Merge tag 'mfd-fixes-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[linux-2.6-block.git] / arch / parisc / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/parisc/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
1da177e4
LT
13#include <linux/errno.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/param.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/time.h>
22#include <linux/init.h>
23#include <linux/smp.h>
24#include <linux/profile.h>
12df29b6 25#include <linux/clocksource.h>
9eb16864 26#include <linux/platform_device.h>
d75f054a 27#include <linux/ftrace.h>
1da177e4
LT
28
29#include <asm/uaccess.h>
30#include <asm/io.h>
31#include <asm/irq.h>
4a8a0788 32#include <asm/page.h>
1da177e4
LT
33#include <asm/param.h>
34#include <asm/pdc.h>
35#include <asm/led.h>
36
37#include <linux/timex.h>
38
bed583f7 39static unsigned long clocktick __read_mostly; /* timer cycles per tick */
1da177e4 40
54b66800
HD
41#ifndef CONFIG_64BIT
42/*
43 * The processor-internal cycle counter (Control Register 16) is used as time
44 * source for the sched_clock() function. This register is 64bit wide on a
45 * 64-bit kernel and 32bit on a 32-bit kernel. Since sched_clock() always
46 * requires a 64bit counter we emulate on the 32-bit kernel the higher 32bits
47 * with a per-cpu variable which we increase every time the counter
48 * wraps-around (which happens every ~4 secounds).
49 */
50static DEFINE_PER_CPU(unsigned long, cr16_high_32_bits);
51#endif
52
1604f318
MW
53/*
54 * We keep time on PA-RISC Linux by using the Interval Timer which is
55 * a pair of registers; one is read-only and one is write-only; both
56 * accessed through CR16. The read-only register is 32 or 64 bits wide,
57 * and increments by 1 every CPU clock tick. The architecture only
58 * guarantees us a rate between 0.5 and 2, but all implementations use a
59 * rate of 1. The write-only register is 32-bits wide. When the lowest
60 * 32 bits of the read-only register compare equal to the write-only
61 * register, it raises a maskable external interrupt. Each processor has
62 * an Interval Timer of its own and they are not synchronised.
63 *
64 * We want to generate an interrupt every 1/HZ seconds. So we program
65 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
66 * is programmed with the intended time of the next tick. We can be
67 * held off for an arbitrarily long period of time by interrupts being
68 * disabled, so we may miss one or more ticks.
69 */
d75f054a 70irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
1da177e4 71{
84be31be 72 unsigned long now, now2;
bed583f7 73 unsigned long next_tick;
84be31be 74 unsigned long cycles_elapsed, ticks_elapsed = 1;
6e5dc42b
GG
75 unsigned long cycles_remainder;
76 unsigned int cpu = smp_processor_id();
ef017beb 77 struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
1da177e4 78
6b799d92 79 /* gcc can optimize for "read-only" case with a local clocktick */
6e5dc42b 80 unsigned long cpt = clocktick;
6b799d92 81
be577a52 82 profile_tick(CPU_PROFILING);
1da177e4 83
bed583f7 84 /* Initialize next_tick to the expected tick time. */
c7753f18 85 next_tick = cpuinfo->it_value;
1da177e4 86
84be31be 87 /* Get current cycle counter (Control Register 16). */
bed583f7 88 now = mfctl(16);
1da177e4 89
bed583f7
GG
90 cycles_elapsed = now - next_tick;
91
84be31be 92 if ((cycles_elapsed >> 6) < cpt) {
6e5dc42b
GG
93 /* use "cheap" math (add/subtract) instead
94 * of the more expensive div/mul method
bed583f7 95 */
6b799d92 96 cycles_remainder = cycles_elapsed;
6e5dc42b
GG
97 while (cycles_remainder > cpt) {
98 cycles_remainder -= cpt;
1604f318 99 ticks_elapsed++;
6e5dc42b 100 }
6b799d92 101 } else {
84be31be 102 /* TODO: Reduce this to one fdiv op */
6e5dc42b 103 cycles_remainder = cycles_elapsed % cpt;
84be31be 104 ticks_elapsed += cycles_elapsed / cpt;
bed583f7
GG
105 }
106
6e5dc42b
GG
107 /* convert from "division remainder" to "remainder of clock tick" */
108 cycles_remainder = cpt - cycles_remainder;
bed583f7
GG
109
110 /* Determine when (in CR16 cycles) next IT interrupt will fire.
111 * We want IT to fire modulo clocktick even if we miss/skip some.
112 * But those interrupts don't in fact get delivered that regularly.
113 */
6e5dc42b
GG
114 next_tick = now + cycles_remainder;
115
c7753f18 116 cpuinfo->it_value = next_tick;
6b799d92 117
84be31be
GG
118 /* Program the IT when to deliver the next interrupt.
119 * Only bottom 32-bits of next_tick are writable in CR16!
6e5dc42b 120 */
6b799d92 121 mtctl(next_tick, 16);
1da177e4 122
54b66800
HD
123#if !defined(CONFIG_64BIT)
124 /* check for overflow on a 32bit kernel (every ~4 seconds). */
125 if (unlikely(next_tick < now))
126 this_cpu_inc(cr16_high_32_bits);
127#endif
128
84be31be
GG
129 /* Skip one clocktick on purpose if we missed next_tick.
130 * The new CR16 must be "later" than current CR16 otherwise
131 * itimer would not fire until CR16 wrapped - e.g 4 seconds
132 * later on a 1Ghz processor. We'll account for the missed
133 * tick on the next timer interrupt.
134 *
135 * "next_tick - now" will always give the difference regardless
136 * if one or the other wrapped. If "now" is "bigger" we'll end up
137 * with a very large unsigned number.
138 */
139 now2 = mfctl(16);
140 if (next_tick - now2 > cpt)
141 mtctl(next_tick+cpt, 16);
142
143#if 1
144/*
145 * GGG: DEBUG code for how many cycles programming CR16 used.
146 */
147 if (unlikely(now2 - now > 0x3000)) /* 12K cycles */
148 printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
149 " cyc %lX rem %lX "
150 " next/now %lX/%lX\n",
151 cpu, now2 - now, cycles_elapsed, cycles_remainder,
152 next_tick, now );
153#endif
154
155 /* Can we differentiate between "early CR16" (aka Scenario 1) and
156 * "long delay" (aka Scenario 3)? I don't think so.
157 *
158 * Timer_interrupt will be delivered at least a few hundred cycles
159 * after the IT fires. But it's arbitrary how much time passes
160 * before we call it "late". I've picked one second.
161 *
162 * It's important NO printk's are between reading CR16 and
163 * setting up the next value. May introduce huge variance.
164 */
165 if (unlikely(ticks_elapsed > HZ)) {
166 /* Scenario 3: very long delay? bad in any case */
167 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
168 " cycles %lX rem %lX "
169 " next/now %lX/%lX\n",
170 cpu,
171 cycles_elapsed, cycles_remainder,
172 next_tick, now );
173 }
6e5dc42b
GG
174
175 /* Done mucking with unreliable delivery of interrupts.
176 * Go do system house keeping.
bed583f7 177 */
c7753f18
MW
178
179 if (!--cpuinfo->prof_counter) {
180 cpuinfo->prof_counter = cpuinfo->prof_multiplier;
181 update_process_times(user_mode(get_irq_regs()));
182 }
183
bb1dfc1c
TH
184 if (cpu == 0)
185 xtime_update(ticks_elapsed);
6e5dc42b 186
1da177e4
LT
187 return IRQ_HANDLED;
188}
189
5cd55b0e
RC
190
191unsigned long profile_pc(struct pt_regs *regs)
192{
193 unsigned long pc = instruction_pointer(regs);
194
195 if (regs->gr[0] & PSW_N)
196 pc -= 4;
197
198#ifdef CONFIG_SMP
199 if (in_lock_functions(pc))
200 pc = regs->gr[2];
201#endif
202
203 return pc;
204}
205EXPORT_SYMBOL(profile_pc);
206
207
12df29b6 208/* clock source code */
1da177e4 209
ebc30a0f 210static cycle_t read_cr16(struct clocksource *cs)
1da177e4 211{
12df29b6 212 return get_cycles();
1da177e4 213}
bed583f7 214
12df29b6
HD
215static struct clocksource clocksource_cr16 = {
216 .name = "cr16",
217 .rating = 300,
218 .read = read_cr16,
219 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
87c81747 220 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
12df29b6 221};
bed583f7 222
b2a8289a 223int update_cr16_clocksource(void)
1da177e4 224{
7022672e 225 /* since the cr16 cycle counters are not synchronized across CPUs,
324c7e65
HD
226 we'll check if we should switch to a safe clocksource: */
227 if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
00d1f3c3 228 clocksource_change_rating(&clocksource_cr16, 0);
730e844d 229 return 1;
1da177e4
LT
230 }
231
730e844d 232 return 0;
1da177e4 233}
1da177e4 234
56f335c8
GG
235void __init start_cpu_itimer(void)
236{
237 unsigned int cpu = smp_processor_id();
238 unsigned long next_tick = mfctl(16) + clocktick;
239
54b66800
HD
240#if defined(CONFIG_HAVE_UNSTABLE_SCHED_CLOCK) && defined(CONFIG_64BIT)
241 /* With multiple 64bit CPUs online, the cr16's are not syncronized. */
242 if (cpu != 0)
243 clear_sched_clock_stable();
244#endif
245
56f335c8
GG
246 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
247
ef017beb 248 per_cpu(cpu_data, cpu).it_value = next_tick;
56f335c8
GG
249}
250
9eb16864
KM
251static int __init rtc_init(void)
252{
6dc0dcde 253 struct platform_device *pdev;
9eb16864 254
6dc0dcde
HD
255 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
256 return PTR_ERR_OR_ZERO(pdev);
9eb16864 257}
6dc0dcde 258device_initcall(rtc_init);
9eb16864 259
c6018524 260void read_persistent_clock(struct timespec *ts)
1da177e4 261{
1da177e4 262 static struct pdc_tod tod_data;
c6018524 263 if (pdc_tod_read(&tod_data) == 0) {
264 ts->tv_sec = tod_data.tod_sec;
265 ts->tv_nsec = tod_data.tod_usec * 1000;
266 } else {
267 printk(KERN_ERR "Error reading tod clock\n");
268 ts->tv_sec = 0;
269 ts->tv_nsec = 0;
270 }
271}
272
54b66800
HD
273
274/*
275 * sched_clock() framework
276 */
277
278static u32 cyc2ns_mul __read_mostly;
279static u32 cyc2ns_shift __read_mostly;
280
281u64 sched_clock(void)
282{
283 u64 now;
284
285 /* Get current cycle counter (Control Register 16). */
286#ifdef CONFIG_64BIT
287 now = mfctl(16);
288#else
289 now = mfctl(16) + (((u64) this_cpu_read(cr16_high_32_bits)) << 32);
290#endif
291
292 /* return the value in ns (cycles_2_ns) */
293 return mul_u64_u32_shr(now, cyc2ns_mul, cyc2ns_shift);
294}
295
296
297/*
298 * timer interrupt and sched_clock() initialization
299 */
300
c6018524 301void __init time_init(void)
302{
12df29b6 303 unsigned long current_cr16_khz;
1da177e4 304
54b66800 305 current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
1da177e4 306 clocktick = (100 * PAGE0->mem_10msec) / HZ;
1da177e4 307
54b66800
HD
308 /* calculate mult/shift values for cr16 */
309 clocks_calc_mult_shift(&cyc2ns_mul, &cyc2ns_shift, current_cr16_khz,
310 NSEC_PER_MSEC, 0);
311
56f335c8 312 start_cpu_itimer(); /* get CPU 0 started */
1da177e4 313
12df29b6 314 /* register at clocksource framework */
63e49634 315 clocksource_register_khz(&clocksource_cr16, current_cr16_khz);
1da177e4 316}