arm64: Handle el1 synchronous instruction aborts cleanly
[linux-2.6-block.git] / arch / arm64 / kernel / topology.c
CommitLineData
f6e763b9
MB
1/*
2 * arch/arm64/kernel/topology.c
3 *
4 * Copyright (C) 2011,2013,2014 Linaro Limited.
5 *
6 * Based on the arm32 version written by Vincent Guittot in turn based on
7 * arch/sh/kernel/topology.c
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13
14#include <linux/cpu.h>
15#include <linux/cpumask.h>
16#include <linux/init.h>
17#include <linux/percpu.h>
18#include <linux/node.h>
19#include <linux/nodemask.h>
ebdc9447 20#include <linux/of.h>
f6e763b9
MB
21#include <linux/sched.h>
22
4e6f7084 23#include <asm/cputype.h>
f6e763b9
MB
24#include <asm/topology.h>
25
ebdc9447
MB
26static int __init get_cpu_for_node(struct device_node *node)
27{
28 struct device_node *cpu_node;
29 int cpu;
30
31 cpu_node = of_parse_phandle(node, "cpu", 0);
32 if (!cpu_node)
33 return -1;
34
35 for_each_possible_cpu(cpu) {
36 if (of_get_cpu_node(cpu, NULL) == cpu_node) {
37 of_node_put(cpu_node);
38 return cpu;
39 }
40 }
41
42 pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
43
44 of_node_put(cpu_node);
45 return -1;
46}
47
48static int __init parse_core(struct device_node *core, int cluster_id,
49 int core_id)
50{
51 char name[10];
52 bool leaf = true;
53 int i = 0;
54 int cpu;
55 struct device_node *t;
56
57 do {
58 snprintf(name, sizeof(name), "thread%d", i);
59 t = of_get_child_by_name(core, name);
60 if (t) {
61 leaf = false;
62 cpu = get_cpu_for_node(t);
63 if (cpu >= 0) {
64 cpu_topology[cpu].cluster_id = cluster_id;
65 cpu_topology[cpu].core_id = core_id;
66 cpu_topology[cpu].thread_id = i;
67 } else {
68 pr_err("%s: Can't get CPU for thread\n",
69 t->full_name);
70 of_node_put(t);
71 return -EINVAL;
72 }
73 of_node_put(t);
74 }
75 i++;
76 } while (t);
77
78 cpu = get_cpu_for_node(core);
79 if (cpu >= 0) {
80 if (!leaf) {
81 pr_err("%s: Core has both threads and CPU\n",
82 core->full_name);
83 return -EINVAL;
84 }
85
86 cpu_topology[cpu].cluster_id = cluster_id;
87 cpu_topology[cpu].core_id = core_id;
88 } else if (leaf) {
89 pr_err("%s: Can't get CPU for leaf core\n", core->full_name);
90 return -EINVAL;
91 }
92
93 return 0;
94}
95
96static int __init parse_cluster(struct device_node *cluster, int depth)
97{
98 char name[10];
99 bool leaf = true;
100 bool has_cores = false;
101 struct device_node *c;
102 static int cluster_id __initdata;
103 int core_id = 0;
104 int i, ret;
105
106 /*
107 * First check for child clusters; we currently ignore any
108 * information about the nesting of clusters and present the
109 * scheduler with a flat list of them.
110 */
111 i = 0;
112 do {
113 snprintf(name, sizeof(name), "cluster%d", i);
114 c = of_get_child_by_name(cluster, name);
115 if (c) {
116 leaf = false;
117 ret = parse_cluster(c, depth + 1);
118 of_node_put(c);
119 if (ret != 0)
120 return ret;
121 }
122 i++;
123 } while (c);
124
125 /* Now check for cores */
126 i = 0;
127 do {
128 snprintf(name, sizeof(name), "core%d", i);
129 c = of_get_child_by_name(cluster, name);
130 if (c) {
131 has_cores = true;
132
133 if (depth == 0) {
134 pr_err("%s: cpu-map children should be clusters\n",
135 c->full_name);
136 of_node_put(c);
137 return -EINVAL;
138 }
139
140 if (leaf) {
141 ret = parse_core(c, cluster_id, core_id++);
142 } else {
143 pr_err("%s: Non-leaf cluster with core %s\n",
144 cluster->full_name, name);
145 ret = -EINVAL;
146 }
147
148 of_node_put(c);
149 if (ret != 0)
150 return ret;
151 }
152 i++;
153 } while (c);
154
155 if (leaf && !has_cores)
156 pr_warn("%s: empty cluster\n", cluster->full_name);
157
158 if (leaf)
159 cluster_id++;
160
161 return 0;
162}
163
164static int __init parse_dt_topology(void)
165{
166 struct device_node *cn, *map;
167 int ret = 0;
168 int cpu;
169
170 cn = of_find_node_by_path("/cpus");
171 if (!cn) {
172 pr_err("No CPU information found in DT\n");
173 return 0;
174 }
175
176 /*
177 * When topology is provided cpu-map is essentially a root
178 * cluster with restricted subnodes.
179 */
180 map = of_get_child_by_name(cn, "cpu-map");
181 if (!map)
182 goto out;
183
184 ret = parse_cluster(map, 0);
185 if (ret != 0)
186 goto out_map;
187
188 /*
189 * Check that all cores are in the topology; the SMP code will
190 * only mark cores described in the DT as possible.
191 */
4e6f7084
ZSL
192 for_each_possible_cpu(cpu)
193 if (cpu_topology[cpu].cluster_id == -1)
ebdc9447 194 ret = -EINVAL;
ebdc9447
MB
195
196out_map:
197 of_node_put(map);
198out:
199 of_node_put(cn);
200 return ret;
201}
202
f6e763b9
MB
203/*
204 * cpu topology table
205 */
206struct cpu_topology cpu_topology[NR_CPUS];
207EXPORT_SYMBOL_GPL(cpu_topology);
208
209const struct cpumask *cpu_coregroup_mask(int cpu)
210{
211 return &cpu_topology[cpu].core_sibling;
212}
213
214static void update_siblings_masks(unsigned int cpuid)
215{
216 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
217 int cpu;
218
f6e763b9
MB
219 /* update core and thread sibling masks */
220 for_each_possible_cpu(cpu) {
221 cpu_topo = &cpu_topology[cpu];
222
223 if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
224 continue;
225
226 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
227 if (cpu != cpuid)
228 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
229
230 if (cpuid_topo->core_id != cpu_topo->core_id)
231 continue;
232
233 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
234 if (cpu != cpuid)
235 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
236 }
237}
238
239void store_cpu_topology(unsigned int cpuid)
240{
4e6f7084
ZSL
241 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
242 u64 mpidr;
243
244 if (cpuid_topo->cluster_id != -1)
245 goto topology_populated;
246
247 mpidr = read_cpuid_mpidr();
248
249 /* Uniprocessor systems can rely on default topology values */
250 if (mpidr & MPIDR_UP_BITMASK)
251 return;
252
253 /* Create cpu topology mapping based on MPIDR. */
254 if (mpidr & MPIDR_MT_BITMASK) {
255 /* Multiprocessor system : Multi-threads per core */
256 cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
257 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
1cefdaea
MB
258 cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
259 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
4e6f7084
ZSL
260 } else {
261 /* Multiprocessor system : Single-thread per core */
262 cpuid_topo->thread_id = -1;
263 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
1cefdaea
MB
264 cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
265 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
266 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
4e6f7084
ZSL
267 }
268
269 pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
270 cpuid, cpuid_topo->cluster_id, cpuid_topo->core_id,
271 cpuid_topo->thread_id, mpidr);
272
273topology_populated:
f6e763b9
MB
274 update_siblings_masks(cpuid);
275}
276
ebdc9447 277static void __init reset_cpu_topology(void)
f6e763b9
MB
278{
279 unsigned int cpu;
280
f6e763b9
MB
281 for_each_possible_cpu(cpu) {
282 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
283
284 cpu_topo->thread_id = -1;
c31bf048 285 cpu_topo->core_id = 0;
f6e763b9 286 cpu_topo->cluster_id = -1;
c31bf048 287
f6e763b9 288 cpumask_clear(&cpu_topo->core_sibling);
c31bf048 289 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
f6e763b9 290 cpumask_clear(&cpu_topo->thread_sibling);
c31bf048 291 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
f6e763b9
MB
292 }
293}
ebdc9447
MB
294
295void __init init_cpu_topology(void)
296{
297 reset_cpu_topology();
298
299 /*
300 * Discard anything that was parsed if we hit an error so we
301 * don't use partial information.
302 */
e094d445 303 if (of_have_populated_dt() && parse_dt_topology())
ebdc9447
MB
304 reset_cpu_topology();
305}