMPPC_RMAP_INDEX;
960 do {
3f9d4f5a 961 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
55514893
PM
962 j = rev[i].forw;
963
964 /* If this HPTE isn't referenced, ignore it */
6f22bd32 965 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
55514893
PM
966 continue;
967
968 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
969 /* unlock rmap before spinning on the HPTE lock */
970 unlock_rmap(rmapp);
6f22bd32 971 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
55514893
PM
972 cpu_relax();
973 goto retry;
974 }
975
976 /* Now check and modify the HPTE */
6f22bd32
AG
977 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
978 (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
55514893 979 kvmppc_clear_ref_hpte(kvm, hptep, i);
a1b4a0f6
PM
980 if (!(rev[i].guest_rpte & HPTE_R_R)) {
981 rev[i].guest_rpte |= HPTE_R_R;
982 note_hpte_modification(kvm, &rev[i]);
983 }
55514893
PM
984 ret = 1;
985 }
a4bd6eb0 986 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
55514893
PM
987 } while ((i = j) != head);
988
989 unlock_rmap(rmapp);
990 return ret;
342d3db7
PM
991}
992
57128468 993int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
342d3db7 994{
01756099
PM
995 hva_handler_fn handler;
996
997 handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
998 return kvm_handle_hva_range(kvm, start, end, handler);
342d3db7
PM
999}
1000
01756099 1001static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
342d3db7
PM
1002 unsigned long gfn)
1003{
3f9d4f5a 1004 struct revmap_entry *rev = kvm->arch.hpt.rev;
55514893
PM
1005 unsigned long head, i, j;
1006 unsigned long *hp;
1007 int ret = 1;
01756099 1008 unsigned long *rmapp;
55514893 1009
01756099 1010 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
55514893
PM
1011 if (*rmapp & KVMPPC_RMAP_REFERENCED)
1012 return 1;
1013
1014 lock_rmap(rmapp);
1015 if (*rmapp & KVMPPC_RMAP_REFERENCED)
1016 goto out;
1017
1018 if (*rmapp & KVMPPC_RMAP_PRESENT) {
1019 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1020 do {
3f9d4f5a 1021 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
55514893 1022 j = rev[i].forw;
6f22bd32 1023 if (be64_to_cpu(hp[1]) & HPTE_R_R)
55514893
PM
1024 goto out;
1025 } while ((i = j) != head);
1026 }
1027 ret = 0;
1028
1029 out:
1030 unlock_rmap(rmapp);
1031 return ret;
342d3db7
PM
1032}
1033
3a167bea 1034int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
342d3db7 1035{
01756099
PM
1036 hva_handler_fn handler;
1037
1038 handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
1039 return kvm_handle_hva(kvm, hva, handler);
342d3db7
PM
1040}
1041
3a167bea 1042void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
342d3db7 1043{
01756099
PM
1044 hva_handler_fn handler;
1045
1046 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
1047 kvm_handle_hva(kvm, hva, handler);
de56a948
PM
1048}
1049
6c576e74
PM
1050static int vcpus_running(struct kvm *kvm)
1051{
1052 return atomic_read(&kvm->arch.vcpus_running) != 0;
1053}
1054
687414be
AK
1055/*
1056 * Returns the number of system pages that are dirty.
1057 * This can be more than 1 if we find a huge-page HPTE.
1058 */
1059static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
82ed3616 1060{
3f9d4f5a 1061 struct revmap_entry *rev = kvm->arch.hpt.rev;
82ed3616 1062 unsigned long head, i, j;
687414be 1063 unsigned long n;
6c576e74 1064 unsigned long v, r;
6f22bd32 1065 __be64 *hptep;
687414be 1066 int npages_dirty = 0;
82ed3616
PM
1067
1068 retry:
1069 lock_rmap(rmapp);
82ed3616
PM
1070 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1071 unlock_rmap(rmapp);
687414be 1072 return npages_dirty;
82ed3616
PM
1073 }
1074
1075 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1076 do {
6f22bd32 1077 unsigned long hptep1;
3f9d4f5a 1078 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
82ed3616
PM
1079 j = rev[i].forw;
1080
6c576e74
PM
1081 /*
1082 * Checking the C (changed) bit here is racy since there
1083 * is no guarantee about when the hardware writes it back.
1084 * If the HPTE is not writable then it is stable since the
1085 * page can't be written to, and we would have done a tlbie
1086 * (which forces the hardware to complete any writeback)
1087 * when making the HPTE read-only.
1088 * If vcpus are running then this call is racy anyway
1089 * since the page could get dirtied subsequently, so we
1090 * expect there to be a further call which would pick up
1091 * any delayed C bit writeback.
1092 * Otherwise we need to do the tlbie even if C==0 in
1093 * order to pick up any delayed writeback of C.
1094 */
6f22bd32
AG
1095 hptep1 = be64_to_cpu(hptep[1]);
1096 if (!(hptep1 & HPTE_R_C) &&
1097 (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
82ed3616
PM
1098 continue;
1099
1100 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1101 /* unlock rmap before spinning on the HPTE lock */
1102 unlock_rmap(rmapp);
6f22bd32 1103 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
82ed3616
PM
1104 cpu_relax();
1105 goto retry;
1106 }
1107
1108 /* Now check and modify the HPTE */
f6fb9e84 1109 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
a4bd6eb0 1110 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
6c576e74 1111 continue;
f6fb9e84 1112 }
6c576e74
PM
1113
1114 /* need to make it temporarily absent so C is stable */
6f22bd32 1115 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
6c576e74 1116 kvmppc_invalidate_hpte(kvm, hptep, i);
6f22bd32
AG
1117 v = be64_to_cpu(hptep[0]);
1118 r = be64_to_cpu(hptep[1]);
6c576e74 1119 if (r & HPTE_R_C) {
6f22bd32 1120 hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
a1b4a0f6
PM
1121 if (!(rev[i].guest_rpte & HPTE_R_C)) {
1122 rev[i].guest_rpte |= HPTE_R_C;
1123 note_hpte_modification(kvm, &rev[i]);
1124 }
8dc6cca5 1125 n = kvmppc_actual_pgsz(v, r);
687414be
AK
1126 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1127 if (n > npages_dirty)
1128 npages_dirty = n;
6c576e74 1129 eieio();
82ed3616 1130 }
a4bd6eb0 1131 v &= ~HPTE_V_ABSENT;
6c576e74 1132 v |= HPTE_V_VALID;
a4bd6eb0 1133 __unlock_hpte(hptep, v);
82ed3616
PM
1134 } while ((i = j) != head);
1135
1136 unlock_rmap(rmapp);
687414be 1137 return npages_dirty;
82ed3616
PM
1138}
1139
8f7b79b8 1140void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
c35635ef
PM
1141 struct kvm_memory_slot *memslot,
1142 unsigned long *map)
1143{
1144 unsigned long gfn;
1145
1146 if (!vpa->dirty || !vpa->pinned_addr)
1147 return;
1148 gfn = vpa->gpa >> PAGE_SHIFT;
1149 if (gfn < memslot->base_gfn ||
1150 gfn >= memslot->base_gfn + memslot->npages)
1151 return;
1152
1153 vpa->dirty = false;
1154 if (map)
1155 __set_bit_le(gfn - memslot->base_gfn, map);
1156}
1157
8f7b79b8
PM
1158long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1159 struct kvm_memory_slot *memslot, unsigned long *map)
82ed3616 1160{
e641a317 1161 unsigned long i;
dfe49dbd 1162 unsigned long *rmapp;
82ed3616
PM
1163
1164 preempt_disable();
d89cc617 1165 rmapp = memslot->arch.rmap;
82ed3616 1166 for (i = 0; i < memslot->npages; ++i) {
687414be
AK
1167 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1168 /*
1169 * Note that if npages > 0 then i must be a multiple of npages,
1170 * since we always put huge-page HPTEs in the rmap chain
1171 * corresponding to their page base address.
1172 */
e641a317
PM
1173 if (npages)
1174 set_dirty_bits(map, i, npages);
82ed3616
PM
1175 ++rmapp;
1176 }
1177 preempt_enable();
1178 return 0;
1179}
1180
93e60249
PM
1181void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1182 unsigned long *nb_ret)
1183{
1184 struct kvm_memory_slot *memslot;
1185 unsigned long gfn = gpa >> PAGE_SHIFT;
342d3db7
PM
1186 struct page *page, *pages[1];
1187 int npages;
c35635ef 1188 unsigned long hva, offset;
2c9097e4 1189 int srcu_idx;
93e60249 1190
2c9097e4 1191 srcu_idx = srcu_read_lock(&kvm->srcu);
93e60249
PM
1192 memslot = gfn_to_memslot(kvm, gfn);
1193 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2c9097e4 1194 goto err;
c17b98cf 1195 hva = gfn_to_hva_memslot(memslot, gfn);
73b0140b 1196 npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
c17b98cf
PM
1197 if (npages < 1)
1198 goto err;
1199 page = pages[0];
2c9097e4
PM
1200 srcu_read_unlock(&kvm->srcu, srcu_idx);
1201
c35635ef 1202 offset = gpa & (PAGE_SIZE - 1);
93e60249 1203 if (nb_ret)
c35635ef 1204 *nb_ret = PAGE_SIZE - offset;
93e60249 1205 return page_address(page) + offset;
2c9097e4
PM
1206
1207 err:
1208 srcu_read_unlock(&kvm->srcu, srcu_idx);
1209 return NULL;
93e60249
PM
1210}
1211
c35635ef
PM
1212void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1213 bool dirty)
93e60249
PM
1214{
1215 struct page *page = virt_to_page(va);
c35635ef
PM
1216 struct kvm_memory_slot *memslot;
1217 unsigned long gfn;
c35635ef 1218 int srcu_idx;
93e60249 1219
93e60249 1220 put_page(page);
c35635ef 1221
c17b98cf 1222 if (!dirty)
c35635ef
PM
1223 return;
1224
e641a317 1225 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */
c35635ef
PM
1226 gfn = gpa >> PAGE_SHIFT;
1227 srcu_idx = srcu_read_lock(&kvm->srcu);
1228 memslot = gfn_to_memslot(kvm, gfn);
e641a317
PM
1229 if (memslot && memslot->dirty_bitmap)
1230 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
c35635ef 1231 srcu_read_unlock(&kvm->srcu, srcu_idx);
93e60249
PM
1232}
1233
5e985969
DG
1234/*
1235 * HPT resizing
1236 */
1237static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1238{
b5baa687
DG
1239 int rc;
1240
1241 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1242 if (rc < 0)
1243 return rc;
1244
1245 resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1246 resize->hpt.virt);
1247
5e985969
DG
1248 return 0;
1249}
1250
b5baa687
DG
1251static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1252 unsigned long idx)
1253{
1254 struct kvm *kvm = resize->kvm;
1255 struct kvm_hpt_info *old = &kvm->arch.hpt;
1256 struct kvm_hpt_info *new = &resize->hpt;
1257 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1258 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1259 __be64 *hptep, *new_hptep;
1260 unsigned long vpte, rpte, guest_rpte;
1261 int ret;
1262 struct revmap_entry *rev;
ded13fc1 1263 unsigned long apsize, avpn, pteg, hash;
b5baa687 1264 unsigned long new_idx, new_pteg, replace_vpte;
ded13fc1 1265 int pshift;
b5baa687
DG
1266
1267 hptep = (__be64 *)(old->virt + (idx << 4));
1268
1269 /* Guest is stopped, so new HPTEs can't be added or faulted
1270 * in, only unmapped or altered by host actions. So, it's
1271 * safe to check this before we take the HPTE lock */
1272 vpte = be64_to_cpu(hptep[0]);
1273 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1274 return 0; /* nothing to do */
1275
1276 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1277 cpu_relax();
1278
1279 vpte = be64_to_cpu(hptep[0]);
1280
1281 ret = 0;
1282 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1283 /* Nothing to do */
1284 goto out;
1285
790a9df5
DG
1286 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1287 rpte = be64_to_cpu(hptep[1]);
1288 vpte = hpte_new_to_old_v(vpte, rpte);
1289 }
1290
b5baa687
DG
1291 /* Unmap */
1292 rev = &old->rev[idx];
1293 guest_rpte = rev->guest_rpte;
1294
1295 ret = -EIO;
8dc6cca5 1296 apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
b5baa687
DG
1297 if (!apsize)
1298 goto out;
1299
1300 if (vpte & HPTE_V_VALID) {
1301 unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1302 int srcu_idx = srcu_read_lock(&kvm->srcu);
1303 struct kvm_memory_slot *memslot =
1304 __gfn_to_memslot(kvm_memslots(kvm), gfn);
1305
1306 if (memslot) {
1307 unsigned long *rmapp;
1308 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1309
1310 lock_rmap(rmapp);
e641a317 1311 kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
b5baa687
DG
1312 unlock_rmap(rmapp);
1313 }
1314
1315 srcu_read_unlock(&kvm->srcu, srcu_idx);
1316 }
1317
1318 /* Reload PTE after unmap */
1319 vpte = be64_to_cpu(hptep[0]);
b5baa687
DG
1320 BUG_ON(vpte & HPTE_V_VALID);
1321 BUG_ON(!(vpte & HPTE_V_ABSENT));
1322
1323 ret = 0;
1324 if (!(vpte & HPTE_V_BOLTED))
1325 goto out;
1326
1327 rpte = be64_to_cpu(hptep[1]);
790a9df5
DG
1328
1329 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1330 vpte = hpte_new_to_old_v(vpte, rpte);
1331 rpte = hpte_new_to_old_r(rpte);
1332 }
1333
ded13fc1
PM
1334 pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1335 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
b5baa687
DG
1336 pteg = idx / HPTES_PER_GROUP;
1337 if (vpte & HPTE_V_SECONDARY)
1338 pteg = ~pteg;
1339
1340 if (!(vpte & HPTE_V_1TB_SEG)) {
1341 unsigned long offset, vsid;
1342
1343 /* We only have 28 - 23 bits of offset in avpn */
1344 offset = (avpn & 0x1f) << 23;
1345 vsid = avpn >> 5;
1346 /* We can find more bits from the pteg value */
ded13fc1
PM
1347 if (pshift < 23)
1348 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
b5baa687 1349
ded13fc1 1350 hash = vsid ^ (offset >> pshift);
b5baa687
DG
1351 } else {
1352 unsigned long offset, vsid;
1353
1354 /* We only have 40 - 23 bits of seg_off in avpn */
1355 offset = (avpn & 0x1ffff) << 23;
1356 vsid = avpn >> 17;
ded13fc1
PM
1357 if (pshift < 23)
1358 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
b5baa687 1359
ded13fc1 1360 hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
b5baa687
DG
1361 }
1362
1363 new_pteg = hash & new_hash_mask;
05f2bb03
PM
1364 if (vpte & HPTE_V_SECONDARY)
1365 new_pteg = ~hash & new_hash_mask;
b5baa687
DG
1366
1367 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1368 new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1369
1370 replace_vpte = be64_to_cpu(new_hptep[0]);
790a9df5
DG
1371 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1372 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1373 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1374 }
b5baa687
DG
1375
1376 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1377 BUG_ON(new->order >= old->order);
1378
1379 if (replace_vpte & HPTE_V_BOLTED) {
1380 if (vpte & HPTE_V_BOLTED)
1381 /* Bolted collision, nothing we can do */
1382 ret = -ENOSPC;
1383 /* Discard the new HPTE */
1384 goto out;
1385 }
1386
1387 /* Discard the previous HPTE */
1388 }
1389
790a9df5
DG
1390 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1391 rpte = hpte_old_to_new_r(vpte, rpte);
1392 vpte = hpte_old_to_new_v(vpte);
1393 }
1394
b5baa687
DG
1395 new_hptep[1] = cpu_to_be64(rpte);
1396 new->rev[new_idx].guest_rpte = guest_rpte;
1397 /* No need for a barrier, since new HPT isn't active */
1398 new_hptep[0] = cpu_to_be64(vpte);
1399 unlock_hpte(new_hptep, vpte);
1400
1401out:
1402 unlock_hpte(hptep, vpte);
1403 return ret;
1404}
1405
5e985969
DG
1406static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1407{
b5baa687
DG
1408 struct kvm *kvm = resize->kvm;
1409 unsigned long i;
1410 int rc;
1411
1412 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1413 rc = resize_hpt_rehash_hpte(resize, i);
1414 if (rc != 0)
1415 return rc;
1416 }
1417
1418 return 0;
5e985969
DG
1419}
1420
1421static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1422{
b5baa687
DG
1423 struct kvm *kvm = resize->kvm;
1424 struct kvm_hpt_info hpt_tmp;
1425
1426 /* Exchange the pending tables in the resize structure with
1427 * the active tables */
1428
1429 resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1430
1431 spin_lock(&kvm->mmu_lock);
1432 asm volatile("ptesync" : : : "memory");
1433
1434 hpt_tmp = kvm->arch.hpt;
1435 kvmppc_set_hpt(kvm, &resize->hpt);
1436 resize->hpt = hpt_tmp;
1437
1438 spin_unlock(&kvm->mmu_lock);
1439
1440 synchronize_srcu_expedited(&kvm->srcu);
1441
790a9df5
DG
1442 if (cpu_has_feature(CPU_FTR_ARCH_300))
1443 kvmppc_setup_partition_table(kvm);
1444
b5baa687 1445 resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
5e985969
DG
1446}
1447
1448static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1449{
4ed11aee
SP
1450 if (WARN_ON(!mutex_is_locked(&kvm->lock)))
1451 return;
b5baa687 1452
5b73d634
DG
1453 if (!resize)
1454 return;
1455
4ed11aee
SP
1456 if (resize->error != -EBUSY) {
1457 if (resize->hpt.virt)
1458 kvmppc_free_hpt(&resize->hpt);
1459 kfree(resize);
1460 }
b5baa687 1461
4ed11aee
SP
1462 if (kvm->arch.resize_hpt == resize)
1463 kvm->arch.resize_hpt = NULL;
5e985969
DG
1464}
1465
1466static void resize_hpt_prepare_work(struct work_struct *work)
1467{
1468 struct kvm_resize_hpt *resize = container_of(work,
1469 struct kvm_resize_hpt,
1470 work);
1471 struct kvm *kvm = resize->kvm;
4ed11aee 1472 int err = 0;
5e985969 1473
3073774e
SP
1474 if (WARN_ON(resize->error != -EBUSY))
1475 return;
1476
4ed11aee 1477 mutex_lock(&kvm->lock);
5e985969 1478
4ed11aee
SP
1479 /* Request is still current? */
1480 if (kvm->arch.resize_hpt == resize) {
1481 /* We may request large allocations here:
1482 * do not sleep with kvm->lock held for a while.
1483 */
1484 mutex_unlock(&kvm->lock);
5e985969 1485
4ed11aee
SP
1486 resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1487 resize->order);
3073774e 1488
4ed11aee
SP
1489 err = resize_hpt_allocate(resize);
1490
1491 /* We have strict assumption about -EBUSY
1492 * when preparing for HPT resize.
1493 */
1494 if (WARN_ON(err == -EBUSY))
1495 err = -EINPROGRESS;
1496
1497 mutex_lock(&kvm->lock);
1498 /* It is possible that kvm->arch.resize_hpt != resize
1499 * after we grab kvm->lock again.
1500 */
1501 }
5e985969
DG
1502
1503 resize->error = err;
5e985969 1504
4ed11aee
SP
1505 if (kvm->arch.resize_hpt != resize)
1506 resize_hpt_release(kvm, resize);
1507
5e985969
DG
1508 mutex_unlock(&kvm->lock);
1509}
1510
1511long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1512 struct kvm_ppc_resize_hpt *rhpt)
1513{
1514 unsigned long flags = rhpt->flags;
1515 unsigned long shift = rhpt->shift;
1516 struct kvm_resize_hpt *resize;
1517 int ret;
1518
891f1ebf 1519 if (flags != 0 || kvm_is_radix(kvm))
5e985969
DG
1520 return -EINVAL;
1521
1522 if (shift && ((shift < 18) || (shift > 46)))
1523 return -EINVAL;
1524
1525 mutex_lock(&kvm->lock);
1526
1527 resize = kvm->arch.resize_hpt;
1528
1529 if (resize) {
1530 if (resize->order == shift) {
3073774e
SP
1531 /* Suitable resize in progress? */
1532 ret = resize->error;
1533 if (ret == -EBUSY)
5e985969 1534 ret = 100; /* estimated time in ms */
3073774e
SP
1535 else if (ret)
1536 resize_hpt_release(kvm, resize);
5e985969
DG
1537
1538 goto out;
1539 }
1540
1541 /* not suitable, cancel it */
1542 resize_hpt_release(kvm, resize);
1543 }
1544
1545 ret = 0;
1546 if (!shift)
1547 goto out; /* nothing to do */
1548
1549 /* start new resize */
1550
1551 resize = kzalloc(sizeof(*resize), GFP_KERNEL);
abd80dcb
DC
1552 if (!resize) {
1553 ret = -ENOMEM;
1554 goto out;
1555 }
3073774e
SP
1556
1557 resize->error = -EBUSY;
5e985969
DG
1558 resize->order = shift;
1559 resize->kvm = kvm;
1560 INIT_WORK(&resize->work, resize_hpt_prepare_work);
1561 kvm->arch.resize_hpt = resize;
1562
1563 schedule_work(&resize->work);
1564
1565 ret = 100; /* estimated time in ms */
1566
1567out:
1568 mutex_unlock(&kvm->lock);
1569 return ret;
1570}
1571
1572static void resize_hpt_boot_vcpu(void *opaque)
1573{
1574 /* Nothing to do, just force a KVM exit */
1575}
1576
1577long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1578 struct kvm_ppc_resize_hpt *rhpt)
1579{
1580 unsigned long flags = rhpt->flags;
1581 unsigned long shift = rhpt->shift;
1582 struct kvm_resize_hpt *resize;
1583 long ret;
1584
891f1ebf 1585 if (flags != 0 || kvm_is_radix(kvm))
5e985969
DG
1586 return -EINVAL;
1587
1588 if (shift && ((shift < 18) || (shift > 46)))
1589 return -EINVAL;
1590
1591 mutex_lock(&kvm->lock);
1592
1593 resize = kvm->arch.resize_hpt;
1594
1595 /* This shouldn't be possible */
1596 ret = -EIO;
1b151ce4 1597 if (WARN_ON(!kvm->arch.mmu_ready))
5e985969
DG
1598 goto out_no_hpt;
1599
1600 /* Stop VCPUs from running while we mess with the HPT */
1b151ce4 1601 kvm->arch.mmu_ready = 0;
5e985969
DG
1602 smp_mb();
1603
1604 /* Boot all CPUs out of the guest so they re-read
1b151ce4 1605 * mmu_ready */
5e985969
DG
1606 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1607
1608 ret = -ENXIO;
1609 if (!resize || (resize->order != shift))
1610 goto out;
1611
5e985969 1612 ret = resize->error;
3073774e 1613 if (ret)
5e985969
DG
1614 goto out;
1615
1616 ret = resize_hpt_rehash(resize);
3073774e 1617 if (ret)
5e985969
DG
1618 goto out;
1619
1620 resize_hpt_pivot(resize);
1621
1622out:
1623 /* Let VCPUs run again */
1b151ce4 1624 kvm->arch.mmu_ready = 1;
5e985969
DG
1625 smp_mb();
1626out_no_hpt:
1627 resize_hpt_release(kvm, resize);
1628 mutex_unlock(&kvm->lock);
1629 return ret;
1630}
1631
a2932923
PM
1632/*
1633 * Functions for reading and writing the hash table via reads and
1634 * writes on a file descriptor.
1635 *
1636 * Reads return the guest view of the hash table, which has to be
1637 * pieced together from the real hash table and the guest_rpte
1638 * values in the revmap array.
1639 *
1640 * On writes, each HPTE written is considered in turn, and if it
1641 * is valid, it is written to the HPT as if an H_ENTER with the
1642 * exact flag set was done. When the invalid count is non-zero
1643 * in the header written to the stream, the kernel will make
1644 * sure that that many HPTEs are invalid, and invalidate them
1645 * if not.
1646 */
1647
1648struct kvm_htab_ctx {
1649 unsigned long index;
1650 unsigned long flags;
1651 struct kvm *kvm;
1652 int first_pass;
1653};
1654
1655#define HPTE_SIZE (2 * sizeof(unsigned long))
1656
a1b4a0f6
PM
1657/*
1658 * Returns 1 if this HPT entry has been modified or has pending
1659 * R/C bit changes.
1660 */
6f22bd32 1661static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
a1b4a0f6
PM
1662{
1663 unsigned long rcbits_unset;
1664
1665 if (revp->guest_rpte & HPTE_GR_MODIFIED)
1666 return 1;
1667
1668 /* Also need to consider changes in reference and changed bits */
1669 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
6f22bd32
AG
1670 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1671 (be64_to_cpu(hptp[1]) & rcbits_unset))
a1b4a0f6
PM
1672 return 1;
1673
1674 return 0;
1675}
1676
6f22bd32 1677static long record_hpte(unsigned long flags, __be64 *hptp,
a2932923
PM
1678 unsigned long *hpte, struct revmap_entry *revp,
1679 int want_valid, int first_pass)
1680{
abb7c7dd 1681 unsigned long v, r, hr;
a1b4a0f6 1682 unsigned long rcbits_unset;
a2932923
PM
1683 int ok = 1;
1684 int valid, dirty;
1685
1686 /* Unmodified entries are uninteresting except on the first pass */
a1b4a0f6 1687 dirty = hpte_dirty(revp, hptp);
a2932923
PM
1688 if (!first_pass && !dirty)
1689 return 0;
1690
1691 valid = 0;
6f22bd32 1692 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
a2932923
PM
1693 valid = 1;
1694 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
6f22bd32 1695 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
a2932923
PM
1696 valid = 0;
1697 }
1698 if (valid != want_valid)
1699 return 0;
1700
1701 v = r = 0;
1702 if (valid || dirty) {
1703 /* lock the HPTE so it's stable and read it */
1704 preempt_disable();
1705 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1706 cpu_relax();
6f22bd32 1707 v = be64_to_cpu(hptp[0]);
abb7c7dd
PM
1708 hr = be64_to_cpu(hptp[1]);
1709 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1710 v = hpte_new_to_old_v(v, hr);
1711 hr = hpte_new_to_old_r(hr);
1712 }
a1b4a0f6
PM
1713
1714 /* re-evaluate valid and dirty from synchronized HPTE value */
1715 valid = !!(v & HPTE_V_VALID);
1716 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1717
1718 /* Harvest R and C into guest view if necessary */
1719 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
abb7c7dd
PM
1720 if (valid && (rcbits_unset & hr)) {
1721 revp->guest_rpte |= (hr &
6f22bd32 1722 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
a1b4a0f6
PM
1723 dirty = 1;
1724 }
1725
a2932923
PM
1726 if (v & HPTE_V_ABSENT) {
1727 v &= ~HPTE_V_ABSENT;
1728 v |= HPTE_V_VALID;
a1b4a0f6 1729 valid = 1;
a2932923 1730 }
a2932923
PM
1731 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1732 valid = 0;
a1b4a0f6
PM
1733
1734 r = revp->guest_rpte;
a2932923
PM
1735 /* only clear modified if this is the right sort of entry */
1736 if (valid == want_valid && dirty) {
1737 r &= ~HPTE_GR_MODIFIED;
1738 revp->guest_rpte = r;
1739 }
a4bd6eb0 1740 unlock_hpte(hptp, be64_to_cpu(hptp[0]));
a2932923
PM
1741 preempt_enable();
1742 if (!(valid == want_valid && (first_pass || dirty)))
1743 ok = 0;
1744 }
6f22bd32
AG
1745 hpte[0] = cpu_to_be64(v);
1746 hpte[1] = cpu_to_be64(r);
a2932923
PM
1747 return ok;
1748}
1749
1750static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1751 size_t count, loff_t *ppos)
1752{
1753 struct kvm_htab_ctx *ctx = file->private_data;
1754 struct kvm *kvm = ctx->kvm;
1755 struct kvm_get_htab_header hdr;
6f22bd32 1756 __be64 *hptp;
a2932923
PM
1757 struct revmap_entry *revp;
1758 unsigned long i, nb, nw;
1759 unsigned long __user *lbuf;
1760 struct kvm_get_htab_header __user *hptr;
1761 unsigned long flags;
1762 int first_pass;
1763 unsigned long hpte[2];
1764
96d4f267 1765 if (!access_ok(buf, count))
a2932923 1766 return -EFAULT;
891f1ebf
PM
1767 if (kvm_is_radix(kvm))
1768 return 0;
a2932923
PM
1769
1770 first_pass = ctx->first_pass;
1771 flags = ctx->flags;
1772
1773 i = ctx->index;
3f9d4f5a
DG
1774 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1775 revp = kvm->arch.hpt.rev + i;
a2932923
PM
1776 lbuf = (unsigned long __user *)buf;
1777
1778 nb = 0;
1779 while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1780 /* Initialize header */
1781 hptr = (struct kvm_get_htab_header __user *)buf;
a2932923
PM
1782 hdr.n_valid = 0;
1783 hdr.n_invalid = 0;
1784 nw = nb;
1785 nb += sizeof(hdr);
1786 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1787
1788 /* Skip uninteresting entries, i.e. clean on not-first pass */
1789 if (!first_pass) {
3d089f84 1790 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
a1b4a0f6 1791 !hpte_dirty(revp, hptp)) {
a2932923
PM
1792 ++i;
1793 hptp += 2;
1794 ++revp;
1795 }
1796 }
05dd85f7 1797 hdr.index = i;
a2932923
PM
1798
1799 /* Grab a series of valid entries */
3d089f84 1800 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
a2932923
PM
1801 hdr.n_valid < 0xffff &&
1802 nb + HPTE_SIZE < count &&
1803 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1804 /* valid entry, write it out */
1805 ++hdr.n_valid;
1806 if (__put_user(hpte[0], lbuf) ||
1807 __put_user(hpte[1], lbuf + 1))
1808 return -EFAULT;
1809 nb += HPTE_SIZE;
1810 lbuf += 2;
1811 ++i;
1812 hptp += 2;
1813 ++revp;
1814 }
1815 /* Now skip invalid entries while we can */
3d089f84 1816 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
a2932923
PM
1817 hdr.n_invalid < 0xffff &&
1818 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1819 /* found an invalid entry */
1820 ++hdr.n_invalid;
1821 ++i;
1822 hptp += 2;
1823 ++revp;
1824 }
1825
1826 if (hdr.n_valid || hdr.n_invalid) {
1827 /* write back the header */
1828 if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1829 return -EFAULT;
1830 nw = nb;
1831 buf = (char __user *)lbuf;
1832 } else {
1833 nb = nw;
1834 }
1835
1836 /* Check if we've wrapped around the hash table */
3d089f84 1837 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
a2932923
PM
1838 i = 0;
1839 ctx->first_pass = 0;
1840 break;
1841 }
1842 }
1843
1844 ctx->index = i;
1845
1846 return nb;
1847}
1848
1849static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1850 size_t count, loff_t *ppos)
1851{
1852 struct kvm_htab_ctx *ctx = file->private_data;
1853 struct kvm *kvm = ctx->kvm;
1854 struct kvm_get_htab_header hdr;
1855 unsigned long i, j;
1856 unsigned long v, r;
1857 unsigned long __user *lbuf;
6f22bd32 1858 __be64 *hptp;
a2932923
PM
1859 unsigned long tmp[2];
1860 ssize_t nb;
1861 long int err, ret;
1b151ce4 1862 int mmu_ready;
ded13fc1 1863 int pshift;
a2932923 1864
96d4f267 1865 if (!access_ok(buf, count))
a2932923 1866 return -EFAULT;
891f1ebf
PM
1867 if (kvm_is_radix(kvm))
1868 return -EINVAL;
a2932923
PM
1869
1870 /* lock out vcpus from running while we're doing this */
1871 mutex_lock(&kvm->lock);
1b151ce4
PM
1872 mmu_ready = kvm->arch.mmu_ready;
1873 if (mmu_ready) {
1874 kvm->arch.mmu_ready = 0; /* temporarily */
1875 /* order mmu_ready vs. vcpus_running */
a2932923
PM
1876 smp_mb();
1877 if (atomic_read(&kvm->arch.vcpus_running)) {
1b151ce4 1878 kvm->arch.mmu_ready = 1;
a2932923
PM
1879 mutex_unlock(&kvm->lock);
1880 return -EBUSY;
1881 }
1882 }
1883
1884 err = 0;
1885 for (nb = 0; nb + sizeof(hdr) <= count; ) {
1886 err = -EFAULT;
1887 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1888 break;
1889
1890 err = 0;
1891 if (nb + hdr.n_valid * HPTE_SIZE > count)
1892 break;
1893
1894 nb += sizeof(hdr);
1895 buf += sizeof(hdr);
1896
1897 err = -EINVAL;
1898 i = hdr.index;
3d089f84
DG
1899 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1900 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
a2932923
PM
1901 break;
1902
3f9d4f5a 1903 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
a2932923
PM
1904 lbuf = (unsigned long __user *)buf;
1905 for (j = 0; j < hdr.n_valid; ++j) {
ffada016
CLG
1906 __be64 hpte_v;
1907 __be64 hpte_r;
1908
a2932923 1909 err = -EFAULT;
ffada016
CLG
1910 if (__get_user(hpte_v, lbuf) ||
1911 __get_user(hpte_r, lbuf + 1))
a2932923 1912 goto out;
ffada016
CLG
1913 v = be64_to_cpu(hpte_v);
1914 r = be64_to_cpu(hpte_r);
a2932923
PM
1915 err = -EINVAL;
1916 if (!(v & HPTE_V_VALID))
1917 goto out;
ded13fc1
PM
1918 pshift = kvmppc_hpte_base_page_shift(v, r);
1919 if (pshift <= 0)
1920 goto out;
a2932923
PM
1921 lbuf += 2;
1922 nb += HPTE_SIZE;
1923
6f22bd32 1924 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
a2932923
PM
1925 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1926 err = -EIO;
1927 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1928 tmp);
1929 if (ret != H_SUCCESS) {
1930 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1931 "r=%lx\n", ret, i, v, r);
1932 goto out;
1933 }
1b151ce4 1934 if (!mmu_ready && is_vrma_hpte(v)) {
ded13fc1 1935 unsigned long senc, lpcr;
a2932923 1936
ded13fc1 1937 senc = slb_pgsize_encoding(1ul << pshift);
a2932923
PM
1938 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1939 (VRMA_VSID << SLB_VSID_SHIFT_1T);
ded13fc1
PM
1940 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1941 lpcr = senc << (LPCR_VRMASD_SH - 4);
1942 kvmppc_update_lpcr(kvm, lpcr,
1943 LPCR_VRMASD);
1944 } else {
1945 kvmppc_setup_partition_table(kvm);
1946 }
1b151ce4 1947 mmu_ready = 1;
a2932923
PM
1948 }
1949 ++i;
1950 hptp += 2;
1951 }
1952
1953 for (j = 0; j < hdr.n_invalid; ++j) {
6f22bd32 1954 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
a2932923
PM
1955 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1956 ++i;
1957 hptp += 2;
1958 }
1959 err = 0;
1960 }
1961
1962 out:
1b151ce4 1963 /* Order HPTE updates vs. mmu_ready */
a2932923 1964 smp_wmb();
1b151ce4 1965 kvm->arch.mmu_ready = mmu_ready;
a2932923
PM
1966 mutex_unlock(&kvm->lock);
1967
1968 if (err)
1969 return err;
1970 return nb;
1971}
1972
1973static int kvm_htab_release(struct inode *inode, struct file *filp)
1974{
1975 struct kvm_htab_ctx *ctx = filp->private_data;
1976
1977 filp->private_data = NULL;
1978 if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1979 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1980 kvm_put_kvm(ctx->kvm);
1981 kfree(ctx);
1982 return 0;
1983}
1984
75ef9de1 1985static const struct file_operations kvm_htab_fops = {
a2932923
PM
1986 .read = kvm_htab_read,
1987 .write = kvm_htab_write,
1988 .llseek = default_llseek,
1989 .release = kvm_htab_release,
1990};
1991
1992int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1993{
1994 int ret;
1995 struct kvm_htab_ctx *ctx;
1996 int rwflag;
1997
1998 /* reject flags we don't recognize */
1999 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
2000 return -EINVAL;
2001 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2002 if (!ctx)
2003 return -ENOMEM;
2004 kvm_get_kvm(kvm);
2005 ctx->kvm = kvm;
2006 ctx->index = ghf->start_index;
2007 ctx->flags = ghf->flags;
2008 ctx->first_pass = 1;
2009
2010 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
2f84d5ea 2011 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
a2932923 2012 if (ret < 0) {
43f6b0cf 2013 kfree(ctx);
a2932923
PM
2014 kvm_put_kvm(kvm);
2015 return ret;
2016 }
2017
2018 if (rwflag == O_RDONLY) {
2019 mutex_lock(&kvm->slots_lock);
2020 atomic_inc(&kvm->arch.hpte_mod_interest);
2021 /* make sure kvmppc_do_h_enter etc. see the increment */
2022 synchronize_srcu_expedited(&kvm->srcu);
2023 mutex_unlock(&kvm->slots_lock);
2024 }
2025
2026 return ret;
2027}
2028
e23a808b
PM
2029struct debugfs_htab_state {
2030 struct kvm *kvm;
2031 struct mutex mutex;
2032 unsigned long hpt_index;
2033 int chars_left;
2034 int buf_index;
2035 char buf[64];
2036};
2037
2038static int debugfs_htab_open(struct inode *inode, struct file *file)
2039{
2040 struct kvm *kvm = inode->i_private;
2041 struct debugfs_htab_state *p;
2042
2043 p = kzalloc(sizeof(*p), GFP_KERNEL);
2044 if (!p)
2045 return -ENOMEM;
2046
2047 kvm_get_kvm(kvm);
2048 p->kvm = kvm;
2049 mutex_init(&p->mutex);
2050 file->private_data = p;
2051
2052 return nonseekable_open(inode, file);
2053}
2054
2055static int debugfs_htab_release(struct inode *inode, struct file *file)
2056{
2057 struct debugfs_htab_state *p = file->private_data;
2058
2059 kvm_put_kvm(p->kvm);
2060 kfree(p);
2061 return 0;
2062}
2063
2064static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2065 size_t len, loff_t *ppos)
2066{
2067 struct debugfs_htab_state *p = file->private_data;
2068 ssize_t ret, r;
2069 unsigned long i, n;
2070 unsigned long v, hr, gr;
2071 struct kvm *kvm;
2072 __be64 *hptp;
2073
891f1ebf
PM
2074 kvm = p->kvm;
2075 if (kvm_is_radix(kvm))
2076 return 0;
2077
e23a808b
PM
2078 ret = mutex_lock_interruptible(&p->mutex);
2079 if (ret)
2080 return ret;
2081
2082 if (p->chars_left) {
2083 n = p->chars_left;
2084 if (n > len)
2085 n = len;
2086 r = copy_to_user(buf, p->buf + p->buf_index, n);
2087 n -= r;
2088 p->chars_left -= n;
2089 p->buf_index += n;
2090 buf += n;
2091 len -= n;
2092 ret = n;
2093 if (r) {
2094 if (!n)
2095 ret = -EFAULT;
2096 goto out;
2097 }
2098 }
2099
e23a808b 2100 i = p->hpt_index;
3f9d4f5a 2101 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
3d089f84
DG
2102 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2103 ++i, hptp += 2) {
e23a808b
PM
2104 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2105 continue;
2106
2107 /* lock the HPTE so it's stable and read it */
2108 preempt_disable();
2109 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2110 cpu_relax();
2111 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2112 hr = be64_to_cpu(hptp[1]);
3f9d4f5a 2113 gr = kvm->arch.hpt.rev[i].guest_rpte;
e23a808b
PM
2114 unlock_hpte(hptp, v);
2115 preempt_enable();
2116
2117 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2118 continue;
2119
2120 n = scnprintf(p->buf, sizeof(p->buf),
2121 "%6lx %.16lx %.16lx %.16lx\n",
2122 i, v, hr, gr);
2123 p->chars_left = n;
2124 if (n > len)
2125 n = len;
2126 r = copy_to_user(buf, p->buf, n);
2127 n -= r;
2128 p->chars_left -= n;
2129 p->buf_index = n;
2130 buf += n;
2131 len -= n;
2132 ret += n;
2133 if (r) {
2134 if (!ret)
2135 ret = -EFAULT;
2136 goto out;
2137 }
2138 }
2139 p->hpt_index = i;
2140
2141 out:
2142 mutex_unlock(&p->mutex);
2143 return ret;
2144}
2145
025c9511 2146static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
e23a808b
PM
2147 size_t len, loff_t *ppos)
2148{
2149 return -EACCES;
2150}
2151
2152static const struct file_operations debugfs_htab_fops = {
2153 .owner = THIS_MODULE,
2154 .open = debugfs_htab_open,
2155 .release = debugfs_htab_release,
2156 .read = debugfs_htab_read,
2157 .write = debugfs_htab_write,
2158 .llseek = generic_file_llseek,
2159};
2160
2161void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2162{
2163 kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
2164 kvm->arch.debugfs_dir, kvm,
2165 &debugfs_htab_fops);
2166}
2167
de56a948
PM
2168void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2169{
2170 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2171
c17b98cf 2172 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */
de56a948 2173
18c3640c 2174 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
de56a948
PM
2175 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
2176
2177 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2178}