MIPS: SMTC: Avoid queing multiple reschedule IPIs
[linux-2.6-block.git] / arch / mips / kernel / smtc.c
CommitLineData
8531a35e
KK
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15 *
16 * Copyright (C) 2004 Mips Technologies, Inc
17 * Copyright (C) 2008 Kevin D. Kissell
18 */
41c594ab 19
ea580401 20#include <linux/clockchips.h>
41c594ab
RB
21#include <linux/kernel.h>
22#include <linux/sched.h>
631330f5 23#include <linux/smp.h>
41c594ab
RB
24#include <linux/cpumask.h>
25#include <linux/interrupt.h>
ae036b79 26#include <linux/kernel_stat.h>
ec43c014 27#include <linux/module.h>
41c594ab
RB
28
29#include <asm/cpu.h>
30#include <asm/processor.h>
31#include <asm/atomic.h>
32#include <asm/system.h>
33#include <asm/hardirq.h>
34#include <asm/hazards.h>
3b1d4ed5 35#include <asm/irq.h>
41c594ab 36#include <asm/mmu_context.h>
41c594ab
RB
37#include <asm/mipsregs.h>
38#include <asm/cacheflush.h>
39#include <asm/time.h>
40#include <asm/addrspace.h>
41#include <asm/smtc.h>
41c594ab
RB
42#include <asm/smtc_proc.h>
43
44/*
1146fe30
RB
45 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
46 * in do_IRQ. These are passed in setup_irq_smtc() and stored
47 * in this table.
41c594ab 48 */
1146fe30 49unsigned long irq_hwmask[NR_IRQS];
41c594ab 50
41c594ab
RB
51#define LOCK_MT_PRA() \
52 local_irq_save(flags); \
53 mtflags = dmt()
54
55#define UNLOCK_MT_PRA() \
56 emt(mtflags); \
57 local_irq_restore(flags)
58
59#define LOCK_CORE_PRA() \
60 local_irq_save(flags); \
61 mtflags = dvpe()
62
63#define UNLOCK_CORE_PRA() \
64 evpe(mtflags); \
65 local_irq_restore(flags)
66
67/*
68 * Data structures purely associated with SMTC parallelism
69 */
70
71
72/*
73 * Table for tracking ASIDs whose lifetime is prolonged.
74 */
75
76asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
77
41c594ab 78/*
603e82ed 79 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
41c594ab
RB
80 */
81
82#define IPIBUF_PER_CPU 4
83
d2bb01b0 84struct smtc_ipi_q IPIQ[NR_CPUS];
5868756d 85static struct smtc_ipi_q freeIPIq;
41c594ab
RB
86
87
88/* Forward declarations */
89
937a8015 90void ipi_decode(struct smtc_ipi *);
5868756d 91static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
20bb25d1 92static void setup_cross_vpe_interrupts(unsigned int nvpe);
41c594ab
RB
93void init_smtc_stats(void);
94
95/* Global SMTC Status */
96
982f6ffe 97unsigned int smtc_status;
41c594ab
RB
98
99/* Boot command line configuration overrides */
100
be5f1f21 101static int vpe0limit;
982f6ffe
RB
102static int ipibuffers;
103static int nostlb;
104static int asidmask;
41c594ab
RB
105unsigned long smtc_asid_mask = 0xff;
106
be5f1f21
KK
107static int __init vpe0tcs(char *str)
108{
109 get_option(&str, &vpe0limit);
110
111 return 1;
112}
113
41c594ab
RB
114static int __init ipibufs(char *str)
115{
116 get_option(&str, &ipibuffers);
117 return 1;
118}
119
120static int __init stlb_disable(char *s)
121{
122 nostlb = 1;
123 return 1;
124}
125
126static int __init asidmask_set(char *str)
127{
128 get_option(&str, &asidmask);
4bf42d42 129 switch (asidmask) {
41c594ab
RB
130 case 0x1:
131 case 0x3:
132 case 0x7:
133 case 0xf:
134 case 0x1f:
135 case 0x3f:
136 case 0x7f:
137 case 0xff:
138 smtc_asid_mask = (unsigned long)asidmask;
139 break;
140 default:
141 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
142 }
143 return 1;
144}
145
be5f1f21 146__setup("vpe0tcs=", vpe0tcs);
41c594ab
RB
147__setup("ipibufs=", ipibufs);
148__setup("nostlb", stlb_disable);
149__setup("asidmask=", asidmask_set);
150
c68644d3 151#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
41c594ab 152
982f6ffe 153static int hang_trig;
41c594ab
RB
154
155static int __init hangtrig_enable(char *s)
156{
157 hang_trig = 1;
158 return 1;
159}
160
161
162__setup("hangtrig", hangtrig_enable);
163
164#define DEFAULT_BLOCKED_IPI_LIMIT 32
165
166static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
167
168static int __init tintq(char *str)
169{
170 get_option(&str, &timerq_limit);
171 return 1;
172}
173
174__setup("tintq=", tintq);
175
97aef63c 176static int imstuckcount[2][8];
41c594ab 177/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
97aef63c 178static int vpemask[2][8] = {
20bb25d1
RB
179 {0, 0, 1, 0, 0, 0, 0, 1},
180 {0, 0, 0, 0, 0, 0, 0, 1}
181};
41c594ab
RB
182int tcnoprog[NR_CPUS];
183static atomic_t idle_hook_initialized = {0};
184static int clock_hang_reported[NR_CPUS];
185
c68644d3 186#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
41c594ab 187
41c594ab
RB
188/*
189 * Configure shared TLB - VPC configuration bit must be set by caller
190 */
191
5868756d 192static void smtc_configure_tlb(void)
41c594ab 193{
21a151d8 194 int i, tlbsiz, vpes;
41c594ab
RB
195 unsigned long mvpconf0;
196 unsigned long config1val;
197
198 /* Set up ASID preservation table */
199 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
200 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
201 smtc_live_asid[vpes][i] = 0;
202 }
203 }
204 mvpconf0 = read_c0_mvpconf0();
205
206 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
207 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
208 /* If we have multiple VPEs, try to share the TLB */
209 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
210 /*
211 * If TLB sizing is programmable, shared TLB
212 * size is the total available complement.
213 * Otherwise, we have to take the sum of all
214 * static VPE TLB entries.
215 */
216 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
217 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
218 /*
219 * If there's more than one VPE, there had better
220 * be more than one TC, because we need one to bind
221 * to each VPE in turn to be able to read
222 * its configuration state!
223 */
224 settc(1);
225 /* Stop the TC from doing anything foolish */
226 write_tc_c0_tchalt(TCHALT_H);
227 mips_ihb();
228 /* No need to un-Halt - that happens later anyway */
229 for (i=0; i < vpes; i++) {
230 write_tc_c0_tcbind(i);
231 /*
232 * To be 100% sure we're really getting the right
233 * information, we exit the configuration state
234 * and do an IHB after each rebinding.
235 */
236 write_c0_mvpcontrol(
237 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
238 mips_ihb();
239 /*
240 * Only count if the MMU Type indicated is TLB
241 */
4bf42d42 242 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
41c594ab
RB
243 config1val = read_vpe_c0_config1();
244 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
245 }
246
247 /* Put core back in configuration state */
248 write_c0_mvpcontrol(
249 read_c0_mvpcontrol() | MVPCONTROL_VPC );
250 mips_ihb();
251 }
252 }
253 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
c80697b3 254 ehb();
41c594ab
RB
255
256 /*
257 * Setup kernel data structures to use software total,
258 * rather than read the per-VPE Config1 value. The values
259 * for "CPU 0" gets copied to all the other CPUs as part
260 * of their initialization in smtc_cpu_setup().
261 */
262
a0b62180
RB
263 /* MIPS32 limits TLB indices to 64 */
264 if (tlbsiz > 64)
265 tlbsiz = 64;
266 cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
41c594ab 267 smtc_status |= SMTC_TLB_SHARED;
a0b62180 268 local_flush_tlb_all();
41c594ab
RB
269
270 printk("TLB of %d entry pairs shared by %d VPEs\n",
271 tlbsiz, vpes);
272 } else {
273 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
274 }
275 }
276}
277
278
279/*
280 * Incrementally build the CPU map out of constituent MIPS MT cores,
281 * using the specified available VPEs and TCs. Plaform code needs
282 * to ensure that each MIPS MT core invokes this routine on reset,
283 * one at a time(!).
284 *
285 * This version of the build_cpu_map and prepare_cpus routines assumes
286 * that *all* TCs of a MIPS MT core will be used for Linux, and that
287 * they will be spread across *all* available VPEs (to minimise the
288 * loss of efficiency due to exception service serialization).
289 * An improved version would pick up configuration information and
290 * possibly leave some TCs/VPEs as "slave" processors.
291 *
292 * Use c0_MVPConf0 to find out how many TCs are available, setting up
98a79d6a 293 * cpu_possible_map and the logical/physical mappings.
41c594ab
RB
294 */
295
8531a35e 296int __init smtc_build_cpu_map(int start_cpu_slot)
41c594ab
RB
297{
298 int i, ntcs;
299
300 /*
301 * The CPU map isn't actually used for anything at this point,
302 * so it's not clear what else we should do apart from set
303 * everything up so that "logical" = "physical".
304 */
305 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
306 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
4037ac6e 307 set_cpu_possible(i, true);
41c594ab
RB
308 __cpu_number_map[i] = i;
309 __cpu_logical_map[i] = i;
310 }
ea580401 311#ifdef CONFIG_MIPS_MT_FPAFF
41c594ab
RB
312 /* Initialize map of CPUs with FPUs */
313 cpus_clear(mt_fpu_cpumask);
ea580401 314#endif
41c594ab
RB
315
316 /* One of those TC's is the one booting, and not a secondary... */
317 printk("%i available secondary CPU TC(s)\n", i - 1);
318
319 return i;
320}
321
322/*
323 * Common setup before any secondaries are started
324 * Make sure all CPU's are in a sensible state before we boot any of the
325 * secondaries.
326 *
327 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
328 * as possible across the available VPEs.
329 */
330
331static void smtc_tc_setup(int vpe, int tc, int cpu)
332{
333 settc(tc);
334 write_tc_c0_tchalt(TCHALT_H);
335 mips_ihb();
336 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
337 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
338 | TCSTATUS_A);
8531a35e
KK
339 /*
340 * TCContext gets an offset from the base of the IPIQ array
341 * to be used in low-level code to detect the presence of
342 * an active IPI queue
343 */
344 write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
41c594ab
RB
345 /* Bind tc to vpe */
346 write_tc_c0_tcbind(vpe);
347 /* In general, all TCs should have the same cpu_data indications */
348 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
349 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
39b8d525
RB
350 if (cpu_data[0].cputype == CPU_34K ||
351 cpu_data[0].cputype == CPU_1004K)
41c594ab
RB
352 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
353 cpu_data[cpu].vpe_id = vpe;
354 cpu_data[cpu].tc_id = tc;
8531a35e
KK
355 /* Multi-core SMTC hasn't been tested, but be prepared */
356 cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
41c594ab
RB
357}
358
8531a35e
KK
359/*
360 * Tweak to get Count registes in as close a sync as possible.
361 * Value seems good for 34K-class cores.
362 */
363
364#define CP0_SKEW 8
41c594ab 365
8531a35e 366void smtc_prepare_cpus(int cpus)
41c594ab 367{
be5f1f21 368 int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
41c594ab
RB
369 unsigned long flags;
370 unsigned long val;
371 int nipi;
372 struct smtc_ipi *pipi;
373
374 /* disable interrupts so we can disable MT */
375 local_irq_save(flags);
376 /* disable MT so we can configure */
377 dvpe();
378 dmt();
379
34af946a 380 spin_lock_init(&freeIPIq.lock);
41c594ab
RB
381
382 /*
383 * We probably don't have as many VPEs as we do SMP "CPUs",
384 * but it's possible - and in any case we'll never use more!
385 */
386 for (i=0; i<NR_CPUS; i++) {
387 IPIQ[i].head = IPIQ[i].tail = NULL;
34af946a 388 spin_lock_init(&IPIQ[i].lock);
41c594ab 389 IPIQ[i].depth = 0;
2e41f91d 390 IPIQ[i].resched_flag = 0; /* No reschedules queued initially */
41c594ab
RB
391 }
392
393 /* cpu_data index starts at zero */
394 cpu = 0;
395 cpu_data[cpu].vpe_id = 0;
396 cpu_data[cpu].tc_id = 0;
8531a35e 397 cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
41c594ab
RB
398 cpu++;
399
400 /* Report on boot-time options */
49a89efb 401 mips_mt_set_cpuoptions();
41c594ab
RB
402 if (vpelimit > 0)
403 printk("Limit of %d VPEs set\n", vpelimit);
404 if (tclimit > 0)
405 printk("Limit of %d TCs set\n", tclimit);
406 if (nostlb) {
407 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
408 }
409 if (asidmask)
410 printk("ASID mask value override to 0x%x\n", asidmask);
411
412 /* Temporary */
c68644d3 413#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
41c594ab
RB
414 if (hang_trig)
415 printk("Logic Analyser Trigger on suspected TC hang\n");
c68644d3 416#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
41c594ab
RB
417
418 /* Put MVPE's into 'configuration state' */
419 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
420
421 val = read_c0_mvpconf0();
422 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
423 if (vpelimit > 0 && nvpe > vpelimit)
424 nvpe = vpelimit;
425 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
426 if (ntc > NR_CPUS)
427 ntc = NR_CPUS;
428 if (tclimit > 0 && ntc > tclimit)
429 ntc = tclimit;
be5f1f21
KK
430 slop = ntc % nvpe;
431 for (i = 0; i < nvpe; i++) {
432 tcpervpe[i] = ntc / nvpe;
433 if (slop) {
434 if((slop - i) > 0) tcpervpe[i]++;
435 }
436 }
437 /* Handle command line override for VPE0 */
438 if (vpe0limit > ntc) vpe0limit = ntc;
439 if (vpe0limit > 0) {
440 int slopslop;
441 if (vpe0limit < tcpervpe[0]) {
442 /* Reducing TC count - distribute to others */
443 slop = tcpervpe[0] - vpe0limit;
444 slopslop = slop % (nvpe - 1);
445 tcpervpe[0] = vpe0limit;
446 for (i = 1; i < nvpe; i++) {
447 tcpervpe[i] += slop / (nvpe - 1);
448 if(slopslop && ((slopslop - (i - 1) > 0)))
449 tcpervpe[i]++;
450 }
451 } else if (vpe0limit > tcpervpe[0]) {
452 /* Increasing TC count - steal from others */
453 slop = vpe0limit - tcpervpe[0];
454 slopslop = slop % (nvpe - 1);
455 tcpervpe[0] = vpe0limit;
456 for (i = 1; i < nvpe; i++) {
457 tcpervpe[i] -= slop / (nvpe - 1);
458 if(slopslop && ((slopslop - (i - 1) > 0)))
459 tcpervpe[i]--;
460 }
461 }
462 }
41c594ab
RB
463
464 /* Set up shared TLB */
465 smtc_configure_tlb();
466
467 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
d8e5f9fe
KM
468 if (tcpervpe[vpe] == 0)
469 continue;
41c594ab
RB
470 if (vpe != 0)
471 printk(", ");
472 printk("VPE %d: TC", vpe);
be5f1f21 473 for (i = 0; i < tcpervpe[vpe]; i++) {
41c594ab
RB
474 /*
475 * TC 0 is bound to VPE 0 at reset,
476 * and is presumably executing this
477 * code. Leave it alone!
478 */
479 if (tc != 0) {
21a151d8 480 smtc_tc_setup(vpe, tc, cpu);
41c594ab
RB
481 cpu++;
482 }
483 printk(" %d", tc);
484 tc++;
485 }
41c594ab 486 if (vpe != 0) {
d8e5f9fe
KM
487 /*
488 * Allow this VPE to control others.
489 */
490 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
491 VPECONF0_MVP);
492
41c594ab
RB
493 /*
494 * Clear any stale software interrupts from VPE's Cause
495 */
496 write_vpe_c0_cause(0);
497
498 /*
499 * Clear ERL/EXL of VPEs other than 0
500 * and set restricted interrupt enable/mask.
501 */
502 write_vpe_c0_status((read_vpe_c0_status()
503 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
504 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
505 | ST0_IE));
506 /*
507 * set config to be the same as vpe0,
508 * particularly kseg0 coherency alg
509 */
510 write_vpe_c0_config(read_c0_config());
511 /* Clear any pending timer interrupt */
512 write_vpe_c0_compare(0);
513 /* Propagate Config7 */
514 write_vpe_c0_config7(read_c0_config7());
8531a35e
KK
515 write_vpe_c0_count(read_c0_count() + CP0_SKEW);
516 ehb();
41c594ab
RB
517 }
518 /* enable multi-threading within VPE */
519 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
520 /* enable the VPE */
521 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
522 }
523
524 /*
525 * Pull any physically present but unused TCs out of circulation.
526 */
527 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
4037ac6e
RR
528 set_cpu_possible(tc, false);
529 set_cpu_present(tc, false);
41c594ab
RB
530 tc++;
531 }
532
533 /* release config state */
534 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
535
536 printk("\n");
537
538 /* Set up coprocessor affinity CPU mask(s) */
539
ea580401 540#ifdef CONFIG_MIPS_MT_FPAFF
41c594ab 541 for (tc = 0; tc < ntc; tc++) {
4bf42d42 542 if (cpu_data[tc].options & MIPS_CPU_FPU)
41c594ab
RB
543 cpu_set(tc, mt_fpu_cpumask);
544 }
ea580401 545#endif
41c594ab
RB
546
547 /* set up ipi interrupts... */
548
549 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
550
20bb25d1 551 setup_cross_vpe_interrupts(nvpe);
41c594ab
RB
552
553 /* Set up queue of free IPI "messages". */
554 nipi = NR_CPUS * IPIBUF_PER_CPU;
555 if (ipibuffers > 0)
556 nipi = ipibuffers;
557
558 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
559 if (pipi == NULL)
560 panic("kmalloc of IPI message buffers failed\n");
561 else
562 printk("IPI buffer pool of %d buffers\n", nipi);
563 for (i = 0; i < nipi; i++) {
564 smtc_ipi_nq(&freeIPIq, pipi);
565 pipi++;
566 }
567
568 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
569 emt(EMT_ENABLE);
570 evpe(EVPE_ENABLE);
571 local_irq_restore(flags);
572 /* Initialize SMTC /proc statistics/diagnostics */
573 init_smtc_stats();
574}
575
576
577/*
578 * Setup the PC, SP, and GP of a secondary processor and start it
579 * running!
580 * smp_bootstrap is the place to resume from
581 * __KSTK_TOS(idle) is apparently the stack pointer
582 * (unsigned long)idle->thread_info the gp
583 *
584 */
e119d49a 585void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
41c594ab
RB
586{
587 extern u32 kernelsp[NR_CPUS];
b7e4226e 588 unsigned long flags;
41c594ab
RB
589 int mtflags;
590
591 LOCK_MT_PRA();
592 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
593 dvpe();
594 }
595 settc(cpu_data[cpu].tc_id);
596
597 /* pc */
598 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
599
600 /* stack pointer */
601 kernelsp[cpu] = __KSTK_TOS(idle);
602 write_tc_gpr_sp(__KSTK_TOS(idle));
603
604 /* global pointer */
c9f4f06d 605 write_tc_gpr_gp((unsigned long)task_thread_info(idle));
41c594ab
RB
606
607 smtc_status |= SMTC_MTC_ACTIVE;
608 write_tc_c0_tchalt(0);
609 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
610 evpe(EVPE_ENABLE);
611 }
612 UNLOCK_MT_PRA();
613}
614
615void smtc_init_secondary(void)
616{
41c594ab
RB
617 local_irq_enable();
618}
619
620void smtc_smp_finish(void)
621{
8531a35e
KK
622 int cpu = smp_processor_id();
623
624 /*
625 * Lowest-numbered CPU per VPE starts a clock tick.
626 * Like per_cpu_trap_init() hack, this assumes that
627 * SMTC init code assigns TCs consdecutively and
628 * in ascending order across available VPEs.
629 */
630 if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
631 write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
632
41c594ab
RB
633 printk("TC %d going on-line as CPU %d\n",
634 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
635}
636
637void smtc_cpus_done(void)
638{
639}
640
641/*
642 * Support for SMTC-optimized driver IRQ registration
643 */
644
645/*
646 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
647 * in do_IRQ. These are passed in setup_irq_smtc() and stored
648 * in this table.
649 */
650
651int setup_irq_smtc(unsigned int irq, struct irqaction * new,
652 unsigned long hwmask)
653{
ef36fc3c 654#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
20bb25d1
RB
655 unsigned int vpe = current_cpu_data.vpe_id;
656
3b1d4ed5 657 vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
20bb25d1 658#endif
ef36fc3c 659 irq_hwmask[irq] = hwmask;
41c594ab
RB
660
661 return setup_irq(irq, new);
662}
663
f571eff0
KK
664#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
665/*
666 * Support for IRQ affinity to TCs
667 */
668
669void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
670{
671 /*
672 * If a "fast path" cache of quickly decodable affinity state
673 * is maintained, this is where it gets done, on a call up
674 * from the platform affinity code.
675 */
676}
677
678void smtc_forward_irq(unsigned int irq)
679{
680 int target;
681
682 /*
683 * OK wise guy, now figure out how to get the IRQ
684 * to be serviced on an authorized "CPU".
685 *
686 * Ideally, to handle the situation where an IRQ has multiple
687 * eligible CPUS, we would maintain state per IRQ that would
688 * allow a fair distribution of service requests. Since the
689 * expected use model is any-or-only-one, for simplicity
690 * and efficiency, we just pick the easiest one to find.
691 */
692
e65e49d0 693 target = cpumask_first(irq_desc[irq].affinity);
f571eff0
KK
694
695 /*
696 * We depend on the platform code to have correctly processed
697 * IRQ affinity change requests to ensure that the IRQ affinity
698 * mask has been purged of bits corresponding to nonexistent and
699 * offline "CPUs", and to TCs bound to VPEs other than the VPE
700 * connected to the physical interrupt input for the interrupt
701 * in question. Otherwise we have a nasty problem with interrupt
702 * mask management. This is best handled in non-performance-critical
703 * platform IRQ affinity setting code, to minimize interrupt-time
704 * checks.
705 */
706
707 /* If no one is eligible, service locally */
708 if (target >= NR_CPUS) {
709 do_IRQ_no_affinity(irq);
710 return;
711 }
712
713 smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
714}
715
716#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
717
41c594ab
RB
718/*
719 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
720 * Within a VPE one TC can interrupt another by different approaches.
721 * The easiest to get right would probably be to make all TCs except
722 * the target IXMT and set a software interrupt, but an IXMT-based
723 * scheme requires that a handler must run before a new IPI could
724 * be sent, which would break the "broadcast" loops in MIPS MT.
725 * A more gonzo approach within a VPE is to halt the TC, extract
726 * its Restart, Status, and a couple of GPRs, and program the Restart
727 * address to emulate an interrupt.
728 *
729 * Within a VPE, one can be confident that the target TC isn't in
730 * a critical EXL state when halted, since the write to the Halt
731 * register could not have issued on the writing thread if the
732 * halting thread had EXL set. So k0 and k1 of the target TC
733 * can be used by the injection code. Across VPEs, one can't
734 * be certain that the target TC isn't in a critical exception
735 * state. So we try a two-step process of sending a software
736 * interrupt to the target VPE, which either handles the event
737 * itself (if it was the target) or injects the event within
738 * the VPE.
739 */
740
5868756d 741static void smtc_ipi_qdump(void)
41c594ab
RB
742{
743 int i;
2e41f91d 744 struct smtc_ipi *temp;
41c594ab
RB
745
746 for (i = 0; i < NR_CPUS ;i++) {
2e41f91d 747 pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
41c594ab
RB
748 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
749 IPIQ[i].depth);
2e41f91d
JP
750 temp = IPIQ[i].head;
751
752 while (temp != IPIQ[i].tail) {
753 pr_debug("%d %d %d: ", temp->type, temp->dest,
754 (int)temp->arg);
755#ifdef SMTC_IPI_DEBUG
756 pr_debug("%u %lu\n", temp->sender, temp->stamp);
757#else
758 pr_debug("\n");
759#endif
760 temp = temp->flink;
761 }
41c594ab
RB
762 }
763}
764
765/*
766 * The standard atomic.h primitives don't quite do what we want
767 * here: We need an atomic add-and-return-previous-value (which
768 * could be done with atomic_add_return and a decrement) and an
769 * atomic set/zero-and-return-previous-value (which can't really
770 * be done with the atomic.h primitives). And since this is
771 * MIPS MT, we can assume that we have LL/SC.
772 */
ea580401 773static inline int atomic_postincrement(atomic_t *v)
41c594ab
RB
774{
775 unsigned long result;
776
777 unsigned long temp;
778
779 __asm__ __volatile__(
780 "1: ll %0, %2 \n"
781 " addu %1, %0, 1 \n"
782 " sc %1, %2 \n"
783 " beqz %1, 1b \n"
d87d0c93 784 __WEAK_LLSC_MB
ea580401
RB
785 : "=&r" (result), "=&r" (temp), "=m" (v->counter)
786 : "m" (v->counter)
41c594ab
RB
787 : "memory");
788
789 return result;
790}
791
41c594ab
RB
792void smtc_send_ipi(int cpu, int type, unsigned int action)
793{
794 int tcstatus;
795 struct smtc_ipi *pipi;
b7e4226e 796 unsigned long flags;
41c594ab 797 int mtflags;
8531a35e
KK
798 unsigned long tcrestart;
799 extern void r4k_wait_irqoff(void), __pastwait(void);
2e41f91d
JP
800 int set_resched_flag = (type == LINUX_SMP_IPI &&
801 action == SMP_RESCHEDULE_YOURSELF);
41c594ab
RB
802
803 if (cpu == smp_processor_id()) {
804 printk("Cannot Send IPI to self!\n");
805 return;
806 }
2e41f91d
JP
807 if (set_resched_flag && IPIQ[cpu].resched_flag != 0)
808 return; /* There is a reschedule queued already */
809
41c594ab
RB
810 /* Set up a descriptor, to be delivered either promptly or queued */
811 pipi = smtc_ipi_dq(&freeIPIq);
812 if (pipi == NULL) {
813 bust_spinlocks(1);
814 mips_mt_regdump(dvpe());
815 panic("IPI Msg. Buffers Depleted\n");
816 }
817 pipi->type = type;
818 pipi->arg = (void *)action;
819 pipi->dest = cpu;
820 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
603e82ed 821 /* If not on same VPE, enqueue and send cross-VPE interrupt */
2e41f91d 822 IPIQ[cpu].resched_flag |= set_resched_flag;
41c594ab
RB
823 smtc_ipi_nq(&IPIQ[cpu], pipi);
824 LOCK_CORE_PRA();
825 settc(cpu_data[cpu].tc_id);
826 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
827 UNLOCK_CORE_PRA();
828 } else {
829 /*
830 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
831 * since ASID shootdown on the other VPE may
832 * collide with this operation.
833 */
834 LOCK_CORE_PRA();
835 settc(cpu_data[cpu].tc_id);
836 /* Halt the targeted TC */
837 write_tc_c0_tchalt(TCHALT_H);
838 mips_ihb();
839
840 /*
841 * Inspect TCStatus - if IXMT is set, we have to queue
842 * a message. Otherwise, we set up the "interrupt"
843 * of the other TC
844 */
845 tcstatus = read_tc_c0_tcstatus();
846
847 if ((tcstatus & TCSTATUS_IXMT) != 0) {
848 /*
8531a35e
KK
849 * If we're in the the irq-off version of the wait
850 * loop, we need to force exit from the wait and
851 * do a direct post of the IPI.
852 */
853 if (cpu_wait == r4k_wait_irqoff) {
854 tcrestart = read_tc_c0_tcrestart();
855 if (tcrestart >= (unsigned long)r4k_wait_irqoff
856 && tcrestart < (unsigned long)__pastwait) {
857 write_tc_c0_tcrestart(__pastwait);
858 tcstatus &= ~TCSTATUS_IXMT;
859 write_tc_c0_tcstatus(tcstatus);
860 goto postdirect;
861 }
862 }
863 /*
864 * Otherwise we queue the message for the target TC
865 * to pick up when he does a local_irq_restore()
41c594ab
RB
866 */
867 write_tc_c0_tchalt(0);
868 UNLOCK_CORE_PRA();
2e41f91d 869 IPIQ[cpu].resched_flag |= set_resched_flag;
41c594ab
RB
870 smtc_ipi_nq(&IPIQ[cpu], pipi);
871 } else {
8531a35e 872postdirect:
41c594ab
RB
873 post_direct_ipi(cpu, pipi);
874 write_tc_c0_tchalt(0);
875 UNLOCK_CORE_PRA();
876 }
877 }
878}
879
880/*
881 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
882 */
5868756d 883static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
41c594ab
RB
884{
885 struct pt_regs *kstack;
886 unsigned long tcstatus;
887 unsigned long tcrestart;
888 extern u32 kernelsp[NR_CPUS];
889 extern void __smtc_ipi_vector(void);
ea580401 890//printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
41c594ab
RB
891
892 /* Extract Status, EPC from halted TC */
893 tcstatus = read_tc_c0_tcstatus();
894 tcrestart = read_tc_c0_tcrestart();
895 /* If TCRestart indicates a WAIT instruction, advance the PC */
896 if ((tcrestart & 0x80000000)
897 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
898 tcrestart += 4;
899 }
900 /*
901 * Save on TC's future kernel stack
902 *
903 * CU bit of Status is indicator that TC was
904 * already running on a kernel stack...
905 */
4bf42d42 906 if (tcstatus & ST0_CU0) {
41c594ab
RB
907 /* Note that this "- 1" is pointer arithmetic */
908 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
909 } else {
910 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
911 }
912
913 kstack->cp0_epc = (long)tcrestart;
914 /* Save TCStatus */
915 kstack->cp0_tcstatus = tcstatus;
916 /* Pass token of operation to be performed kernel stack pad area */
917 kstack->pad0[4] = (unsigned long)pipi;
918 /* Pass address of function to be called likewise */
919 kstack->pad0[5] = (unsigned long)&ipi_decode;
920 /* Set interrupt exempt and kernel mode */
921 tcstatus |= TCSTATUS_IXMT;
922 tcstatus &= ~TCSTATUS_TKSU;
923 write_tc_c0_tcstatus(tcstatus);
924 ehb();
925 /* Set TC Restart address to be SMTC IPI vector */
926 write_tc_c0_tcrestart(__smtc_ipi_vector);
927}
928
937a8015 929static void ipi_resched_interrupt(void)
41c594ab
RB
930{
931 /* Return from interrupt should be enough to cause scheduler check */
932}
933
937a8015 934static void ipi_call_interrupt(void)
41c594ab
RB
935{
936 /* Invoke generic function invocation code in smp.c */
937 smp_call_function_interrupt();
938}
939
8531a35e 940DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
ea580401 941
937a8015 942void ipi_decode(struct smtc_ipi *pipi)
41c594ab 943{
ea580401
RB
944 unsigned int cpu = smp_processor_id();
945 struct clock_event_device *cd;
41c594ab
RB
946 void *arg_copy = pipi->arg;
947 int type_copy = pipi->type;
d2287f5e
MT
948 int irq = MIPS_CPU_IRQ_BASE + 1;
949
41c594ab 950 smtc_ipi_nq(&freeIPIq, pipi);
dbc1d911 951
41c594ab 952 switch (type_copy) {
4bf42d42 953 case SMTC_CLOCK_TICK:
ae036b79 954 irq_enter();
d2287f5e 955 kstat_incr_irqs_this_cpu(irq, irq_to_desc(irq));
8531a35e
KK
956 cd = &per_cpu(mips_clockevent_device, cpu);
957 cd->event_handler(cd);
ae036b79 958 irq_exit();
4bf42d42 959 break;
ea580401 960
4bf42d42
RB
961 case LINUX_SMP_IPI:
962 switch ((int)arg_copy) {
963 case SMP_RESCHEDULE_YOURSELF:
937a8015 964 ipi_resched_interrupt();
41c594ab 965 break;
4bf42d42 966 case SMP_CALL_FUNCTION:
937a8015 967 ipi_call_interrupt();
41c594ab
RB
968 break;
969 default:
4bf42d42
RB
970 printk("Impossible SMTC IPI Argument 0x%x\n",
971 (int)arg_copy);
41c594ab 972 break;
4bf42d42
RB
973 }
974 break;
f571eff0
KK
975#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
976 case IRQ_AFFINITY_IPI:
977 /*
978 * Accept a "forwarded" interrupt that was initially
979 * taken by a TC who doesn't have affinity for the IRQ.
980 */
981 do_IRQ_no_affinity((int)arg_copy);
982 break;
983#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
4bf42d42
RB
984 default:
985 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
986 break;
41c594ab
RB
987 }
988}
989
8531a35e
KK
990/*
991 * Similar to smtc_ipi_replay(), but invoked from context restore,
992 * so it reuses the current exception frame rather than set up a
993 * new one with self_ipi.
994 */
995
937a8015 996void deferred_smtc_ipi(void)
41c594ab 997{
8531a35e 998 int cpu = smp_processor_id();
41c594ab
RB
999
1000 /*
1001 * Test is not atomic, but much faster than a dequeue,
1002 * and the vast majority of invocations will have a null queue.
8531a35e
KK
1003 * If irq_disabled when this was called, then any IPIs queued
1004 * after we test last will be taken on the next irq_enable/restore.
1005 * If interrupts were enabled, then any IPIs added after the
1006 * last test will be taken directly.
41c594ab 1007 */
8531a35e
KK
1008
1009 while (IPIQ[cpu].head != NULL) {
1010 struct smtc_ipi_q *q = &IPIQ[cpu];
1011 struct smtc_ipi *pipi;
1012 unsigned long flags;
1013
1014 /*
1015 * It may be possible we'll come in with interrupts
1016 * already enabled.
1017 */
1018 local_irq_save(flags);
8531a35e
KK
1019 spin_lock(&q->lock);
1020 pipi = __smtc_ipi_dq(q);
1021 spin_unlock(&q->lock);
2e41f91d
JP
1022 if (pipi != NULL) {
1023 if (pipi->type == LINUX_SMP_IPI &&
1024 (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1025 IPIQ[cpu].resched_flag = 0;
937a8015 1026 ipi_decode(pipi);
2e41f91d 1027 }
8531a35e
KK
1028 /*
1029 * The use of the __raw_local restore isn't
1030 * as obviously necessary here as in smtc_ipi_replay(),
1031 * but it's more efficient, given that we're already
1032 * running down the IPI queue.
1033 */
1034 __raw_local_irq_restore(flags);
41c594ab
RB
1035 }
1036}
1037
41c594ab
RB
1038/*
1039 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
1040 * set via cross-VPE MTTR manipulation of the Cause register. It would be
1041 * in some regards preferable to have external logic for "doorbell" hardware
1042 * interrupts.
1043 */
1044
97dcb82d 1045static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
41c594ab 1046
937a8015 1047static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
41c594ab
RB
1048{
1049 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
1050 int my_tc = cpu_data[smp_processor_id()].tc_id;
1051 int cpu;
1052 struct smtc_ipi *pipi;
1053 unsigned long tcstatus;
1054 int sent;
b7e4226e 1055 unsigned long flags;
41c594ab
RB
1056 unsigned int mtflags;
1057 unsigned int vpflags;
1058
1059 /*
1060 * So long as cross-VPE interrupts are done via
1061 * MFTR/MTTR read-modify-writes of Cause, we need
1062 * to stop other VPEs whenever the local VPE does
1063 * anything similar.
1064 */
1065 local_irq_save(flags);
1066 vpflags = dvpe();
1067 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
1068 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
1069 irq_enable_hazard();
1070 evpe(vpflags);
1071 local_irq_restore(flags);
1072
1073 /*
1074 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1075 * queued for TCs on this VPE other than the current one.
1076 * Return-from-interrupt should cause us to drain the queue
1077 * for the current TC, so we ought not to have to do it explicitly here.
1078 */
1079
1080 for_each_online_cpu(cpu) {
1081 if (cpu_data[cpu].vpe_id != my_vpe)
1082 continue;
1083
1084 pipi = smtc_ipi_dq(&IPIQ[cpu]);
1085 if (pipi != NULL) {
1086 if (cpu_data[cpu].tc_id != my_tc) {
1087 sent = 0;
1088 LOCK_MT_PRA();
1089 settc(cpu_data[cpu].tc_id);
1090 write_tc_c0_tchalt(TCHALT_H);
1091 mips_ihb();
1092 tcstatus = read_tc_c0_tcstatus();
1093 if ((tcstatus & TCSTATUS_IXMT) == 0) {
1094 post_direct_ipi(cpu, pipi);
1095 sent = 1;
1096 }
1097 write_tc_c0_tchalt(0);
1098 UNLOCK_MT_PRA();
1099 if (!sent) {
1100 smtc_ipi_req(&IPIQ[cpu], pipi);
1101 }
1102 } else {
1103 /*
1104 * ipi_decode() should be called
1105 * with interrupts off
1106 */
1107 local_irq_save(flags);
2e41f91d
JP
1108 if (pipi->type == LINUX_SMP_IPI &&
1109 (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1110 IPIQ[cpu].resched_flag = 0;
937a8015 1111 ipi_decode(pipi);
41c594ab
RB
1112 local_irq_restore(flags);
1113 }
1114 }
1115 }
1116
1117 return IRQ_HANDLED;
1118}
1119
937a8015 1120static void ipi_irq_dispatch(void)
41c594ab 1121{
937a8015 1122 do_IRQ(cpu_ipi_irq);
41c594ab
RB
1123}
1124
033890b0
RB
1125static struct irqaction irq_ipi = {
1126 .handler = ipi_interrupt,
b2651583
JL
1127 .flags = IRQF_DISABLED | IRQF_PERCPU,
1128 .name = "SMTC_IPI"
033890b0 1129};
41c594ab 1130
20bb25d1 1131static void setup_cross_vpe_interrupts(unsigned int nvpe)
41c594ab 1132{
20bb25d1
RB
1133 if (nvpe < 1)
1134 return;
1135
41c594ab 1136 if (!cpu_has_vint)
603e82ed 1137 panic("SMTC Kernel requires Vectored Interrupt support");
41c594ab
RB
1138
1139 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1140
41c594ab
RB
1141 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1142
1417836e 1143 set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
41c594ab
RB
1144}
1145
1146/*
1147 * SMTC-specific hacks invoked from elsewhere in the kernel.
1148 */
1149
8531a35e
KK
1150 /*
1151 * smtc_ipi_replay is called from raw_local_irq_restore
1152 */
1153
1154void smtc_ipi_replay(void)
ac8be955 1155{
8a1e97ee
RB
1156 unsigned int cpu = smp_processor_id();
1157
ac8be955
RB
1158 /*
1159 * To the extent that we've ever turned interrupts off,
1160 * we may have accumulated deferred IPIs. This is subtle.
ac8be955
RB
1161 * we should be OK: If we pick up something and dispatch
1162 * it here, that's great. If we see nothing, but concurrent
1163 * with this operation, another TC sends us an IPI, IXMT
1164 * is clear, and we'll handle it as a real pseudo-interrupt
8531a35e
KK
1165 * and not a pseudo-pseudo interrupt. The important thing
1166 * is to do the last check for queued message *after* the
1167 * re-enabling of interrupts.
ac8be955 1168 */
8531a35e
KK
1169 while (IPIQ[cpu].head != NULL) {
1170 struct smtc_ipi_q *q = &IPIQ[cpu];
1171 struct smtc_ipi *pipi;
1172 unsigned long flags;
ac8be955 1173
8531a35e
KK
1174 /*
1175 * It's just possible we'll come in with interrupts
1176 * already enabled.
1177 */
1178 local_irq_save(flags);
1179
1180 spin_lock(&q->lock);
1181 pipi = __smtc_ipi_dq(q);
1182 spin_unlock(&q->lock);
1183 /*
1184 ** But use a raw restore here to avoid recursion.
1185 */
1186 __raw_local_irq_restore(flags);
1187
1188 if (pipi) {
ac8be955 1189 self_ipi(pipi);
8a1e97ee 1190 smtc_cpu_stats[cpu].selfipis++;
ac8be955
RB
1191 }
1192 }
1193}
1194
ec43c014
RB
1195EXPORT_SYMBOL(smtc_ipi_replay);
1196
41c594ab
RB
1197void smtc_idle_loop_hook(void)
1198{
c68644d3 1199#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
41c594ab
RB
1200 int im;
1201 int flags;
1202 int mtflags;
1203 int bit;
1204 int vpe;
1205 int tc;
1206 int hook_ntcs;
1207 /*
1208 * printk within DMT-protected regions can deadlock,
1209 * so buffer diagnostic messages for later output.
1210 */
1211 char *pdb_msg;
1212 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1213
1214 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1215 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1216 int mvpconf0;
1217 /* Tedious stuff to just do once */
1218 mvpconf0 = read_c0_mvpconf0();
1219 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1220 if (hook_ntcs > NR_CPUS)
1221 hook_ntcs = NR_CPUS;
1222 for (tc = 0; tc < hook_ntcs; tc++) {
1223 tcnoprog[tc] = 0;
1224 clock_hang_reported[tc] = 0;
1225 }
1226 for (vpe = 0; vpe < 2; vpe++)
1227 for (im = 0; im < 8; im++)
1228 imstuckcount[vpe][im] = 0;
1229 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1230 atomic_set(&idle_hook_initialized, 1000);
1231 } else {
1232 /* Someone else is initializing in parallel - let 'em finish */
1233 while (atomic_read(&idle_hook_initialized) < 1000)
1234 ;
1235 }
1236 }
1237
1238 /* Have we stupidly left IXMT set somewhere? */
1239 if (read_c0_tcstatus() & 0x400) {
1240 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1241 ehb();
1242 printk("Dangling IXMT in cpu_idle()\n");
1243 }
1244
1245 /* Have we stupidly left an IM bit turned off? */
1246#define IM_LIMIT 2000
1247 local_irq_save(flags);
1248 mtflags = dmt();
1249 pdb_msg = &id_ho_db_msg[0];
1250 im = read_c0_status();
8f8771a0 1251 vpe = current_cpu_data.vpe_id;
41c594ab
RB
1252 for (bit = 0; bit < 8; bit++) {
1253 /*
1254 * In current prototype, I/O interrupts
1255 * are masked for VPE > 0
1256 */
1257 if (vpemask[vpe][bit]) {
1258 if (!(im & (0x100 << bit)))
1259 imstuckcount[vpe][bit]++;
1260 else
1261 imstuckcount[vpe][bit] = 0;
1262 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1263 set_c0_status(0x100 << bit);
1264 ehb();
1265 imstuckcount[vpe][bit] = 0;
1266 pdb_msg += sprintf(pdb_msg,
1267 "Dangling IM %d fixed for VPE %d\n", bit,
1268 vpe);
1269 }
1270 }
1271 }
1272
41c594ab
RB
1273 emt(mtflags);
1274 local_irq_restore(flags);
1275 if (pdb_msg != &id_ho_db_msg[0])
1276 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
c68644d3 1277#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
ac8be955 1278
8531a35e 1279 smtc_ipi_replay();
41c594ab
RB
1280}
1281
1282void smtc_soft_dump(void)
1283{
1284 int i;
1285
1286 printk("Counter Interrupts taken per CPU (TC)\n");
1287 for (i=0; i < NR_CPUS; i++) {
1288 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1289 }
1290 printk("Self-IPI invocations:\n");
1291 for (i=0; i < NR_CPUS; i++) {
1292 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1293 }
1294 smtc_ipi_qdump();
41c594ab
RB
1295 printk("%d Recoveries of \"stolen\" FPU\n",
1296 atomic_read(&smtc_fpu_recoveries));
1297}
1298
1299
1300/*
1301 * TLB management routines special to SMTC
1302 */
1303
1304void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1305{
1306 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1307 int tlb, i;
1308
1309 /*
1310 * It would be nice to be able to use a spinlock here,
1311 * but this is invoked from within TLB flush routines
1312 * that protect themselves with DVPE, so if a lock is
e0daad44 1313 * held by another TC, it'll never be freed.
41c594ab
RB
1314 *
1315 * DVPE/DMT must not be done with interrupts enabled,
1316 * so even so most callers will already have disabled
1317 * them, let's be really careful...
1318 */
1319
1320 local_irq_save(flags);
1321 if (smtc_status & SMTC_TLB_SHARED) {
1322 mtflags = dvpe();
1323 tlb = 0;
1324 } else {
1325 mtflags = dmt();
1326 tlb = cpu_data[cpu].vpe_id;
1327 }
1328 asid = asid_cache(cpu);
1329
1330 do {
1331 if (!((asid += ASID_INC) & ASID_MASK) ) {
1332 if (cpu_has_vtag_icache)
1333 flush_icache_all();
1334 /* Traverse all online CPUs (hack requires contigous range) */
b5eb5511 1335 for_each_online_cpu(i) {
41c594ab
RB
1336 /*
1337 * We don't need to worry about our own CPU, nor those of
1338 * CPUs who don't share our TLB.
1339 */
1340 if ((i != smp_processor_id()) &&
1341 ((smtc_status & SMTC_TLB_SHARED) ||
1342 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1343 settc(cpu_data[i].tc_id);
1344 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1345 if (!prevhalt) {
1346 write_tc_c0_tchalt(TCHALT_H);
1347 mips_ihb();
1348 }
1349 tcstat = read_tc_c0_tcstatus();
1350 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1351 if (!prevhalt)
1352 write_tc_c0_tchalt(0);
1353 }
1354 }
1355 if (!asid) /* fix version if needed */
1356 asid = ASID_FIRST_VERSION;
1357 local_flush_tlb_all(); /* start new asid cycle */
1358 }
1359 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1360
1361 /*
1362 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1363 */
b5eb5511 1364 for_each_online_cpu(i) {
41c594ab
RB
1365 if ((smtc_status & SMTC_TLB_SHARED) ||
1366 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1367 cpu_context(i, mm) = asid_cache(i) = asid;
1368 }
1369
1370 if (smtc_status & SMTC_TLB_SHARED)
1371 evpe(mtflags);
1372 else
1373 emt(mtflags);
1374 local_irq_restore(flags);
1375}
1376
1377/*
1378 * Invoked from macros defined in mmu_context.h
1379 * which must already have disabled interrupts
1380 * and done a DVPE or DMT as appropriate.
1381 */
1382
1383void smtc_flush_tlb_asid(unsigned long asid)
1384{
1385 int entry;
1386 unsigned long ehi;
1387
1388 entry = read_c0_wired();
1389
1390 /* Traverse all non-wired entries */
1391 while (entry < current_cpu_data.tlbsize) {
1392 write_c0_index(entry);
1393 ehb();
1394 tlb_read();
1395 ehb();
1396 ehi = read_c0_entryhi();
4bf42d42 1397 if ((ehi & ASID_MASK) == asid) {
41c594ab
RB
1398 /*
1399 * Invalidate only entries with specified ASID,
1400 * makiing sure all entries differ.
1401 */
1402 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1403 write_c0_entrylo0(0);
1404 write_c0_entrylo1(0);
1405 mtc0_tlbw_hazard();
1406 tlb_write_indexed();
1407 }
1408 entry++;
1409 }
1410 write_c0_index(PARKED_INDEX);
1411 tlbw_use_hazard();
1412}
1413
1414/*
1415 * Support for single-threading cache flush operations.
1416 */
1417
5868756d 1418static int halt_state_save[NR_CPUS];
41c594ab
RB
1419
1420/*
1421 * To really, really be sure that nothing is being done
1422 * by other TCs, halt them all. This code assumes that
1423 * a DVPE has already been done, so while their Halted
1424 * state is theoretically architecturally unstable, in
1425 * practice, it's not going to change while we're looking
1426 * at it.
1427 */
1428
1429void smtc_cflush_lockdown(void)
1430{
1431 int cpu;
1432
1433 for_each_online_cpu(cpu) {
1434 if (cpu != smp_processor_id()) {
1435 settc(cpu_data[cpu].tc_id);
1436 halt_state_save[cpu] = read_tc_c0_tchalt();
1437 write_tc_c0_tchalt(TCHALT_H);
1438 }
1439 }
1440 mips_ihb();
1441}
1442
1443/* It would be cheating to change the cpu_online states during a flush! */
1444
1445void smtc_cflush_release(void)
1446{
1447 int cpu;
1448
1449 /*
1450 * Start with a hazard barrier to ensure
1451 * that all CACHE ops have played through.
1452 */
1453 mips_ihb();
1454
1455 for_each_online_cpu(cpu) {
1456 if (cpu != smp_processor_id()) {
1457 settc(cpu_data[cpu].tc_id);
1458 write_tc_c0_tchalt(halt_state_save[cpu]);
1459 }
1460 }
1461 mips_ihb();
1462}