iw_cxgb4: gracefully handle unknown CQE status errors
[linux-2.6-block.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
36ccf1c0 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
1da177e4
LT
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
60b0d655 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
2a0b24f5 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
b08a9c95 13 * Copyright (C) 2014, Imagination Technologies Ltd.
1da177e4 14 */
ed2d72c1 15#include <linux/bitops.h>
8e8a52ed 16#include <linux/bug.h>
60b0d655 17#include <linux/compiler.h>
c3fc5cd5 18#include <linux/context_tracking.h>
ae4ce454 19#include <linux/cpu_pm.h>
7aa1c8f4 20#include <linux/kexec.h>
1da177e4 21#include <linux/init.h>
8742cd23 22#include <linux/kernel.h>
f9ded569 23#include <linux/module.h>
1da177e4 24#include <linux/mm.h>
1da177e4
LT
25#include <linux/sched.h>
26#include <linux/smp.h>
1da177e4
LT
27#include <linux/spinlock.h>
28#include <linux/kallsyms.h>
e01402b1 29#include <linux/bootmem.h>
d4fd1989 30#include <linux/interrupt.h>
39b8d525 31#include <linux/ptrace.h>
88547001
JW
32#include <linux/kgdb.h>
33#include <linux/kdebug.h>
c1bf207d 34#include <linux/kprobes.h>
69f3a7de 35#include <linux/notifier.h>
5dd11d5d 36#include <linux/kdb.h>
ca4d3e67 37#include <linux/irq.h>
7f788d2d 38#include <linux/perf_event.h>
1da177e4
LT
39
40#include <asm/bootinfo.h>
41#include <asm/branch.h>
42#include <asm/break.h>
69f3a7de 43#include <asm/cop2.h>
1da177e4 44#include <asm/cpu.h>
69f24d17 45#include <asm/cpu-type.h>
e50c0a8f 46#include <asm/dsp.h>
1da177e4 47#include <asm/fpu.h>
ba3049ed 48#include <asm/fpu_emulator.h>
bdc92d74 49#include <asm/idle.h>
b0a668fb 50#include <asm/mips-r2-to-r6-emul.h>
340ee4b9
RB
51#include <asm/mipsregs.h>
52#include <asm/mipsmtregs.h>
1da177e4 53#include <asm/module.h>
1db1af84 54#include <asm/msa.h>
1da177e4
LT
55#include <asm/pgtable.h>
56#include <asm/ptrace.h>
57#include <asm/sections.h>
1da177e4
LT
58#include <asm/tlbdebug.h>
59#include <asm/traps.h>
60#include <asm/uaccess.h>
b67b2b70 61#include <asm/watch.h>
1da177e4 62#include <asm/mmu_context.h>
1da177e4 63#include <asm/types.h>
1df0f0ff 64#include <asm/stacktrace.h>
92bbe1b9 65#include <asm/uasm.h>
1da177e4 66
c65a5480 67extern void check_wait(void);
c65a5480 68extern asmlinkage void rollback_handle_int(void);
e4ac58af 69extern asmlinkage void handle_int(void);
86a1708a
RB
70extern u32 handle_tlbl[];
71extern u32 handle_tlbs[];
72extern u32 handle_tlbm[];
1da177e4
LT
73extern asmlinkage void handle_adel(void);
74extern asmlinkage void handle_ades(void);
75extern asmlinkage void handle_ibe(void);
76extern asmlinkage void handle_dbe(void);
77extern asmlinkage void handle_sys(void);
78extern asmlinkage void handle_bp(void);
79extern asmlinkage void handle_ri(void);
5b10496b
AN
80extern asmlinkage void handle_ri_rdhwr_vivt(void);
81extern asmlinkage void handle_ri_rdhwr(void);
1da177e4
LT
82extern asmlinkage void handle_cpu(void);
83extern asmlinkage void handle_ov(void);
84extern asmlinkage void handle_tr(void);
2bcb3fbc 85extern asmlinkage void handle_msa_fpe(void);
1da177e4 86extern asmlinkage void handle_fpe(void);
75b5b5e0 87extern asmlinkage void handle_ftlb(void);
1db1af84 88extern asmlinkage void handle_msa(void);
1da177e4
LT
89extern asmlinkage void handle_mdmx(void);
90extern asmlinkage void handle_watch(void);
340ee4b9 91extern asmlinkage void handle_mt(void);
e50c0a8f 92extern asmlinkage void handle_dsp(void);
1da177e4
LT
93extern asmlinkage void handle_mcheck(void);
94extern asmlinkage void handle_reserved(void);
5890f70f 95extern void tlb_do_page_fault_0(void);
1da177e4 96
1da177e4
LT
97void (*board_be_init)(void);
98int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
99void (*board_nmi_handler_setup)(void);
100void (*board_ejtag_handler_setup)(void);
101void (*board_bind_eic_interrupt)(int irq, int regset);
6fb97eff 102void (*board_ebase_setup)(void);
078a55fc 103void(*board_cache_error_setup)(void);
1da177e4 104
4d157d5e 105static void show_raw_backtrace(unsigned long reg29)
e889d78f 106{
39b8d525 107 unsigned long *sp = (unsigned long *)(reg29 & ~3);
e889d78f
AN
108 unsigned long addr;
109
110 printk("Call Trace:");
111#ifdef CONFIG_KALLSYMS
112 printk("\n");
113#endif
10220c88
TB
114 while (!kstack_end(sp)) {
115 unsigned long __user *p =
116 (unsigned long __user *)(unsigned long)sp++;
117 if (__get_user(addr, p)) {
118 printk(" (Bad stack address)");
119 break;
39b8d525 120 }
10220c88
TB
121 if (__kernel_text_address(addr))
122 print_ip_sym(addr);
e889d78f 123 }
10220c88 124 printk("\n");
e889d78f
AN
125}
126
f66686f7 127#ifdef CONFIG_KALLSYMS
1df0f0ff 128int raw_show_trace;
f66686f7
AN
129static int __init set_raw_show_trace(char *str)
130{
131 raw_show_trace = 1;
132 return 1;
133}
134__setup("raw_show_trace", set_raw_show_trace);
1df0f0ff 135#endif
4d157d5e 136
eae23f2c 137static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
f66686f7 138{
4d157d5e
FBH
139 unsigned long sp = regs->regs[29];
140 unsigned long ra = regs->regs[31];
f66686f7 141 unsigned long pc = regs->cp0_epc;
f66686f7 142
e909be82
VW
143 if (!task)
144 task = current;
145
f66686f7 146 if (raw_show_trace || !__kernel_text_address(pc)) {
87151ae3 147 show_raw_backtrace(sp);
f66686f7
AN
148 return;
149 }
150 printk("Call Trace:\n");
4d157d5e 151 do {
87151ae3 152 print_ip_sym(pc);
1924600c 153 pc = unwind_stack(task, &sp, pc, &ra);
4d157d5e 154 } while (pc);
f66686f7
AN
155 printk("\n");
156}
f66686f7 157
1da177e4
LT
158/*
159 * This routine abuses get_user()/put_user() to reference pointers
160 * with at least a bit of error checking ...
161 */
eae23f2c
RB
162static void show_stacktrace(struct task_struct *task,
163 const struct pt_regs *regs)
1da177e4
LT
164{
165 const int field = 2 * sizeof(unsigned long);
166 long stackdata;
167 int i;
5e0373b8 168 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
1da177e4
LT
169
170 printk("Stack :");
171 i = 0;
172 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
173 if (i && ((i % (64 / field)) == 0))
70342287 174 printk("\n ");
1da177e4
LT
175 if (i > 39) {
176 printk(" ...");
177 break;
178 }
179
180 if (__get_user(stackdata, sp++)) {
181 printk(" (Bad stack address)");
182 break;
183 }
184
185 printk(" %0*lx", field, stackdata);
186 i++;
187 }
188 printk("\n");
87151ae3 189 show_backtrace(task, regs);
f66686f7
AN
190}
191
f66686f7
AN
192void show_stack(struct task_struct *task, unsigned long *sp)
193{
194 struct pt_regs regs;
195 if (sp) {
196 regs.regs[29] = (unsigned long)sp;
197 regs.regs[31] = 0;
198 regs.cp0_epc = 0;
199 } else {
200 if (task && task != current) {
201 regs.regs[29] = task->thread.reg29;
202 regs.regs[31] = 0;
203 regs.cp0_epc = task->thread.reg31;
5dd11d5d
JW
204#ifdef CONFIG_KGDB_KDB
205 } else if (atomic_read(&kgdb_active) != -1 &&
206 kdb_current_regs) {
207 memcpy(&regs, kdb_current_regs, sizeof(regs));
208#endif /* CONFIG_KGDB_KDB */
f66686f7
AN
209 } else {
210 prepare_frametrace(&regs);
211 }
212 }
213 show_stacktrace(task, &regs);
1da177e4
LT
214}
215
e1bb8289 216static void show_code(unsigned int __user *pc)
1da177e4
LT
217{
218 long i;
39b8d525 219 unsigned short __user *pc16 = NULL;
1da177e4
LT
220
221 printk("\nCode:");
222
39b8d525
RB
223 if ((unsigned long)pc & 1)
224 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
1da177e4
LT
225 for(i = -3 ; i < 6 ; i++) {
226 unsigned int insn;
39b8d525 227 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
1da177e4
LT
228 printk(" (Bad address in epc)\n");
229 break;
230 }
39b8d525 231 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
1da177e4
LT
232 }
233}
234
eae23f2c 235static void __show_regs(const struct pt_regs *regs)
1da177e4
LT
236{
237 const int field = 2 * sizeof(unsigned long);
238 unsigned int cause = regs->cp0_cause;
37dd3818 239 unsigned int exccode;
1da177e4
LT
240 int i;
241
a43cb95d 242 show_regs_print_info(KERN_DEFAULT);
1da177e4
LT
243
244 /*
245 * Saved main processor registers
246 */
247 for (i = 0; i < 32; ) {
248 if ((i % 4) == 0)
249 printk("$%2d :", i);
250 if (i == 0)
251 printk(" %0*lx", field, 0UL);
252 else if (i == 26 || i == 27)
253 printk(" %*s", field, "");
254 else
255 printk(" %0*lx", field, regs->regs[i]);
256
257 i++;
258 if ((i % 4) == 0)
259 printk("\n");
260 }
261
9693a853
FBH
262#ifdef CONFIG_CPU_HAS_SMARTMIPS
263 printk("Acx : %0*lx\n", field, regs->acx);
264#endif
1da177e4
LT
265 printk("Hi : %0*lx\n", field, regs->hi);
266 printk("Lo : %0*lx\n", field, regs->lo);
267
268 /*
269 * Saved cp0 registers
270 */
b012cffe
RB
271 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
272 (void *) regs->cp0_epc);
b012cffe
RB
273 printk("ra : %0*lx %pS\n", field, regs->regs[31],
274 (void *) regs->regs[31]);
1da177e4 275
70342287 276 printk("Status: %08x ", (uint32_t) regs->cp0_status);
1da177e4 277
1990e542 278 if (cpu_has_3kex) {
3b2396d9
MR
279 if (regs->cp0_status & ST0_KUO)
280 printk("KUo ");
281 if (regs->cp0_status & ST0_IEO)
282 printk("IEo ");
283 if (regs->cp0_status & ST0_KUP)
284 printk("KUp ");
285 if (regs->cp0_status & ST0_IEP)
286 printk("IEp ");
287 if (regs->cp0_status & ST0_KUC)
288 printk("KUc ");
289 if (regs->cp0_status & ST0_IEC)
290 printk("IEc ");
1990e542 291 } else if (cpu_has_4kex) {
3b2396d9
MR
292 if (regs->cp0_status & ST0_KX)
293 printk("KX ");
294 if (regs->cp0_status & ST0_SX)
295 printk("SX ");
296 if (regs->cp0_status & ST0_UX)
297 printk("UX ");
298 switch (regs->cp0_status & ST0_KSU) {
299 case KSU_USER:
300 printk("USER ");
301 break;
302 case KSU_SUPERVISOR:
303 printk("SUPERVISOR ");
304 break;
305 case KSU_KERNEL:
306 printk("KERNEL ");
307 break;
308 default:
309 printk("BAD_MODE ");
310 break;
311 }
312 if (regs->cp0_status & ST0_ERL)
313 printk("ERL ");
314 if (regs->cp0_status & ST0_EXL)
315 printk("EXL ");
316 if (regs->cp0_status & ST0_IE)
317 printk("IE ");
1da177e4 318 }
1da177e4
LT
319 printk("\n");
320
37dd3818
PG
321 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
322 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
1da177e4 323
37dd3818 324 if (1 <= exccode && exccode <= 5)
1da177e4
LT
325 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
326
9966db25
RB
327 printk("PrId : %08x (%s)\n", read_c0_prid(),
328 cpu_name_string());
1da177e4
LT
329}
330
eae23f2c
RB
331/*
332 * FIXME: really the generic show_regs should take a const pointer argument.
333 */
334void show_regs(struct pt_regs *regs)
335{
336 __show_regs((struct pt_regs *)regs);
337}
338
c1bf207d 339void show_registers(struct pt_regs *regs)
1da177e4 340{
39b8d525 341 const int field = 2 * sizeof(unsigned long);
83e4da1e 342 mm_segment_t old_fs = get_fs();
39b8d525 343
eae23f2c 344 __show_regs(regs);
1da177e4 345 print_modules();
39b8d525
RB
346 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
347 current->comm, current->pid, current_thread_info(), current,
348 field, current_thread_info()->tp_value);
349 if (cpu_has_userlocal) {
350 unsigned long tls;
351
352 tls = read_c0_userlocal();
353 if (tls != current_thread_info()->tp_value)
354 printk("*HwTLS: %0*lx\n", field, tls);
355 }
356
83e4da1e
LY
357 if (!user_mode(regs))
358 /* Necessary for getting the correct stack content */
359 set_fs(KERNEL_DS);
f66686f7 360 show_stacktrace(current, regs);
e1bb8289 361 show_code((unsigned int __user *) regs->cp0_epc);
1da177e4 362 printk("\n");
83e4da1e 363 set_fs(old_fs);
1da177e4
LT
364}
365
70dc6f04
DD
366static int regs_to_trapnr(struct pt_regs *regs)
367{
368 return (regs->cp0_cause >> 2) & 0x1f;
369}
370
4d85f6af 371static DEFINE_RAW_SPINLOCK(die_lock);
1da177e4 372
70dc6f04 373void __noreturn die(const char *str, struct pt_regs *regs)
1da177e4
LT
374{
375 static int die_counter;
ce384d83 376 int sig = SIGSEGV;
1da177e4 377
8742cd23
NL
378 oops_enter();
379
dc73e4c1
RB
380 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
381 SIGSEGV) == NOTIFY_STOP)
10423c91 382 sig = 0;
5dd11d5d 383
1da177e4 384 console_verbose();
4d85f6af 385 raw_spin_lock_irq(&die_lock);
41c594ab 386 bust_spinlocks(1);
ce384d83 387
178086c8 388 printk("%s[#%d]:\n", str, ++die_counter);
1da177e4 389 show_registers(regs);
373d4d09 390 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
4d85f6af 391 raw_spin_unlock_irq(&die_lock);
d4fd1989 392
8742cd23
NL
393 oops_exit();
394
d4fd1989
MB
395 if (in_interrupt())
396 panic("Fatal exception in interrupt");
397
398 if (panic_on_oops) {
ab75dc02 399 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
d4fd1989
MB
400 ssleep(5);
401 panic("Fatal exception");
402 }
403
7aa1c8f4
RB
404 if (regs && kexec_should_crash(current))
405 crash_kexec(regs);
406
ce384d83 407 do_exit(sig);
1da177e4
LT
408}
409
0510617b
TB
410extern struct exception_table_entry __start___dbe_table[];
411extern struct exception_table_entry __stop___dbe_table[];
1da177e4 412
b6dcec9b
RB
413__asm__(
414" .section __dbe_table, \"a\"\n"
415" .previous \n");
1da177e4
LT
416
417/* Given an address, look for it in the exception tables. */
418static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
419{
420 const struct exception_table_entry *e;
421
422 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
423 if (!e)
424 e = search_module_dbetables(addr);
425 return e;
426}
427
428asmlinkage void do_be(struct pt_regs *regs)
429{
430 const int field = 2 * sizeof(unsigned long);
431 const struct exception_table_entry *fixup = NULL;
432 int data = regs->cp0_cause & 4;
433 int action = MIPS_BE_FATAL;
c3fc5cd5 434 enum ctx_state prev_state;
1da177e4 435
c3fc5cd5 436 prev_state = exception_enter();
70342287 437 /* XXX For now. Fixme, this searches the wrong table ... */
1da177e4
LT
438 if (data && !user_mode(regs))
439 fixup = search_dbe_tables(exception_epc(regs));
440
441 if (fixup)
442 action = MIPS_BE_FIXUP;
443
444 if (board_be_handler)
28fc582c 445 action = board_be_handler(regs, fixup != NULL);
1da177e4
LT
446
447 switch (action) {
448 case MIPS_BE_DISCARD:
c3fc5cd5 449 goto out;
1da177e4
LT
450 case MIPS_BE_FIXUP:
451 if (fixup) {
452 regs->cp0_epc = fixup->nextinsn;
c3fc5cd5 453 goto out;
1da177e4
LT
454 }
455 break;
456 default:
457 break;
458 }
459
460 /*
461 * Assume it would be too dangerous to continue ...
462 */
463 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
464 data ? "Data" : "Instruction",
465 field, regs->cp0_epc, field, regs->regs[31]);
dc73e4c1
RB
466 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
467 SIGBUS) == NOTIFY_STOP)
c3fc5cd5 468 goto out;
88547001 469
1da177e4
LT
470 die_if_kernel("Oops", regs);
471 force_sig(SIGBUS, current);
c3fc5cd5
RB
472
473out:
474 exception_exit(prev_state);
1da177e4
LT
475}
476
1da177e4 477/*
60b0d655 478 * ll/sc, rdhwr, sync emulation
1da177e4
LT
479 */
480
481#define OPCODE 0xfc000000
482#define BASE 0x03e00000
483#define RT 0x001f0000
484#define OFFSET 0x0000ffff
485#define LL 0xc0000000
486#define SC 0xe0000000
60b0d655 487#define SPEC0 0x00000000
3c37026d
RB
488#define SPEC3 0x7c000000
489#define RD 0x0000f800
490#define FUNC 0x0000003f
60b0d655 491#define SYNC 0x0000000f
3c37026d 492#define RDHWR 0x0000003b
1da177e4 493
2a0b24f5
SH
494/* microMIPS definitions */
495#define MM_POOL32A_FUNC 0xfc00ffff
496#define MM_RDHWR 0x00006b3c
497#define MM_RS 0x001f0000
498#define MM_RT 0x03e00000
499
1da177e4
LT
500/*
501 * The ll_bit is cleared by r*_switch.S
502 */
503
f1e39a4a
RB
504unsigned int ll_bit;
505struct task_struct *ll_task;
1da177e4 506
60b0d655 507static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
1da177e4 508{
fe00f943 509 unsigned long value, __user *vaddr;
1da177e4 510 long offset;
1da177e4
LT
511
512 /*
513 * analyse the ll instruction that just caused a ri exception
514 * and put the referenced address to addr.
515 */
516
517 /* sign extend offset */
518 offset = opcode & OFFSET;
519 offset <<= 16;
520 offset >>= 16;
521
fe00f943 522 vaddr = (unsigned long __user *)
b9688310 523 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4 524
60b0d655
MR
525 if ((unsigned long)vaddr & 3)
526 return SIGBUS;
527 if (get_user(value, vaddr))
528 return SIGSEGV;
1da177e4
LT
529
530 preempt_disable();
531
532 if (ll_task == NULL || ll_task == current) {
533 ll_bit = 1;
534 } else {
535 ll_bit = 0;
536 }
537 ll_task = current;
538
539 preempt_enable();
540
541 regs->regs[(opcode & RT) >> 16] = value;
542
60b0d655 543 return 0;
1da177e4
LT
544}
545
60b0d655 546static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
1da177e4 547{
fe00f943
RB
548 unsigned long __user *vaddr;
549 unsigned long reg;
1da177e4 550 long offset;
1da177e4
LT
551
552 /*
553 * analyse the sc instruction that just caused a ri exception
554 * and put the referenced address to addr.
555 */
556
557 /* sign extend offset */
558 offset = opcode & OFFSET;
559 offset <<= 16;
560 offset >>= 16;
561
fe00f943 562 vaddr = (unsigned long __user *)
b9688310 563 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
564 reg = (opcode & RT) >> 16;
565
60b0d655
MR
566 if ((unsigned long)vaddr & 3)
567 return SIGBUS;
1da177e4
LT
568
569 preempt_disable();
570
571 if (ll_bit == 0 || ll_task != current) {
572 regs->regs[reg] = 0;
573 preempt_enable();
60b0d655 574 return 0;
1da177e4
LT
575 }
576
577 preempt_enable();
578
60b0d655
MR
579 if (put_user(regs->regs[reg], vaddr))
580 return SIGSEGV;
1da177e4
LT
581
582 regs->regs[reg] = 1;
583
60b0d655 584 return 0;
1da177e4
LT
585}
586
587/*
588 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
589 * opcodes are supposed to result in coprocessor unusable exceptions if
590 * executed on ll/sc-less processors. That's the theory. In practice a
591 * few processors such as NEC's VR4100 throw reserved instruction exceptions
592 * instead, so we're doing the emulation thing in both exception handlers.
593 */
60b0d655 594static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
1da177e4 595{
7f788d2d
DCZ
596 if ((opcode & OPCODE) == LL) {
597 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 598 1, regs, 0);
60b0d655 599 return simulate_ll(regs, opcode);
7f788d2d
DCZ
600 }
601 if ((opcode & OPCODE) == SC) {
602 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 603 1, regs, 0);
60b0d655 604 return simulate_sc(regs, opcode);
7f788d2d 605 }
1da177e4 606
60b0d655 607 return -1; /* Must be something else ... */
1da177e4
LT
608}
609
3c37026d
RB
610/*
611 * Simulate trapping 'rdhwr' instructions to provide user accessible
1f5826bd 612 * registers not implemented in hardware.
3c37026d 613 */
2a0b24f5 614static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
3c37026d 615{
dc8f6029 616 struct thread_info *ti = task_thread_info(current);
3c37026d 617
2a0b24f5
SH
618 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
619 1, regs, 0);
620 switch (rd) {
621 case 0: /* CPU number */
622 regs->regs[rt] = smp_processor_id();
623 return 0;
624 case 1: /* SYNCI length */
625 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
626 current_cpu_data.icache.linesz);
627 return 0;
628 case 2: /* Read count register */
629 regs->regs[rt] = read_c0_count();
630 return 0;
631 case 3: /* Count register resolution */
69f24d17 632 switch (current_cpu_type()) {
2a0b24f5
SH
633 case CPU_20KC:
634 case CPU_25KF:
635 regs->regs[rt] = 1;
636 break;
637 default:
638 regs->regs[rt] = 2;
639 }
640 return 0;
641 case 29:
642 regs->regs[rt] = ti->tp_value;
643 return 0;
644 default:
645 return -1;
646 }
647}
648
649static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
650{
3c37026d
RB
651 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
652 int rd = (opcode & RD) >> 11;
653 int rt = (opcode & RT) >> 16;
2a0b24f5
SH
654
655 simulate_rdhwr(regs, rd, rt);
656 return 0;
657 }
658
659 /* Not ours. */
660 return -1;
661}
662
663static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
664{
665 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
666 int rd = (opcode & MM_RS) >> 16;
667 int rt = (opcode & MM_RT) >> 21;
668 simulate_rdhwr(regs, rd, rt);
669 return 0;
3c37026d
RB
670 }
671
56ebd51b 672 /* Not ours. */
60b0d655
MR
673 return -1;
674}
e5679882 675
60b0d655
MR
676static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
677{
7f788d2d
DCZ
678 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
679 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 680 1, regs, 0);
60b0d655 681 return 0;
7f788d2d 682 }
60b0d655
MR
683
684 return -1; /* Must be something else ... */
3c37026d
RB
685}
686
1da177e4
LT
687asmlinkage void do_ov(struct pt_regs *regs)
688{
c3fc5cd5 689 enum ctx_state prev_state;
1da177e4
LT
690 siginfo_t info;
691
c3fc5cd5 692 prev_state = exception_enter();
36ccf1c0
RB
693 die_if_kernel("Integer overflow", regs);
694
1da177e4
LT
695 info.si_code = FPE_INTOVF;
696 info.si_signo = SIGFPE;
697 info.si_errno = 0;
fe00f943 698 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4 699 force_sig_info(SIGFPE, &info, current);
c3fc5cd5 700 exception_exit(prev_state);
1da177e4
LT
701}
702
304acb71 703int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
515b029d 704{
304acb71
MR
705 struct siginfo si = { 0 };
706
707 switch (sig) {
708 case 0:
709 return 0;
ad70c13a 710
304acb71 711 case SIGFPE:
515b029d
DD
712 si.si_addr = fault_addr;
713 si.si_signo = sig;
304acb71
MR
714 /*
715 * Inexact can happen together with Overflow or Underflow.
716 * Respect the mask to deliver the correct exception.
717 */
718 fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
719 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
720 if (fcr31 & FPU_CSR_INV_X)
721 si.si_code = FPE_FLTINV;
722 else if (fcr31 & FPU_CSR_DIV_X)
723 si.si_code = FPE_FLTDIV;
724 else if (fcr31 & FPU_CSR_OVF_X)
725 si.si_code = FPE_FLTOVF;
726 else if (fcr31 & FPU_CSR_UDF_X)
727 si.si_code = FPE_FLTUND;
728 else if (fcr31 & FPU_CSR_INE_X)
729 si.si_code = FPE_FLTRES;
730 else
731 si.si_code = __SI_FAULT;
515b029d
DD
732 force_sig_info(sig, &si, current);
733 return 1;
304acb71
MR
734
735 case SIGBUS:
736 si.si_addr = fault_addr;
737 si.si_signo = sig;
738 si.si_code = BUS_ADRERR;
739 force_sig_info(sig, &si, current);
740 return 1;
741
742 case SIGSEGV:
743 si.si_addr = fault_addr;
744 si.si_signo = sig;
745 down_read(&current->mm->mmap_sem);
746 if (find_vma(current->mm, (unsigned long)fault_addr))
747 si.si_code = SEGV_ACCERR;
748 else
749 si.si_code = SEGV_MAPERR;
750 up_read(&current->mm->mmap_sem);
751 force_sig_info(sig, &si, current);
752 return 1;
753
754 default:
515b029d
DD
755 force_sig(sig, current);
756 return 1;
515b029d
DD
757 }
758}
759
4227a2d4
PB
760static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
761 unsigned long old_epc, unsigned long old_ra)
762{
763 union mips_instruction inst = { .word = opcode };
304acb71
MR
764 void __user *fault_addr;
765 unsigned long fcr31;
4227a2d4
PB
766 int sig;
767
768 /* If it's obviously not an FP instruction, skip it */
769 switch (inst.i_format.opcode) {
770 case cop1_op:
771 case cop1x_op:
772 case lwc1_op:
773 case ldc1_op:
774 case swc1_op:
775 case sdc1_op:
776 break;
777
778 default:
779 return -1;
780 }
781
782 /*
783 * do_ri skipped over the instruction via compute_return_epc, undo
784 * that for the FPU emulator.
785 */
786 regs->cp0_epc = old_epc;
787 regs->regs[31] = old_ra;
788
789 /* Save the FP context to struct thread_struct */
790 lose_fpu(1);
791
792 /* Run the emulator */
793 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
794 &fault_addr);
304acb71 795 fcr31 = current->thread.fpu.fcr31;
4227a2d4 796
443c4403
MR
797 /*
798 * We can't allow the emulated instruction to leave any of
799 * the cause bits set in $fcr31.
800 */
801 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
4227a2d4
PB
802
803 /* Restore the hardware register state */
804 own_fpu(1);
805
304acb71
MR
806 /* Send a signal if required. */
807 process_fpemu_return(sig, fault_addr, fcr31);
808
4227a2d4
PB
809 return 0;
810}
811
1da177e4
LT
812/*
813 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
814 */
815asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
816{
c3fc5cd5 817 enum ctx_state prev_state;
304acb71
MR
818 void __user *fault_addr;
819 int sig;
948a34cf 820
c3fc5cd5 821 prev_state = exception_enter();
dc73e4c1
RB
822 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
823 SIGFPE) == NOTIFY_STOP)
c3fc5cd5 824 goto out;
64bedffe
JH
825
826 /* Clear FCSR.Cause before enabling interrupts */
827 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
828 local_irq_enable();
829
57725f9e
CD
830 die_if_kernel("FP exception in kernel code", regs);
831
1da177e4 832 if (fcr31 & FPU_CSR_UNI_X) {
1da177e4 833 /*
a3dddd56 834 * Unimplemented operation exception. If we've got the full
1da177e4
LT
835 * software emulator on-board, let's use it...
836 *
837 * Force FPU to dump state into task/thread context. We're
838 * moving a lot of data here for what is probably a single
839 * instruction, but the alternative is to pre-decode the FP
840 * register operands before invoking the emulator, which seems
841 * a bit extreme for what should be an infrequent event.
842 */
cd21dfcf 843 /* Ensure 'resume' not overwrite saved fp context again. */
53dc8028 844 lose_fpu(1);
1da177e4
LT
845
846 /* Run the emulator */
515b029d
DD
847 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
848 &fault_addr);
304acb71 849 fcr31 = current->thread.fpu.fcr31;
1da177e4
LT
850
851 /*
852 * We can't allow the emulated instruction to leave any of
443c4403 853 * the cause bits set in $fcr31.
1da177e4 854 */
eae89076 855 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1da177e4
LT
856
857 /* Restore the hardware register state */
70342287 858 own_fpu(1); /* Using the FPU again. */
304acb71
MR
859 } else {
860 sig = SIGFPE;
861 fault_addr = (void __user *) regs->cp0_epc;
ed2d72c1 862 }
1da177e4 863
304acb71
MR
864 /* Send a signal if required. */
865 process_fpemu_return(sig, fault_addr, fcr31);
c3fc5cd5
RB
866
867out:
868 exception_exit(prev_state);
1da177e4
LT
869}
870
b0a668fb 871void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
df270051 872 const char *str)
1da177e4 873{
1da177e4 874 siginfo_t info;
df270051 875 char b[40];
1da177e4 876
5dd11d5d 877#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
70dc6f04 878 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
5dd11d5d
JW
879 return;
880#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
881
dc73e4c1
RB
882 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
883 SIGTRAP) == NOTIFY_STOP)
88547001
JW
884 return;
885
1da177e4 886 /*
df270051
RB
887 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
888 * insns, even for trap and break codes that indicate arithmetic
889 * failures. Weird ...
1da177e4
LT
890 * But should we continue the brokenness??? --macro
891 */
df270051
RB
892 switch (code) {
893 case BRK_OVERFLOW:
894 case BRK_DIVZERO:
895 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
896 die_if_kernel(b, regs);
897 if (code == BRK_DIVZERO)
1da177e4
LT
898 info.si_code = FPE_INTDIV;
899 else
900 info.si_code = FPE_INTOVF;
901 info.si_signo = SIGFPE;
902 info.si_errno = 0;
fe00f943 903 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
904 force_sig_info(SIGFPE, &info, current);
905 break;
63dc68a8 906 case BRK_BUG:
df270051
RB
907 die_if_kernel("Kernel bug detected", regs);
908 force_sig(SIGTRAP, current);
63dc68a8 909 break;
ba3049ed
RB
910 case BRK_MEMU:
911 /*
1f443779
MR
912 * This breakpoint code is used by the FPU emulator to retake
913 * control of the CPU after executing the instruction from the
914 * delay slot of an emulated branch.
ba3049ed
RB
915 *
916 * Terminate if exception was recognized as a delay slot return
917 * otherwise handle as normal.
918 */
919 if (do_dsemulret(regs))
920 return;
921
922 die_if_kernel("Math emu break/trap", regs);
923 force_sig(SIGTRAP, current);
924 break;
1da177e4 925 default:
df270051
RB
926 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
927 die_if_kernel(b, regs);
1da177e4
LT
928 force_sig(SIGTRAP, current);
929 }
df270051
RB
930}
931
932asmlinkage void do_bp(struct pt_regs *regs)
933{
f6a31da5 934 unsigned long epc = msk_isa16_mode(exception_epc(regs));
df270051 935 unsigned int opcode, bcode;
c3fc5cd5 936 enum ctx_state prev_state;
078dde5e
LY
937 mm_segment_t seg;
938
939 seg = get_fs();
940 if (!user_mode(regs))
941 set_fs(KERNEL_DS);
2a0b24f5 942
c3fc5cd5 943 prev_state = exception_enter();
2a0b24f5 944 if (get_isa16_mode(regs->cp0_epc)) {
f6a31da5
MR
945 u16 instr[2];
946
947 if (__get_user(instr[0], (u16 __user *)epc))
948 goto out_sigsegv;
949
950 if (!cpu_has_mmips) {
b08a9c95 951 /* MIPS16e mode */
68893e00 952 bcode = (instr[0] >> 5) & 0x3f;
f6a31da5
MR
953 } else if (mm_insn_16bit(instr[0])) {
954 /* 16-bit microMIPS BREAK */
955 bcode = instr[0] & 0xf;
956 } else {
957 /* 32-bit microMIPS BREAK */
958 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
2a0b24f5 959 goto out_sigsegv;
f6a31da5
MR
960 opcode = (instr[0] << 16) | instr[1];
961 bcode = (opcode >> 6) & ((1 << 20) - 1);
2a0b24f5
SH
962 }
963 } else {
f6a31da5 964 if (__get_user(opcode, (unsigned int __user *)epc))
2a0b24f5 965 goto out_sigsegv;
f6a31da5 966 bcode = (opcode >> 6) & ((1 << 20) - 1);
2a0b24f5 967 }
df270051
RB
968
969 /*
970 * There is the ancient bug in the MIPS assemblers that the break
971 * code starts left to bit 16 instead to bit 6 in the opcode.
972 * Gas is bug-compatible, but not always, grrr...
973 * We handle both cases with a simple heuristics. --macro
974 */
df270051 975 if (bcode >= (1 << 10))
c9875032 976 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
df270051 977
c1bf207d
DD
978 /*
979 * notify the kprobe handlers, if instruction is likely to
980 * pertain to them.
981 */
982 switch (bcode) {
983 case BRK_KPROBE_BP:
dc73e4c1
RB
984 if (notify_die(DIE_BREAK, "debug", regs, bcode,
985 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 986 goto out;
c1bf207d
DD
987 else
988 break;
989 case BRK_KPROBE_SSTEPBP:
dc73e4c1
RB
990 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
991 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 992 goto out;
c1bf207d
DD
993 else
994 break;
995 default:
996 break;
997 }
998
df270051 999 do_trap_or_bp(regs, bcode, "Break");
c3fc5cd5
RB
1000
1001out:
078dde5e 1002 set_fs(seg);
c3fc5cd5 1003 exception_exit(prev_state);
90fccb13 1004 return;
e5679882
RB
1005
1006out_sigsegv:
1007 force_sig(SIGSEGV, current);
c3fc5cd5 1008 goto out;
1da177e4
LT
1009}
1010
1011asmlinkage void do_tr(struct pt_regs *regs)
1012{
a9a6e7a0 1013 u32 opcode, tcode = 0;
c3fc5cd5 1014 enum ctx_state prev_state;
2a0b24f5 1015 u16 instr[2];
078dde5e 1016 mm_segment_t seg;
a9a6e7a0 1017 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1da177e4 1018
078dde5e
LY
1019 seg = get_fs();
1020 if (!user_mode(regs))
1021 set_fs(get_ds());
1022
c3fc5cd5 1023 prev_state = exception_enter();
a9a6e7a0
MR
1024 if (get_isa16_mode(regs->cp0_epc)) {
1025 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1026 __get_user(instr[1], (u16 __user *)(epc + 2)))
2a0b24f5 1027 goto out_sigsegv;
a9a6e7a0
MR
1028 opcode = (instr[0] << 16) | instr[1];
1029 /* Immediate versions don't provide a code. */
1030 if (!(opcode & OPCODE))
1031 tcode = (opcode >> 12) & ((1 << 4) - 1);
1032 } else {
1033 if (__get_user(opcode, (u32 __user *)epc))
1034 goto out_sigsegv;
1035 /* Immediate versions don't provide a code. */
1036 if (!(opcode & OPCODE))
1037 tcode = (opcode >> 6) & ((1 << 10) - 1);
2a0b24f5 1038 }
1da177e4 1039
df270051 1040 do_trap_or_bp(regs, tcode, "Trap");
c3fc5cd5
RB
1041
1042out:
078dde5e 1043 set_fs(seg);
c3fc5cd5 1044 exception_exit(prev_state);
90fccb13 1045 return;
e5679882
RB
1046
1047out_sigsegv:
1048 force_sig(SIGSEGV, current);
c3fc5cd5 1049 goto out;
1da177e4
LT
1050}
1051
1052asmlinkage void do_ri(struct pt_regs *regs)
1053{
60b0d655
MR
1054 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1055 unsigned long old_epc = regs->cp0_epc;
2a0b24f5 1056 unsigned long old31 = regs->regs[31];
c3fc5cd5 1057 enum ctx_state prev_state;
60b0d655
MR
1058 unsigned int opcode = 0;
1059 int status = -1;
1da177e4 1060
b0a668fb
LY
1061 /*
1062 * Avoid any kernel code. Just emulate the R2 instruction
1063 * as quickly as possible.
1064 */
1065 if (mipsr2_emulation && cpu_has_mips_r6 &&
4a7c2371
MR
1066 likely(user_mode(regs)) &&
1067 likely(get_user(opcode, epc) >= 0)) {
304acb71
MR
1068 unsigned long fcr31 = 0;
1069
1070 status = mipsr2_decoder(regs, opcode, &fcr31);
4a7c2371
MR
1071 switch (status) {
1072 case 0:
1073 case SIGEMT:
1074 task_thread_info(current)->r2_emul_return = 1;
1075 return;
1076 case SIGILL:
1077 goto no_r2_instr;
1078 default:
1079 process_fpemu_return(status,
304acb71
MR
1080 &current->thread.cp0_baduaddr,
1081 fcr31);
4a7c2371
MR
1082 task_thread_info(current)->r2_emul_return = 1;
1083 return;
b0a668fb
LY
1084 }
1085 }
1086
1087no_r2_instr:
1088
c3fc5cd5 1089 prev_state = exception_enter();
b0a668fb 1090
dc73e4c1
RB
1091 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
1092 SIGILL) == NOTIFY_STOP)
c3fc5cd5 1093 goto out;
88547001 1094
60b0d655 1095 die_if_kernel("Reserved instruction in kernel code", regs);
1da177e4 1096
60b0d655 1097 if (unlikely(compute_return_epc(regs) < 0))
c3fc5cd5 1098 goto out;
3c37026d 1099
2a0b24f5
SH
1100 if (get_isa16_mode(regs->cp0_epc)) {
1101 unsigned short mmop[2] = { 0 };
60b0d655 1102
2a0b24f5
SH
1103 if (unlikely(get_user(mmop[0], epc) < 0))
1104 status = SIGSEGV;
1105 if (unlikely(get_user(mmop[1], epc) < 0))
1106 status = SIGSEGV;
1107 opcode = (mmop[0] << 16) | mmop[1];
60b0d655 1108
2a0b24f5
SH
1109 if (status < 0)
1110 status = simulate_rdhwr_mm(regs, opcode);
1111 } else {
1112 if (unlikely(get_user(opcode, epc) < 0))
1113 status = SIGSEGV;
60b0d655 1114
2a0b24f5
SH
1115 if (!cpu_has_llsc && status < 0)
1116 status = simulate_llsc(regs, opcode);
1117
1118 if (status < 0)
1119 status = simulate_rdhwr_normal(regs, opcode);
1120
1121 if (status < 0)
1122 status = simulate_sync(regs, opcode);
4227a2d4
PB
1123
1124 if (status < 0)
1125 status = simulate_fp(regs, opcode, old_epc, old31);
2a0b24f5 1126 }
60b0d655
MR
1127
1128 if (status < 0)
1129 status = SIGILL;
1130
1131 if (unlikely(status > 0)) {
1132 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1133 regs->regs[31] = old31;
60b0d655
MR
1134 force_sig(status, current);
1135 }
c3fc5cd5
RB
1136
1137out:
1138 exception_exit(prev_state);
1da177e4
LT
1139}
1140
d223a861
RB
1141/*
1142 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1143 * emulated more than some threshold number of instructions, force migration to
1144 * a "CPU" that has FP support.
1145 */
1146static void mt_ase_fp_affinity(void)
1147{
1148#ifdef CONFIG_MIPS_MT_FPAFF
1149 if (mt_fpemul_threshold > 0 &&
1150 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1151 /*
1152 * If there's no FPU present, or if the application has already
1153 * restricted the allowed set to exclude any CPUs with FPUs,
1154 * we'll skip the procedure.
1155 */
8dd92891 1156 if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
d223a861
RB
1157 cpumask_t tmask;
1158
9cc12363
KK
1159 current->thread.user_cpus_allowed
1160 = current->cpus_allowed;
8dd92891
RR
1161 cpumask_and(&tmask, &current->cpus_allowed,
1162 &mt_fpu_cpumask);
ed1bbdef 1163 set_cpus_allowed_ptr(current, &tmask);
293c5bd1 1164 set_thread_flag(TIF_FPUBOUND);
d223a861
RB
1165 }
1166 }
1167#endif /* CONFIG_MIPS_MT_FPAFF */
1168}
1169
69f3a7de
RB
1170/*
1171 * No lock; only written during early bootup by CPU 0.
1172 */
1173static RAW_NOTIFIER_HEAD(cu2_chain);
1174
1175int __ref register_cu2_notifier(struct notifier_block *nb)
1176{
1177 return raw_notifier_chain_register(&cu2_chain, nb);
1178}
1179
1180int cu2_notifier_call_chain(unsigned long val, void *v)
1181{
1182 return raw_notifier_call_chain(&cu2_chain, val, v);
1183}
1184
1185static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
70342287 1186 void *data)
69f3a7de
RB
1187{
1188 struct pt_regs *regs = data;
1189
83bee792 1190 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
69f3a7de 1191 "instruction", regs);
83bee792 1192 force_sig(SIGILL, current);
69f3a7de
RB
1193
1194 return NOTIFY_OK;
1195}
1196
9791554b
PB
1197static int wait_on_fp_mode_switch(atomic_t *p)
1198{
1199 /*
1200 * The FP mode for this task is currently being switched. That may
1201 * involve modifications to the format of this tasks FP context which
1202 * make it unsafe to proceed with execution for the moment. Instead,
1203 * schedule some other task.
1204 */
1205 schedule();
1206 return 0;
1207}
1208
1db1af84
PB
1209static int enable_restore_fp_context(int msa)
1210{
c9017757 1211 int err, was_fpu_owner, prior_msa;
1db1af84 1212
9791554b
PB
1213 /*
1214 * If an FP mode switch is currently underway, wait for it to
1215 * complete before proceeding.
1216 */
1217 wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1218 wait_on_fp_mode_switch, TASK_KILLABLE);
1219
1db1af84
PB
1220 if (!used_math()) {
1221 /* First time FP context user. */
762a1f43 1222 preempt_disable();
1db1af84 1223 err = init_fpu();
c9017757 1224 if (msa && !err) {
1db1af84 1225 enable_msa();
c9017757 1226 _init_msa_upper();
732c0c3c
PB
1227 set_thread_flag(TIF_USEDMSA);
1228 set_thread_flag(TIF_MSA_CTX_LIVE);
c9017757 1229 }
762a1f43 1230 preempt_enable();
1db1af84
PB
1231 if (!err)
1232 set_used_math();
1233 return err;
1234 }
1235
1236 /*
1237 * This task has formerly used the FP context.
1238 *
1239 * If this thread has no live MSA vector context then we can simply
1240 * restore the scalar FP context. If it has live MSA vector context
1241 * (that is, it has or may have used MSA since last performing a
1242 * function call) then we'll need to restore the vector context. This
1243 * applies even if we're currently only executing a scalar FP
1244 * instruction. This is because if we were to later execute an MSA
1245 * instruction then we'd either have to:
1246 *
1247 * - Restore the vector context & clobber any registers modified by
1248 * scalar FP instructions between now & then.
1249 *
1250 * or
1251 *
1252 * - Not restore the vector context & lose the most significant bits
1253 * of all vector registers.
1254 *
1255 * Neither of those options is acceptable. We cannot restore the least
1256 * significant bits of the registers now & only restore the most
1257 * significant bits later because the most significant bits of any
1258 * vector registers whose aliased FP register is modified now will have
1259 * been zeroed. We'd have no way to know that when restoring the vector
1260 * context & thus may load an outdated value for the most significant
1261 * bits of a vector register.
1262 */
1263 if (!msa && !thread_msa_context_live())
1264 return own_fpu(1);
1265
1266 /*
1267 * This task is using or has previously used MSA. Thus we require
1268 * that Status.FR == 1.
1269 */
762a1f43 1270 preempt_disable();
1db1af84 1271 was_fpu_owner = is_fpu_owner();
762a1f43 1272 err = own_fpu_inatomic(0);
1db1af84 1273 if (err)
762a1f43 1274 goto out;
1db1af84
PB
1275
1276 enable_msa();
1277 write_msa_csr(current->thread.fpu.msacsr);
1278 set_thread_flag(TIF_USEDMSA);
1279
1280 /*
1281 * If this is the first time that the task is using MSA and it has
1282 * previously used scalar FP in this time slice then we already nave
c9017757
PB
1283 * FP context which we shouldn't clobber. We do however need to clear
1284 * the upper 64b of each vector register so that this task has no
1285 * opportunity to see data left behind by another.
1db1af84 1286 */
c9017757
PB
1287 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1288 if (!prior_msa && was_fpu_owner) {
1289 _init_msa_upper();
762a1f43
PB
1290
1291 goto out;
c9017757 1292 }
1db1af84 1293
c9017757
PB
1294 if (!prior_msa) {
1295 /*
1296 * Restore the least significant 64b of each vector register
1297 * from the existing scalar FP context.
1298 */
1299 _restore_fp(current);
b8340673 1300
c9017757
PB
1301 /*
1302 * The task has not formerly used MSA, so clear the upper 64b
1303 * of each vector register such that it cannot see data left
1304 * behind by another task.
1305 */
1306 _init_msa_upper();
1307 } else {
1308 /* We need to restore the vector context. */
1309 restore_msa(current);
b8340673 1310
c9017757
PB
1311 /* Restore the scalar FP control & status register */
1312 if (!was_fpu_owner)
d76e9b9f
JH
1313 write_32bit_cp1_register(CP1_STATUS,
1314 current->thread.fpu.fcr31);
c9017757 1315 }
762a1f43
PB
1316
1317out:
1318 preempt_enable();
1319
1db1af84
PB
1320 return 0;
1321}
1322
1da177e4
LT
1323asmlinkage void do_cpu(struct pt_regs *regs)
1324{
c3fc5cd5 1325 enum ctx_state prev_state;
60b0d655 1326 unsigned int __user *epc;
2a0b24f5 1327 unsigned long old_epc, old31;
304acb71 1328 void __user *fault_addr;
60b0d655 1329 unsigned int opcode;
304acb71 1330 unsigned long fcr31;
1da177e4 1331 unsigned int cpid;
597ce172 1332 int status, err;
f9bb4cf3 1333 unsigned long __maybe_unused flags;
304acb71 1334 int sig;
1da177e4 1335
c3fc5cd5 1336 prev_state = exception_enter();
1da177e4
LT
1337 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1338
83bee792
J
1339 if (cpid != 2)
1340 die_if_kernel("do_cpu invoked from kernel context!", regs);
1341
1da177e4
LT
1342 switch (cpid) {
1343 case 0:
60b0d655
MR
1344 epc = (unsigned int __user *)exception_epc(regs);
1345 old_epc = regs->cp0_epc;
2a0b24f5 1346 old31 = regs->regs[31];
60b0d655
MR
1347 opcode = 0;
1348 status = -1;
1da177e4 1349
60b0d655 1350 if (unlikely(compute_return_epc(regs) < 0))
27e28e8e 1351 break;
3c37026d 1352
2a0b24f5
SH
1353 if (get_isa16_mode(regs->cp0_epc)) {
1354 unsigned short mmop[2] = { 0 };
60b0d655 1355
2a0b24f5
SH
1356 if (unlikely(get_user(mmop[0], epc) < 0))
1357 status = SIGSEGV;
1358 if (unlikely(get_user(mmop[1], epc) < 0))
1359 status = SIGSEGV;
1360 opcode = (mmop[0] << 16) | mmop[1];
60b0d655 1361
2a0b24f5
SH
1362 if (status < 0)
1363 status = simulate_rdhwr_mm(regs, opcode);
1364 } else {
1365 if (unlikely(get_user(opcode, epc) < 0))
1366 status = SIGSEGV;
1367
1368 if (!cpu_has_llsc && status < 0)
1369 status = simulate_llsc(regs, opcode);
1370
1371 if (status < 0)
1372 status = simulate_rdhwr_normal(regs, opcode);
1373 }
60b0d655
MR
1374
1375 if (status < 0)
1376 status = SIGILL;
1377
1378 if (unlikely(status > 0)) {
1379 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1380 regs->regs[31] = old31;
60b0d655
MR
1381 force_sig(status, current);
1382 }
1383
27e28e8e 1384 break;
1da177e4 1385
051ff44a
MR
1386 case 3:
1387 /*
2d83fea7
MR
1388 * The COP3 opcode space and consequently the CP0.Status.CU3
1389 * bit and the CP0.Cause.CE=3 encoding have been removed as
1390 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1391 * up the space has been reused for COP1X instructions, that
1392 * are enabled by the CP0.Status.CU1 bit and consequently
1393 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1394 * exceptions. Some FPU-less processors that implement one
1395 * of these ISAs however use this code erroneously for COP1X
1396 * instructions. Therefore we redirect this trap to the FP
1397 * emulator too.
051ff44a 1398 */
2d83fea7 1399 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
27e28e8e 1400 force_sig(SIGILL, current);
051ff44a 1401 break;
27e28e8e 1402 }
051ff44a
MR
1403 /* Fall through. */
1404
1da177e4 1405 case 1:
1db1af84 1406 err = enable_restore_fp_context(0);
1da177e4 1407
304acb71
MR
1408 if (raw_cpu_has_fpu && !err)
1409 break;
1da177e4 1410
304acb71
MR
1411 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1412 &fault_addr);
1413 fcr31 = current->thread.fpu.fcr31;
1414
1415 /*
1416 * We can't allow the emulated instruction to leave
1417 * any of the cause bits set in $fcr31.
1418 */
1419 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1420
1421 /* Send a signal if required. */
1422 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1423 mt_ase_fp_affinity();
1da177e4 1424
27e28e8e 1425 break;
1da177e4
LT
1426
1427 case 2:
69f3a7de 1428 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
27e28e8e 1429 break;
1da177e4
LT
1430 }
1431
c3fc5cd5 1432 exception_exit(prev_state);
1da177e4
LT
1433}
1434
64bedffe 1435asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
2bcb3fbc
PB
1436{
1437 enum ctx_state prev_state;
1438
1439 prev_state = exception_enter();
64bedffe
JH
1440 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1441 regs_to_trapnr(regs), SIGFPE) == NOTIFY_STOP)
1442 goto out;
1443
1444 /* Clear MSACSR.Cause before enabling interrupts */
1445 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1446 local_irq_enable();
1447
2bcb3fbc
PB
1448 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1449 force_sig(SIGFPE, current);
64bedffe 1450out:
2bcb3fbc
PB
1451 exception_exit(prev_state);
1452}
1453
1db1af84
PB
1454asmlinkage void do_msa(struct pt_regs *regs)
1455{
1456 enum ctx_state prev_state;
1457 int err;
1458
1459 prev_state = exception_enter();
1460
1461 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1462 force_sig(SIGILL, current);
1463 goto out;
1464 }
1465
1466 die_if_kernel("do_msa invoked from kernel context!", regs);
1467
1468 err = enable_restore_fp_context(1);
1469 if (err)
1470 force_sig(SIGILL, current);
1471out:
1472 exception_exit(prev_state);
1473}
1474
1da177e4
LT
1475asmlinkage void do_mdmx(struct pt_regs *regs)
1476{
c3fc5cd5
RB
1477 enum ctx_state prev_state;
1478
1479 prev_state = exception_enter();
1da177e4 1480 force_sig(SIGILL, current);
c3fc5cd5 1481 exception_exit(prev_state);
1da177e4
LT
1482}
1483
8bc6d05b
DD
1484/*
1485 * Called with interrupts disabled.
1486 */
1da177e4
LT
1487asmlinkage void do_watch(struct pt_regs *regs)
1488{
c3fc5cd5 1489 enum ctx_state prev_state;
b67b2b70
DD
1490 u32 cause;
1491
c3fc5cd5 1492 prev_state = exception_enter();
1da177e4 1493 /*
b67b2b70
DD
1494 * Clear WP (bit 22) bit of cause register so we don't loop
1495 * forever.
1da177e4 1496 */
b67b2b70
DD
1497 cause = read_c0_cause();
1498 cause &= ~(1 << 22);
1499 write_c0_cause(cause);
1500
1501 /*
1502 * If the current thread has the watch registers loaded, save
1503 * their values and send SIGTRAP. Otherwise another thread
1504 * left the registers set, clear them and continue.
1505 */
1506 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1507 mips_read_watch_registers();
8bc6d05b 1508 local_irq_enable();
b67b2b70 1509 force_sig(SIGTRAP, current);
8bc6d05b 1510 } else {
b67b2b70 1511 mips_clear_watch_registers();
8bc6d05b
DD
1512 local_irq_enable();
1513 }
c3fc5cd5 1514 exception_exit(prev_state);
1da177e4
LT
1515}
1516
1517asmlinkage void do_mcheck(struct pt_regs *regs)
1518{
cac4bcbc
RB
1519 const int field = 2 * sizeof(unsigned long);
1520 int multi_match = regs->cp0_status & ST0_TS;
c3fc5cd5 1521 enum ctx_state prev_state;
cac4bcbc 1522
c3fc5cd5 1523 prev_state = exception_enter();
1da177e4 1524 show_regs(regs);
cac4bcbc
RB
1525
1526 if (multi_match) {
314727fe
MC
1527 pr_err("Index : %0x\n", read_c0_index());
1528 pr_err("Pagemask: %0x\n", read_c0_pagemask());
1529 pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi());
1530 pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1531 pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
26b40ef1
MC
1532 pr_err("Wired : %0x\n", read_c0_wired());
1533 pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
31ec86b8
MC
1534 if (cpu_has_htw) {
1535 pr_err("PWField : %0*lx\n", field, read_c0_pwfield());
1536 pr_err("PWSize : %0*lx\n", field, read_c0_pwsize());
1537 pr_err("PWCtl : %0x\n", read_c0_pwctl());
1538 }
314727fe 1539 pr_err("\n");
cac4bcbc
RB
1540 dump_tlb_all();
1541 }
1542
e1bb8289 1543 show_code((unsigned int __user *) regs->cp0_epc);
cac4bcbc 1544
1da177e4
LT
1545 /*
1546 * Some chips may have other causes of machine check (e.g. SB1
1547 * graduation timer)
1548 */
1549 panic("Caught Machine Check exception - %scaused by multiple "
1550 "matching entries in the TLB.",
cac4bcbc 1551 (multi_match) ? "" : "not ");
1da177e4
LT
1552}
1553
340ee4b9
RB
1554asmlinkage void do_mt(struct pt_regs *regs)
1555{
41c594ab
RB
1556 int subcode;
1557
41c594ab
RB
1558 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1559 >> VPECONTROL_EXCPT_SHIFT;
1560 switch (subcode) {
1561 case 0:
e35a5e35 1562 printk(KERN_DEBUG "Thread Underflow\n");
41c594ab
RB
1563 break;
1564 case 1:
e35a5e35 1565 printk(KERN_DEBUG "Thread Overflow\n");
41c594ab
RB
1566 break;
1567 case 2:
e35a5e35 1568 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
41c594ab
RB
1569 break;
1570 case 3:
e35a5e35 1571 printk(KERN_DEBUG "Gating Storage Exception\n");
41c594ab
RB
1572 break;
1573 case 4:
e35a5e35 1574 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
41c594ab
RB
1575 break;
1576 case 5:
f232c7e8 1577 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
41c594ab
RB
1578 break;
1579 default:
e35a5e35 1580 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
41c594ab
RB
1581 subcode);
1582 break;
1583 }
340ee4b9
RB
1584 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1585
1586 force_sig(SIGILL, current);
1587}
1588
1589
e50c0a8f
RB
1590asmlinkage void do_dsp(struct pt_regs *regs)
1591{
1592 if (cpu_has_dsp)
ab75dc02 1593 panic("Unexpected DSP exception");
e50c0a8f
RB
1594
1595 force_sig(SIGILL, current);
1596}
1597
1da177e4
LT
1598asmlinkage void do_reserved(struct pt_regs *regs)
1599{
1600 /*
70342287 1601 * Game over - no way to handle this if it ever occurs. Most probably
1da177e4
LT
1602 * caused by a new unknown cpu type or after another deadly
1603 * hard/software error.
1604 */
1605 show_regs(regs);
1606 panic("Caught reserved exception %ld - should not happen.",
1607 (regs->cp0_cause & 0x7f) >> 2);
1608}
1609
39b8d525
RB
1610static int __initdata l1parity = 1;
1611static int __init nol1parity(char *s)
1612{
1613 l1parity = 0;
1614 return 1;
1615}
1616__setup("nol1par", nol1parity);
1617static int __initdata l2parity = 1;
1618static int __init nol2parity(char *s)
1619{
1620 l2parity = 0;
1621 return 1;
1622}
1623__setup("nol2par", nol2parity);
1624
1da177e4
LT
1625/*
1626 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1627 * it different ways.
1628 */
1629static inline void parity_protection_init(void)
1630{
10cc3529 1631 switch (current_cpu_type()) {
1da177e4 1632 case CPU_24K:
98a41de9 1633 case CPU_34K:
39b8d525
RB
1634 case CPU_74K:
1635 case CPU_1004K:
442e14a2 1636 case CPU_1074K:
26ab96df 1637 case CPU_INTERAPTIV:
708ac4b8 1638 case CPU_PROAPTIV:
aced4cbd 1639 case CPU_P5600:
4695089f 1640 case CPU_QEMU_GENERIC:
39b8d525
RB
1641 {
1642#define ERRCTL_PE 0x80000000
1643#define ERRCTL_L2P 0x00800000
1644 unsigned long errctl;
1645 unsigned int l1parity_present, l2parity_present;
1646
1647 errctl = read_c0_ecc();
1648 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1649
1650 /* probe L1 parity support */
1651 write_c0_ecc(errctl | ERRCTL_PE);
1652 back_to_back_c0_hazard();
1653 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1654
1655 /* probe L2 parity support */
1656 write_c0_ecc(errctl|ERRCTL_L2P);
1657 back_to_back_c0_hazard();
1658 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1659
1660 if (l1parity_present && l2parity_present) {
1661 if (l1parity)
1662 errctl |= ERRCTL_PE;
1663 if (l1parity ^ l2parity)
1664 errctl |= ERRCTL_L2P;
1665 } else if (l1parity_present) {
1666 if (l1parity)
1667 errctl |= ERRCTL_PE;
1668 } else if (l2parity_present) {
1669 if (l2parity)
1670 errctl |= ERRCTL_L2P;
1671 } else {
1672 /* No parity available */
1673 }
1674
1675 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1676
1677 write_c0_ecc(errctl);
1678 back_to_back_c0_hazard();
1679 errctl = read_c0_ecc();
1680 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1681
1682 if (l1parity_present)
1683 printk(KERN_INFO "Cache parity protection %sabled\n",
1684 (errctl & ERRCTL_PE) ? "en" : "dis");
1685
1686 if (l2parity_present) {
1687 if (l1parity_present && l1parity)
1688 errctl ^= ERRCTL_L2P;
1689 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1690 (errctl & ERRCTL_L2P) ? "en" : "dis");
1691 }
1692 }
1693 break;
1694
1da177e4 1695 case CPU_5KC:
78d4803f 1696 case CPU_5KE:
2fa36399 1697 case CPU_LOONGSON1:
14f18b7f
RB
1698 write_c0_ecc(0x80000000);
1699 back_to_back_c0_hazard();
1700 /* Set the PE bit (bit 31) in the c0_errctl register. */
1701 printk(KERN_INFO "Cache parity protection %sabled\n",
1702 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
1703 break;
1704 case CPU_20KC:
1705 case CPU_25KF:
1706 /* Clear the DE bit (bit 16) in the c0_status register. */
1707 printk(KERN_INFO "Enable cache parity protection for "
1708 "MIPS 20KC/25KF CPUs.\n");
1709 clear_c0_status(ST0_DE);
1710 break;
1711 default:
1712 break;
1713 }
1714}
1715
1716asmlinkage void cache_parity_error(void)
1717{
1718 const int field = 2 * sizeof(unsigned long);
1719 unsigned int reg_val;
1720
1721 /* For the moment, report the problem and hang. */
1722 printk("Cache error exception:\n");
1723 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1724 reg_val = read_c0_cacheerr();
1725 printk("c0_cacheerr == %08x\n", reg_val);
1726
1727 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1728 reg_val & (1<<30) ? "secondary" : "primary",
1729 reg_val & (1<<31) ? "data" : "insn");
9c7d5768 1730 if ((cpu_has_mips_r2_r6) &&
721a9205 1731 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
6de20451
LY
1732 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1733 reg_val & (1<<29) ? "ED " : "",
1734 reg_val & (1<<28) ? "ET " : "",
1735 reg_val & (1<<27) ? "ES " : "",
1736 reg_val & (1<<26) ? "EE " : "",
1737 reg_val & (1<<25) ? "EB " : "",
1738 reg_val & (1<<24) ? "EI " : "",
1739 reg_val & (1<<23) ? "E1 " : "",
1740 reg_val & (1<<22) ? "E0 " : "");
1741 } else {
1742 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1743 reg_val & (1<<29) ? "ED " : "",
1744 reg_val & (1<<28) ? "ET " : "",
1745 reg_val & (1<<26) ? "EE " : "",
1746 reg_val & (1<<25) ? "EB " : "",
1747 reg_val & (1<<24) ? "EI " : "",
1748 reg_val & (1<<23) ? "E1 " : "",
1749 reg_val & (1<<22) ? "E0 " : "");
1750 }
1da177e4
LT
1751 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1752
ec917c2c 1753#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1da177e4
LT
1754 if (reg_val & (1<<22))
1755 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1756
1757 if (reg_val & (1<<23))
1758 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1759#endif
1760
1761 panic("Can't handle the cache error!");
1762}
1763
75b5b5e0
LY
1764asmlinkage void do_ftlb(void)
1765{
1766 const int field = 2 * sizeof(unsigned long);
1767 unsigned int reg_val;
1768
1769 /* For the moment, report the problem and hang. */
9c7d5768 1770 if ((cpu_has_mips_r2_r6) &&
721a9205 1771 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
75b5b5e0
LY
1772 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1773 read_c0_ecc());
1774 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1775 reg_val = read_c0_cacheerr();
1776 pr_err("c0_cacheerr == %08x\n", reg_val);
1777
1778 if ((reg_val & 0xc0000000) == 0xc0000000) {
1779 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1780 } else {
1781 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1782 reg_val & (1<<30) ? "secondary" : "primary",
1783 reg_val & (1<<31) ? "data" : "insn");
1784 }
1785 } else {
1786 pr_err("FTLB error exception\n");
1787 }
1788 /* Just print the cacheerr bits for now */
1789 cache_parity_error();
1790}
1791
1da177e4
LT
1792/*
1793 * SDBBP EJTAG debug exception handler.
1794 * We skip the instruction and return to the next instruction.
1795 */
1796void ejtag_exception_handler(struct pt_regs *regs)
1797{
1798 const int field = 2 * sizeof(unsigned long);
2a0b24f5 1799 unsigned long depc, old_epc, old_ra;
1da177e4
LT
1800 unsigned int debug;
1801
70ae6126 1802 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1da177e4
LT
1803 depc = read_c0_depc();
1804 debug = read_c0_debug();
70ae6126 1805 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1da177e4
LT
1806 if (debug & 0x80000000) {
1807 /*
1808 * In branch delay slot.
1809 * We cheat a little bit here and use EPC to calculate the
1810 * debug return address (DEPC). EPC is restored after the
1811 * calculation.
1812 */
1813 old_epc = regs->cp0_epc;
2a0b24f5 1814 old_ra = regs->regs[31];
1da177e4 1815 regs->cp0_epc = depc;
2a0b24f5 1816 compute_return_epc(regs);
1da177e4
LT
1817 depc = regs->cp0_epc;
1818 regs->cp0_epc = old_epc;
2a0b24f5 1819 regs->regs[31] = old_ra;
1da177e4
LT
1820 } else
1821 depc += 4;
1822 write_c0_depc(depc);
1823
1824#if 0
70ae6126 1825 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1da177e4
LT
1826 write_c0_debug(debug | 0x100);
1827#endif
1828}
1829
1830/*
1831 * NMI exception handler.
34bd92e2 1832 * No lock; only written during early bootup by CPU 0.
1da177e4 1833 */
34bd92e2
KC
1834static RAW_NOTIFIER_HEAD(nmi_chain);
1835
1836int register_nmi_notifier(struct notifier_block *nb)
1837{
1838 return raw_notifier_chain_register(&nmi_chain, nb);
1839}
1840
ff2d8b19 1841void __noreturn nmi_exception_handler(struct pt_regs *regs)
1da177e4 1842{
83e4da1e
LY
1843 char str[100];
1844
34bd92e2 1845 raw_notifier_call_chain(&nmi_chain, 0, regs);
41c594ab 1846 bust_spinlocks(1);
83e4da1e
LY
1847 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1848 smp_processor_id(), regs->cp0_epc);
1849 regs->cp0_epc = read_c0_errorepc();
1850 die(str, regs);
1da177e4
LT
1851}
1852
e01402b1
RB
1853#define VECTORSPACING 0x100 /* for EI/VI mode */
1854
1855unsigned long ebase;
1da177e4 1856unsigned long exception_handlers[32];
e01402b1 1857unsigned long vi_handlers[64];
1da177e4 1858
2d1b6e95 1859void __init *set_except_vector(int n, void *addr)
1da177e4
LT
1860{
1861 unsigned long handler = (unsigned long) addr;
b22d1b6a 1862 unsigned long old_handler;
1da177e4 1863
2a0b24f5
SH
1864#ifdef CONFIG_CPU_MICROMIPS
1865 /*
1866 * Only the TLB handlers are cache aligned with an even
1867 * address. All other handlers are on an odd address and
1868 * require no modification. Otherwise, MIPS32 mode will
1869 * be entered when handling any TLB exceptions. That
1870 * would be bad...since we must stay in microMIPS mode.
1871 */
1872 if (!(handler & 0x1))
1873 handler |= 1;
1874#endif
b22d1b6a 1875 old_handler = xchg(&exception_handlers[n], handler);
1da177e4 1876
1da177e4 1877 if (n == 0 && cpu_has_divec) {
2a0b24f5
SH
1878#ifdef CONFIG_CPU_MICROMIPS
1879 unsigned long jump_mask = ~((1 << 27) - 1);
1880#else
92bbe1b9 1881 unsigned long jump_mask = ~((1 << 28) - 1);
2a0b24f5 1882#endif
92bbe1b9
FF
1883 u32 *buf = (u32 *)(ebase + 0x200);
1884 unsigned int k0 = 26;
1885 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1886 uasm_i_j(&buf, handler & ~jump_mask);
1887 uasm_i_nop(&buf);
1888 } else {
1889 UASM_i_LA(&buf, k0, handler);
1890 uasm_i_jr(&buf, k0);
1891 uasm_i_nop(&buf);
1892 }
1893 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
e01402b1
RB
1894 }
1895 return (void *)old_handler;
1896}
1897
86a1708a 1898static void do_default_vi(void)
6ba07e59
AN
1899{
1900 show_regs(get_irq_regs());
1901 panic("Caught unexpected vectored interrupt.");
1902}
1903
ef300e42 1904static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
e01402b1
RB
1905{
1906 unsigned long handler;
1907 unsigned long old_handler = vi_handlers[n];
f6771dbb 1908 int srssets = current_cpu_data.srsets;
2a0b24f5 1909 u16 *h;
e01402b1
RB
1910 unsigned char *b;
1911
b72b7092 1912 BUG_ON(!cpu_has_veic && !cpu_has_vint);
e01402b1
RB
1913
1914 if (addr == NULL) {
1915 handler = (unsigned long) do_default_vi;
1916 srs = 0;
41c594ab 1917 } else
e01402b1 1918 handler = (unsigned long) addr;
2a0b24f5 1919 vi_handlers[n] = handler;
e01402b1
RB
1920
1921 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1922
f6771dbb 1923 if (srs >= srssets)
e01402b1
RB
1924 panic("Shadow register set %d not supported", srs);
1925
1926 if (cpu_has_veic) {
1927 if (board_bind_eic_interrupt)
49a89efb 1928 board_bind_eic_interrupt(n, srs);
41c594ab 1929 } else if (cpu_has_vint) {
e01402b1 1930 /* SRSMap is only defined if shadow sets are implemented */
f6771dbb 1931 if (srssets > 1)
49a89efb 1932 change_c0_srsmap(0xf << n*4, srs << n*4);
e01402b1
RB
1933 }
1934
1935 if (srs == 0) {
1936 /*
1937 * If no shadow set is selected then use the default handler
2a0b24f5 1938 * that does normal register saving and standard interrupt exit
e01402b1 1939 */
e01402b1
RB
1940 extern char except_vec_vi, except_vec_vi_lui;
1941 extern char except_vec_vi_ori, except_vec_vi_end;
c65a5480 1942 extern char rollback_except_vec_vi;
f94d9a8e 1943 char *vec_start = using_rollback_handler() ?
c65a5480 1944 &rollback_except_vec_vi : &except_vec_vi;
2a0b24f5
SH
1945#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1946 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1947 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1948#else
c65a5480
AN
1949 const int lui_offset = &except_vec_vi_lui - vec_start;
1950 const int ori_offset = &except_vec_vi_ori - vec_start;
2a0b24f5
SH
1951#endif
1952 const int handler_len = &except_vec_vi_end - vec_start;
e01402b1
RB
1953
1954 if (handler_len > VECTORSPACING) {
1955 /*
1956 * Sigh... panicing won't help as the console
1957 * is probably not configured :(
1958 */
49a89efb 1959 panic("VECTORSPACING too small");
e01402b1
RB
1960 }
1961
2a0b24f5
SH
1962 set_handler(((unsigned long)b - ebase), vec_start,
1963#ifdef CONFIG_CPU_MICROMIPS
1964 (handler_len - 1));
1965#else
1966 handler_len);
1967#endif
2a0b24f5
SH
1968 h = (u16 *)(b + lui_offset);
1969 *h = (handler >> 16) & 0xffff;
1970 h = (u16 *)(b + ori_offset);
1971 *h = (handler & 0xffff);
e0cee3ee
TB
1972 local_flush_icache_range((unsigned long)b,
1973 (unsigned long)(b+handler_len));
e01402b1
RB
1974 }
1975 else {
1976 /*
2a0b24f5
SH
1977 * In other cases jump directly to the interrupt handler. It
1978 * is the handler's responsibility to save registers if required
1979 * (eg hi/lo) and return from the exception using "eret".
e01402b1 1980 */
2a0b24f5
SH
1981 u32 insn;
1982
1983 h = (u16 *)b;
1984 /* j handler */
1985#ifdef CONFIG_CPU_MICROMIPS
1986 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1987#else
1988 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1989#endif
1990 h[0] = (insn >> 16) & 0xffff;
1991 h[1] = insn & 0xffff;
1992 h[2] = 0;
1993 h[3] = 0;
e0cee3ee
TB
1994 local_flush_icache_range((unsigned long)b,
1995 (unsigned long)(b+8));
1da177e4 1996 }
e01402b1 1997
1da177e4
LT
1998 return (void *)old_handler;
1999}
2000
ef300e42 2001void *set_vi_handler(int n, vi_handler_t addr)
e01402b1 2002{
ff3eab2a 2003 return set_vi_srs_handler(n, addr, 0);
e01402b1 2004}
f41ae0b2 2005
1da177e4
LT
2006extern void tlb_init(void);
2007
42f77542
RB
2008/*
2009 * Timer interrupt
2010 */
2011int cp0_compare_irq;
68b6352c 2012EXPORT_SYMBOL_GPL(cp0_compare_irq);
010c108d 2013int cp0_compare_irq_shift;
42f77542
RB
2014
2015/*
2016 * Performance counter IRQ or -1 if shared with timer
2017 */
2018int cp0_perfcount_irq;
2019EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2020
8f7ff027
JH
2021/*
2022 * Fast debug channel IRQ or -1 if not present
2023 */
2024int cp0_fdc_irq;
2025EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2026
078a55fc 2027static int noulri;
bdc94eb4
CD
2028
2029static int __init ulri_disable(char *s)
2030{
2031 pr_info("Disabling ulri\n");
2032 noulri = 1;
2033
2034 return 1;
2035}
2036__setup("noulri", ulri_disable);
2037
ae4ce454
JH
2038/* configure STATUS register */
2039static void configure_status(void)
1da177e4 2040{
1da177e4
LT
2041 /*
2042 * Disable coprocessors and select 32-bit or 64-bit addressing
2043 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2044 * flag that some firmware may have left set and the TS bit (for
2045 * IP27). Set XX for ISA IV code to work.
2046 */
ae4ce454 2047 unsigned int status_set = ST0_CU0;
875d43e7 2048#ifdef CONFIG_64BIT
1da177e4
LT
2049 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2050#endif
adb37892 2051 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1da177e4 2052 status_set |= ST0_XX;
bbaf238b
CD
2053 if (cpu_has_dsp)
2054 status_set |= ST0_MX;
2055
b38c7399 2056 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4 2057 status_set);
ae4ce454
JH
2058}
2059
2060/* configure HWRENA register */
2061static void configure_hwrena(void)
2062{
2063 unsigned int hwrena = cpu_hwrena_impl_bits;
1da177e4 2064
9c7d5768 2065 if (cpu_has_mips_r2_r6)
18d693b3 2066 hwrena |= 0x0000000f;
a3692020 2067
18d693b3
KC
2068 if (!noulri && cpu_has_userlocal)
2069 hwrena |= (1 << 29);
a3692020 2070
18d693b3
KC
2071 if (hwrena)
2072 write_c0_hwrena(hwrena);
ae4ce454 2073}
e01402b1 2074
ae4ce454
JH
2075static void configure_exception_vector(void)
2076{
e01402b1 2077 if (cpu_has_veic || cpu_has_vint) {
9fb4c2b9 2078 unsigned long sr = set_c0_status(ST0_BEV);
49a89efb 2079 write_c0_ebase(ebase);
9fb4c2b9 2080 write_c0_status(sr);
e01402b1 2081 /* Setting vector spacing enables EI/VI mode */
49a89efb 2082 change_c0_intctl(0x3e0, VECTORSPACING);
e01402b1 2083 }
d03d0a57
RB
2084 if (cpu_has_divec) {
2085 if (cpu_has_mipsmt) {
2086 unsigned int vpflags = dvpe();
2087 set_c0_cause(CAUSEF_IV);
2088 evpe(vpflags);
2089 } else
2090 set_c0_cause(CAUSEF_IV);
2091 }
ae4ce454
JH
2092}
2093
2094void per_cpu_trap_init(bool is_boot_cpu)
2095{
2096 unsigned int cpu = smp_processor_id();
ae4ce454
JH
2097
2098 configure_status();
2099 configure_hwrena();
2100
ae4ce454 2101 configure_exception_vector();
3b1d4ed5
RB
2102
2103 /*
2104 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2105 *
2106 * o read IntCtl.IPTI to determine the timer interrupt
2107 * o read IntCtl.IPPCI to determine the performance counter interrupt
8f7ff027 2108 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
3b1d4ed5 2109 */
9c7d5768 2110 if (cpu_has_mips_r2_r6) {
010c108d
DV
2111 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2112 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2113 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
8f7ff027
JH
2114 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2115 if (!cp0_fdc_irq)
2116 cp0_fdc_irq = -1;
2117
c3e838a2
CD
2118 } else {
2119 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
c6a4ebb9 2120 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
c3e838a2 2121 cp0_perfcount_irq = -1;
8f7ff027 2122 cp0_fdc_irq = -1;
3b1d4ed5
RB
2123 }
2124
48c4ac97
DD
2125 if (!cpu_data[cpu].asid_cache)
2126 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1da177e4
LT
2127
2128 atomic_inc(&init_mm.mm_count);
2129 current->active_mm = &init_mm;
2130 BUG_ON(current->mm);
2131 enter_lazy_tlb(&init_mm, current);
2132
761b4493
MC
2133 /* Boot CPU's cache setup in setup_arch(). */
2134 if (!is_boot_cpu)
2135 cpu_cache_init();
2136 tlb_init();
3d8bfdd0 2137 TLBMISS_HANDLER_SETUP();
1da177e4
LT
2138}
2139
e01402b1 2140/* Install CPU exception handler */
078a55fc 2141void set_handler(unsigned long offset, void *addr, unsigned long size)
e01402b1 2142{
2a0b24f5
SH
2143#ifdef CONFIG_CPU_MICROMIPS
2144 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2145#else
e01402b1 2146 memcpy((void *)(ebase + offset), addr, size);
2a0b24f5 2147#endif
e0cee3ee 2148 local_flush_icache_range(ebase + offset, ebase + offset + size);
e01402b1
RB
2149}
2150
078a55fc 2151static char panic_null_cerr[] =
641e97f3
RB
2152 "Trying to set NULL cache error exception handler";
2153
42fe7ee3
RB
2154/*
2155 * Install uncached CPU exception handler.
2156 * This is suitable only for the cache error exception which is the only
2157 * exception handler that is being run uncached.
2158 */
078a55fc 2159void set_uncached_handler(unsigned long offset, void *addr,
234fcd14 2160 unsigned long size)
e01402b1 2161{
4f81b01a 2162 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
e01402b1 2163
641e97f3
RB
2164 if (!addr)
2165 panic(panic_null_cerr);
2166
e01402b1
RB
2167 memcpy((void *)(uncached_ebase + offset), addr, size);
2168}
2169
5b10496b
AN
2170static int __initdata rdhwr_noopt;
2171static int __init set_rdhwr_noopt(char *str)
2172{
2173 rdhwr_noopt = 1;
2174 return 1;
2175}
2176
2177__setup("rdhwr_noopt", set_rdhwr_noopt);
2178
1da177e4
LT
2179void __init trap_init(void)
2180{
2a0b24f5 2181 extern char except_vec3_generic;
1da177e4 2182 extern char except_vec4;
2a0b24f5 2183 extern char except_vec3_r4000;
1da177e4 2184 unsigned long i;
c65a5480
AN
2185
2186 check_wait();
1da177e4 2187
9fb4c2b9
CD
2188 if (cpu_has_veic || cpu_has_vint) {
2189 unsigned long size = 0x200 + VECTORSPACING*64;
2190 ebase = (unsigned long)
2191 __alloc_bootmem(size, 1 << fls(size), 0);
2192 } else {
9843b030
SL
2193#ifdef CONFIG_KVM_GUEST
2194#define KVM_GUEST_KSEG0 0x40000000
2195 ebase = KVM_GUEST_KSEG0;
2196#else
2197 ebase = CKSEG0;
2198#endif
9c7d5768 2199 if (cpu_has_mips_r2_r6)
566f74f6
DD
2200 ebase += (read_c0_ebase() & 0x3ffff000);
2201 }
e01402b1 2202
c6213c6c
SH
2203 if (cpu_has_mmips) {
2204 unsigned int config3 = read_c0_config3();
2205
2206 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2207 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2208 else
2209 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2210 }
2211
6fb97eff
KC
2212 if (board_ebase_setup)
2213 board_ebase_setup();
6650df3c 2214 per_cpu_trap_init(true);
1da177e4
LT
2215
2216 /*
2217 * Copy the generic exception handlers to their final destination.
2218 * This will be overriden later as suitable for a particular
2219 * configuration.
2220 */
e01402b1 2221 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
2222
2223 /*
2224 * Setup default vectors
2225 */
2226 for (i = 0; i <= 31; i++)
2227 set_except_vector(i, handle_reserved);
2228
2229 /*
2230 * Copy the EJTAG debug exception vector handler code to it's final
2231 * destination.
2232 */
e01402b1 2233 if (cpu_has_ejtag && board_ejtag_handler_setup)
49a89efb 2234 board_ejtag_handler_setup();
1da177e4
LT
2235
2236 /*
2237 * Only some CPUs have the watch exceptions.
2238 */
2239 if (cpu_has_watch)
2240 set_except_vector(23, handle_watch);
2241
2242 /*
e01402b1 2243 * Initialise interrupt handlers
1da177e4 2244 */
e01402b1
RB
2245 if (cpu_has_veic || cpu_has_vint) {
2246 int nvec = cpu_has_veic ? 64 : 8;
2247 for (i = 0; i < nvec; i++)
ff3eab2a 2248 set_vi_handler(i, NULL);
e01402b1
RB
2249 }
2250 else if (cpu_has_divec)
2251 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
2252
2253 /*
2254 * Some CPUs can enable/disable for cache parity detection, but does
2255 * it different ways.
2256 */
2257 parity_protection_init();
2258
2259 /*
2260 * The Data Bus Errors / Instruction Bus Errors are signaled
2261 * by external hardware. Therefore these two exceptions
2262 * may have board specific handlers.
2263 */
2264 if (board_be_init)
2265 board_be_init();
2266
f94d9a8e
RB
2267 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2268 : handle_int);
1da177e4
LT
2269 set_except_vector(1, handle_tlbm);
2270 set_except_vector(2, handle_tlbl);
2271 set_except_vector(3, handle_tlbs);
2272
2273 set_except_vector(4, handle_adel);
2274 set_except_vector(5, handle_ades);
2275
2276 set_except_vector(6, handle_ibe);
2277 set_except_vector(7, handle_dbe);
2278
2279 set_except_vector(8, handle_sys);
2280 set_except_vector(9, handle_bp);
5b10496b
AN
2281 set_except_vector(10, rdhwr_noopt ? handle_ri :
2282 (cpu_has_vtag_icache ?
2283 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1da177e4
LT
2284 set_except_vector(11, handle_cpu);
2285 set_except_vector(12, handle_ov);
2286 set_except_vector(13, handle_tr);
2bcb3fbc 2287 set_except_vector(14, handle_msa_fpe);
1da177e4 2288
10cc3529
RB
2289 if (current_cpu_type() == CPU_R6000 ||
2290 current_cpu_type() == CPU_R6000A) {
1da177e4
LT
2291 /*
2292 * The R6000 is the only R-series CPU that features a machine
2293 * check exception (similar to the R4000 cache error) and
2294 * unaligned ldc1/sdc1 exception. The handlers have not been
70342287 2295 * written yet. Well, anyway there is no R6000 machine on the
1da177e4
LT
2296 * current list of targets for Linux/MIPS.
2297 * (Duh, crap, there is someone with a triple R6k machine)
2298 */
2299 //set_except_vector(14, handle_mc);
2300 //set_except_vector(15, handle_ndc);
2301 }
2302
e01402b1
RB
2303
2304 if (board_nmi_handler_setup)
2305 board_nmi_handler_setup();
2306
e50c0a8f
RB
2307 if (cpu_has_fpu && !cpu_has_nofpuex)
2308 set_except_vector(15, handle_fpe);
2309
75b5b5e0 2310 set_except_vector(16, handle_ftlb);
5890f70f
LY
2311
2312 if (cpu_has_rixiex) {
2313 set_except_vector(19, tlb_do_page_fault_0);
2314 set_except_vector(20, tlb_do_page_fault_0);
2315 }
2316
1db1af84 2317 set_except_vector(21, handle_msa);
e50c0a8f
RB
2318 set_except_vector(22, handle_mdmx);
2319
2320 if (cpu_has_mcheck)
2321 set_except_vector(24, handle_mcheck);
2322
340ee4b9
RB
2323 if (cpu_has_mipsmt)
2324 set_except_vector(25, handle_mt);
2325
acaec427 2326 set_except_vector(26, handle_dsp);
e50c0a8f 2327
fcbf1dfd
DD
2328 if (board_cache_error_setup)
2329 board_cache_error_setup();
2330
e50c0a8f
RB
2331 if (cpu_has_vce)
2332 /* Special exception: R4[04]00 uses also the divec space. */
2a0b24f5 2333 set_handler(0x180, &except_vec3_r4000, 0x100);
e50c0a8f 2334 else if (cpu_has_4kex)
2a0b24f5 2335 set_handler(0x180, &except_vec3_generic, 0x80);
e50c0a8f 2336 else
2a0b24f5 2337 set_handler(0x080, &except_vec3_generic, 0x80);
e50c0a8f 2338
e0cee3ee 2339 local_flush_icache_range(ebase, ebase + 0x400);
0510617b
TB
2340
2341 sort_extable(__start___dbe_table, __stop___dbe_table);
69f3a7de 2342
4483b159 2343 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1da177e4 2344}
ae4ce454
JH
2345
2346static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2347 void *v)
2348{
2349 switch (cmd) {
2350 case CPU_PM_ENTER_FAILED:
2351 case CPU_PM_EXIT:
2352 configure_status();
2353 configure_hwrena();
2354 configure_exception_vector();
2355
2356 /* Restore register with CPU number for TLB handlers */
2357 TLBMISS_HANDLER_RESTORE();
2358
2359 break;
2360 }
2361
2362 return NOTIFY_OK;
2363}
2364
2365static struct notifier_block trap_pm_notifier_block = {
2366 .notifier_call = trap_pm_notifier,
2367};
2368
2369static int __init trap_pm_init(void)
2370{
2371 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2372}
2373arch_initcall(trap_pm_init);