Merge commit 'v2.6.34-rc2' into perf/core
[linux-2.6-block.git] / arch / microblaze / include / asm / pgtable.h
CommitLineData
6a3cece5 1/*
15902bf6
MS
2 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
3 * Copyright (C) 2008-2009 PetaLogix
6a3cece5
MS
4 * Copyright (C) 2006 Atmark Techno, Inc.
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
8 * for more details.
9 */
10
11#ifndef _ASM_MICROBLAZE_PGTABLE_H
12#define _ASM_MICROBLAZE_PGTABLE_H
13
14#include <asm/setup.h>
15
16#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
17 remap_pfn_range(vma, vaddr, pfn, size, prot)
18
79bf3a13
MS
19#ifndef __ASSEMBLY__
20extern int mem_init_done;
21#endif
22
15902bf6
MS
23#ifndef CONFIG_MMU
24
6a3cece5
MS
25#define pgd_present(pgd) (1) /* pages are always present on non MMU */
26#define pgd_none(pgd) (0)
27#define pgd_bad(pgd) (0)
28#define pgd_clear(pgdp)
29#define kern_addr_valid(addr) (1)
30#define pmd_offset(a, b) ((void *) 0)
31
32#define PAGE_NONE __pgprot(0) /* these mean nothing to non MMU */
33#define PAGE_SHARED __pgprot(0) /* these mean nothing to non MMU */
34#define PAGE_COPY __pgprot(0) /* these mean nothing to non MMU */
35#define PAGE_READONLY __pgprot(0) /* these mean nothing to non MMU */
36#define PAGE_KERNEL __pgprot(0) /* these mean nothing to non MMU */
37
0c60155e
AB
38#define pgprot_noncached(x) (x)
39
6a3cece5
MS
40#define __swp_type(x) (0)
41#define __swp_offset(x) (0)
42#define __swp_entry(typ, off) ((swp_entry_t) { ((typ) | ((off) << 7)) })
43#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
44#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
45
46#ifndef __ASSEMBLY__
47static inline int pte_file(pte_t pte) { return 0; }
48#endif /* __ASSEMBLY__ */
49
50#define ZERO_PAGE(vaddr) ({ BUG(); NULL; })
51
52#define swapper_pg_dir ((pgd_t *) NULL)
53
54#define pgtable_cache_init() do {} while (0)
55
56#define arch_enter_lazy_cpu_mode() do {} while (0)
57
79bf3a13
MS
58#define pgprot_noncached_wc(prot) prot
59
15902bf6
MS
60#else /* CONFIG_MMU */
61
62#include <asm-generic/4level-fixup.h>
63
64#ifdef __KERNEL__
65#ifndef __ASSEMBLY__
66
67#include <linux/sched.h>
68#include <linux/threads.h>
69#include <asm/processor.h> /* For TASK_SIZE */
70#include <asm/mmu.h>
71#include <asm/page.h>
72
73#define FIRST_USER_ADDRESS 0
74
75extern unsigned long va_to_phys(unsigned long address);
76extern pte_t *va_to_pte(unsigned long address);
15902bf6
MS
77
78/*
79 * The following only work if pte_present() is true.
80 * Undefined behaviour if not..
81 */
82
83static inline int pte_special(pte_t pte) { return 0; }
84
85static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
86
87/* Start and end of the vmalloc area. */
88/* Make sure to map the vmalloc area above the pinned kernel memory area
89 of 32Mb. */
90#define VMALLOC_START (CONFIG_KERNEL_START + \
91 max(32 * 1024 * 1024UL, memory_size))
92#define VMALLOC_END ioremap_bot
15902bf6
MS
93
94#endif /* __ASSEMBLY__ */
95
a6475c13
MS
96/*
97 * Macro to mark a page protection value as "uncacheable".
98 */
99
100#define _PAGE_CACHE_CTL (_PAGE_GUARDED | _PAGE_NO_CACHE | \
101 _PAGE_WRITETHRU)
102
103#define pgprot_noncached(prot) \
104 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
105 _PAGE_NO_CACHE | _PAGE_GUARDED))
106
107#define pgprot_noncached_wc(prot) \
108 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
109 _PAGE_NO_CACHE))
110
15902bf6
MS
111/*
112 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash
113 * table containing PTEs, together with a set of 16 segment registers, to
114 * define the virtual to physical address mapping.
115 *
116 * We use the hash table as an extended TLB, i.e. a cache of currently
117 * active mappings. We maintain a two-level page table tree, much
118 * like that used by the i386, for the sake of the Linux memory
119 * management code. Low-level assembler code in hashtable.S
120 * (procedure hash_page) is responsible for extracting ptes from the
121 * tree and putting them into the hash table when necessary, and
122 * updating the accessed and modified bits in the page table tree.
123 */
124
125/*
126 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The
127 * instruction and data sides share a unified, 64-entry, semi-associative
128 * TLB which is maintained totally under software control. In addition, the
129 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative
130 * TLB which serves as a first level to the shared TLB. These two TLBs are
131 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions).
132 */
133
134/*
135 * The normal case is that PTEs are 32-bits and we have a 1-page
136 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
137 *
138 */
139
140/* PMD_SHIFT determines the size of the area mapped by the PTE pages */
141#define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT)
142#define PMD_SIZE (1UL << PMD_SHIFT)
143#define PMD_MASK (~(PMD_SIZE-1))
144
145/* PGDIR_SHIFT determines what a top-level page table entry can map */
146#define PGDIR_SHIFT PMD_SHIFT
147#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
148#define PGDIR_MASK (~(PGDIR_SIZE-1))
149
150/*
151 * entries per page directory level: our page-table tree is two-level, so
152 * we don't really have any PMD directory.
153 */
154#define PTRS_PER_PTE (1 << PTE_SHIFT)
155#define PTRS_PER_PMD 1
156#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
157
158#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
159#define FIRST_USER_PGD_NR 0
160
161#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
162#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
163
164#define pte_ERROR(e) \
165 printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \
166 __FILE__, __LINE__, pte_val(e))
167#define pmd_ERROR(e) \
168 printk(KERN_ERR "%s:%d: bad pmd %08lx.\n", \
169 __FILE__, __LINE__, pmd_val(e))
170#define pgd_ERROR(e) \
171 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
172 __FILE__, __LINE__, pgd_val(e))
173
174/*
175 * Bits in a linux-style PTE. These match the bits in the
176 * (hardware-defined) PTE as closely as possible.
177 */
178
179/* There are several potential gotchas here. The hardware TLBLO
180 * field looks like this:
181 *
182 * 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
183 * RPN..................... 0 0 EX WR ZSEL....... W I M G
184 *
185 * Where possible we make the Linux PTE bits match up with this
186 *
187 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
188 * support down to 1k pages), this is done in the TLBMiss exception
189 * handler.
190 * - We use only zones 0 (for kernel pages) and 1 (for user pages)
191 * of the 16 available. Bit 24-26 of the TLB are cleared in the TLB
192 * miss handler. Bit 27 is PAGE_USER, thus selecting the correct
193 * zone.
194 * - PRESENT *must* be in the bottom two bits because swap cache
195 * entries use the top 30 bits. Because 4xx doesn't support SMP
196 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30
197 * is cleared in the TLB miss handler before the TLB entry is loaded.
198 * - All other bits of the PTE are loaded into TLBLO without
199 * * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
200 * software PTE bits. We actually use use bits 21, 24, 25, and
201 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
202 * PRESENT.
203 */
204
205/* Definitions for MicroBlaze. */
206#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */
f14d6f7c 207#define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */
15902bf6
MS
208#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */
209#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */
210#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */
211#define _PAGE_USER 0x010 /* matches one of the zone permission bits */
212#define _PAGE_RW 0x040 /* software: Writes permitted */
213#define _PAGE_DIRTY 0x080 /* software: dirty page */
214#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */
215#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */
216#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */
217#define _PMD_PRESENT PAGE_MASK
218
219/*
220 * Some bits are unused...
221 */
222#ifndef _PAGE_HASHPTE
223#define _PAGE_HASHPTE 0
224#endif
225#ifndef _PTE_NONE_MASK
226#define _PTE_NONE_MASK 0
227#endif
228#ifndef _PAGE_SHARED
229#define _PAGE_SHARED 0
230#endif
231#ifndef _PAGE_HWWRITE
232#define _PAGE_HWWRITE 0
233#endif
234#ifndef _PAGE_HWEXEC
235#define _PAGE_HWEXEC 0
236#endif
237#ifndef _PAGE_EXEC
238#define _PAGE_EXEC 0
239#endif
240
241#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
242
243/*
244 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
245 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
246 * to have it in the Linux PTE, and in fact the bit could be reused for
247 * another purpose. -- paulus.
248 */
249#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
250#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
251
252#define _PAGE_KERNEL \
253 (_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC)
254
255#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
256
257#define PAGE_NONE __pgprot(_PAGE_BASE)
258#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
259#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
260#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
261#define PAGE_SHARED_X \
262 __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
263#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
264#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
265
266#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
267#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED)
268#define PAGE_KERNEL_CI __pgprot(_PAGE_IO)
269
270/*
271 * We consider execute permission the same as read.
272 * Also, write permissions imply read permissions.
273 */
274#define __P000 PAGE_NONE
275#define __P001 PAGE_READONLY_X
276#define __P010 PAGE_COPY
277#define __P011 PAGE_COPY_X
278#define __P100 PAGE_READONLY
279#define __P101 PAGE_READONLY_X
280#define __P110 PAGE_COPY
281#define __P111 PAGE_COPY_X
282
283#define __S000 PAGE_NONE
284#define __S001 PAGE_READONLY_X
285#define __S010 PAGE_SHARED
286#define __S011 PAGE_SHARED_X
287#define __S100 PAGE_READONLY
288#define __S101 PAGE_READONLY_X
289#define __S110 PAGE_SHARED
290#define __S111 PAGE_SHARED_X
291
292#ifndef __ASSEMBLY__
293/*
294 * ZERO_PAGE is a global shared page that is always zero: used
295 * for zero-mapped memory areas etc..
296 */
297extern unsigned long empty_zero_page[1024];
298#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
299
300#endif /* __ASSEMBLY__ */
301
302#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
303#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
304#define pte_clear(mm, addr, ptep) \
305 do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
306
307#define pmd_none(pmd) (!pmd_val(pmd))
308#define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0)
309#define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0)
310#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
311
312#define pte_page(x) (mem_map + (unsigned long) \
313 ((pte_val(x) - memory_start) >> PAGE_SHIFT))
314#define PFN_SHIFT_OFFSET (PAGE_SHIFT)
315
316#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET)
317
318#define pfn_pte(pfn, prot) \
319 __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot))
320
321#ifndef __ASSEMBLY__
322/*
323 * The "pgd_xxx()" functions here are trivial for a folded two-level
324 * setup: the pgd is never bad, and a pmd always exists (as it's folded
325 * into the pgd entry)
326 */
327static inline int pgd_none(pgd_t pgd) { return 0; }
328static inline int pgd_bad(pgd_t pgd) { return 0; }
329static inline int pgd_present(pgd_t pgd) { return 1; }
330#define pgd_clear(xp) do { } while (0)
331#define pgd_page(pgd) \
332 ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK))
333
334/*
335 * The following only work if pte_present() is true.
336 * Undefined behaviour if not..
337 */
338static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
339static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
340static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
341static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
342static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
f14d6f7c 343static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
15902bf6
MS
344
345static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
346static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
347
348static inline pte_t pte_rdprotect(pte_t pte) \
349 { pte_val(pte) &= ~_PAGE_USER; return pte; }
350static inline pte_t pte_wrprotect(pte_t pte) \
351 { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
352static inline pte_t pte_exprotect(pte_t pte) \
353 { pte_val(pte) &= ~_PAGE_EXEC; return pte; }
354static inline pte_t pte_mkclean(pte_t pte) \
355 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
356static inline pte_t pte_mkold(pte_t pte) \
357 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
358
359static inline pte_t pte_mkread(pte_t pte) \
360 { pte_val(pte) |= _PAGE_USER; return pte; }
361static inline pte_t pte_mkexec(pte_t pte) \
362 { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
363static inline pte_t pte_mkwrite(pte_t pte) \
364 { pte_val(pte) |= _PAGE_RW; return pte; }
365static inline pte_t pte_mkdirty(pte_t pte) \
366 { pte_val(pte) |= _PAGE_DIRTY; return pte; }
367static inline pte_t pte_mkyoung(pte_t pte) \
368 { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
369
370/*
371 * Conversion functions: convert a page and protection to a page entry,
372 * and a page entry and page directory to the page they refer to.
373 */
374
375static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
376{
377 pte_t pte;
378 pte_val(pte) = physpage | pgprot_val(pgprot);
379 return pte;
380}
381
382#define mk_pte(page, pgprot) \
383({ \
384 pte_t pte; \
385 pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) | \
386 pgprot_val(pgprot); \
387 pte; \
388})
389
390static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
391{
392 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
393 return pte;
394}
395
396/*
397 * Atomic PTE updates.
398 *
399 * pte_update clears and sets bit atomically, and returns
400 * the old pte value.
401 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
402 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
403 */
404static inline unsigned long pte_update(pte_t *p, unsigned long clr,
405 unsigned long set)
406{
407 unsigned long old, tmp, msr;
408
409 __asm__ __volatile__("\
410 msrclr %2, 0x2\n\
411 nop\n\
412 lw %0, %4, r0\n\
413 andn %1, %0, %5\n\
414 or %1, %1, %6\n\
415 sw %1, %4, r0\n\
416 mts rmsr, %2\n\
417 nop"
418 : "=&r" (old), "=&r" (tmp), "=&r" (msr), "=m" (*p)
ae8ee150 419 : "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set), "m" (*p)
15902bf6
MS
420 : "cc");
421
422 return old;
423}
424
425/*
426 * set_pte stores a linux PTE into the linux page table.
427 */
428static inline void set_pte(struct mm_struct *mm, unsigned long addr,
429 pte_t *ptep, pte_t pte)
430{
431 *ptep = pte;
432}
433
434static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
435 pte_t *ptep, pte_t pte)
436{
437 *ptep = pte;
438}
439
440static inline int ptep_test_and_clear_young(struct mm_struct *mm,
441 unsigned long addr, pte_t *ptep)
442{
443 return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
444}
445
446static inline int ptep_test_and_clear_dirty(struct mm_struct *mm,
447 unsigned long addr, pte_t *ptep)
448{
449 return (pte_update(ptep, \
450 (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
451}
452
453static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
454 unsigned long addr, pte_t *ptep)
455{
456 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
457}
458
459/*static inline void ptep_set_wrprotect(struct mm_struct *mm,
460 unsigned long addr, pte_t *ptep)
461{
462 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
463}*/
464
465static inline void ptep_mkdirty(struct mm_struct *mm,
466 unsigned long addr, pte_t *ptep)
467{
468 pte_update(ptep, 0, _PAGE_DIRTY);
469}
470
471/*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/
472
473/* Convert pmd entry to page */
474/* our pmd entry is an effective address of pte table*/
475/* returns effective address of the pmd entry*/
476#define pmd_page_kernel(pmd) ((unsigned long) (pmd_val(pmd) & PAGE_MASK))
477
478/* returns struct *page of the pmd entry*/
479#define pmd_page(pmd) (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT))
480
481/* to find an entry in a kernel page-table-directory */
482#define pgd_offset_k(address) pgd_offset(&init_mm, address)
483
484/* to find an entry in a page-table-directory */
485#define pgd_index(address) ((address) >> PGDIR_SHIFT)
486#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
487
488/* Find an entry in the second-level page table.. */
489static inline pmd_t *pmd_offset(pgd_t *dir, unsigned long address)
490{
491 return (pmd_t *) dir;
492}
493
494/* Find an entry in the third-level page table.. */
495#define pte_index(address) \
496 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
497#define pte_offset_kernel(dir, addr) \
498 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr))
499#define pte_offset_map(dir, addr) \
500 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr))
501#define pte_offset_map_nested(dir, addr) \
502 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr))
503
504#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
505#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
506
507/* Encode and decode a nonlinear file mapping entry */
508#define PTE_FILE_MAX_BITS 29
509#define pte_to_pgoff(pte) (pte_val(pte) >> 3)
f14d6f7c 510#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
15902bf6
MS
511
512extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
513
514/*
515 * When flushing the tlb entry for a page, we also need to flush the hash
516 * table entry. flush_hash_page is assembler (for speed) in hashtable.S.
517 */
518extern int flush_hash_page(unsigned context, unsigned long va, pte_t *ptep);
519
520/* Add an HPTE to the hash table */
521extern void add_hash_page(unsigned context, unsigned long va, pte_t *ptep);
522
523/*
524 * Encode and decode a swap entry.
525 * Note that the bits we use in a PTE for representing a swap entry
526 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
527 * (if used). -- paulus
528 */
529#define __swp_type(entry) ((entry).val & 0x3f)
530#define __swp_offset(entry) ((entry).val >> 6)
531#define __swp_entry(type, offset) \
532 ((swp_entry_t) { (type) | ((offset) << 6) })
533#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 })
534#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 2 })
535
536
537/* CONFIG_APUS */
538/* For virtual address to physical address conversion */
539extern void cache_clear(__u32 addr, int length);
540extern void cache_push(__u32 addr, int length);
541extern int mm_end_of_chunk(unsigned long addr, int len);
542extern unsigned long iopa(unsigned long addr);
543/* extern unsigned long mm_ptov(unsigned long addr) \
544 __attribute__ ((const)); TBD */
545
546/* Values for nocacheflag and cmode */
547/* These are not used by the APUS kernel_map, but prevents
548 * compilation errors.
549 */
550#define IOMAP_FULL_CACHING 0
551#define IOMAP_NOCACHE_SER 1
552#define IOMAP_NOCACHE_NONSER 2
553#define IOMAP_NO_COPYBACK 3
554
555/*
556 * Map some physical address range into the kernel address space.
557 */
558extern unsigned long kernel_map(unsigned long paddr, unsigned long size,
559 int nocacheflag, unsigned long *memavailp);
560
561/*
562 * Set cache mode of (kernel space) address range.
563 */
564extern void kernel_set_cachemode(unsigned long address, unsigned long size,
565 unsigned int cmode);
566
567/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
568#define kern_addr_valid(addr) (1)
569
570#define io_remap_page_range remap_page_range
571
572/*
573 * No page table caches to initialise
574 */
575#define pgtable_cache_init() do { } while (0)
576
577void do_page_fault(struct pt_regs *regs, unsigned long address,
578 unsigned long error_code);
579
580void __init io_block_mapping(unsigned long virt, phys_addr_t phys,
581 unsigned int size, int flags);
582
583void __init adjust_total_lowmem(void);
584void mapin_ram(void);
585int map_page(unsigned long va, phys_addr_t pa, int flags);
586
587extern int mem_init_done;
15902bf6
MS
588
589asmlinkage void __init mmu_init(void);
590
591void __init *early_get_page(void);
592
15902bf6
MS
593#endif /* __ASSEMBLY__ */
594#endif /* __KERNEL__ */
595
596#endif /* CONFIG_MMU */
597
6a3cece5
MS
598#ifndef __ASSEMBLY__
599#include <asm-generic/pgtable.h>
600
ae8ee150
MS
601extern unsigned long ioremap_bot, ioremap_base;
602
603void *consistent_alloc(int gfp, size_t size, dma_addr_t *dma_handle);
604void consistent_free(void *vaddr);
605void consistent_sync(void *vaddr, size_t size, int direction);
606void consistent_sync_page(struct page *page, unsigned long offset,
607 size_t size, int direction);
608
6a3cece5
MS
609void setup_memory(void);
610#endif /* __ASSEMBLY__ */
611
612#endif /* _ASM_MICROBLAZE_PGTABLE_H */