Revert "vfs: Delete the associated dentry when deleting a file"
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
0ddbccd1 3 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
4 *
5 * Copyright (C) 2000-2004 Russell King
6 *
1da177e4
LT
7 * DMA uncached mapping support.
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
36d0fd21 11#include <linux/genalloc.h>
5a0e3ad6 12#include <linux/gfp.h>
1da177e4
LT
13#include <linux/errno.h>
14#include <linux/list.h>
15#include <linux/init.h>
16#include <linux/device.h>
249baa54 17#include <linux/dma-direct.h>
0a0f0d8b 18#include <linux/dma-map-ops.h>
39af22a7 19#include <linux/highmem.h>
c7909509 20#include <linux/memblock.h>
99d1717d 21#include <linux/slab.h>
4ce63fcd 22#include <linux/iommu.h>
e9da6e99 23#include <linux/io.h>
4ce63fcd 24#include <linux/vmalloc.h>
158e8bfe 25#include <linux/sizes.h>
a254129e 26#include <linux/cma.h>
1da177e4 27
a9ff6961 28#include <asm/page.h>
43377453 29#include <asm/highmem.h>
1da177e4 30#include <asm/cacheflush.h>
1da177e4 31#include <asm/tlbflush.h>
99d1717d 32#include <asm/mach/arch.h>
4ce63fcd 33#include <asm/dma-iommu.h>
c7909509
MS
34#include <asm/mach/map.h>
35#include <asm/system_info.h>
9bf22421 36#include <asm/xen/xen-ops.h>
37134cd5 37
1234e3fd 38#include "dma.h"
022ae537
RK
39#include "mm.h"
40
b4268676
RV
41struct arm_dma_alloc_args {
42 struct device *dev;
43 size_t size;
44 gfp_t gfp;
45 pgprot_t prot;
46 const void *caller;
47 bool want_vaddr;
f1270896 48 int coherent_flag;
b4268676
RV
49};
50
51struct arm_dma_free_args {
52 struct device *dev;
53 size_t size;
54 void *cpu_addr;
55 struct page *page;
56 bool want_vaddr;
57};
58
f1270896
GC
59#define NORMAL 0
60#define COHERENT 1
61
b4268676
RV
62struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
66};
67
19e6e5e5
RV
68struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
b4268676 71 struct arm_dma_allocator *allocator;
19e6e5e5
RV
72};
73
74static LIST_HEAD(arm_dma_bufs);
75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78{
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
81
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
88 }
89 }
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
92}
93
15237e1f
MS
94/*
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
99 *
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
104 *
15237e1f 105 */
dd37e940 106
f1270896 107static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
c7909509 108{
c7909509
MS
109 /*
110 * Ensure that the allocated pages are zeroed, and that any data
111 * lurking in the kernel direct-mapped region is invalidated.
112 */
9848e48f
MS
113 if (PageHighMem(page)) {
114 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
115 phys_addr_t end = base + size;
116 while (size > 0) {
117 void *ptr = kmap_atomic(page);
118 memset(ptr, 0, PAGE_SIZE);
f1270896
GC
119 if (coherent_flag != COHERENT)
120 dmac_flush_range(ptr, ptr + PAGE_SIZE);
9848e48f
MS
121 kunmap_atomic(ptr);
122 page++;
123 size -= PAGE_SIZE;
124 }
f1270896
GC
125 if (coherent_flag != COHERENT)
126 outer_flush_range(base, end);
9848e48f
MS
127 } else {
128 void *ptr = page_address(page);
4ce63fcd 129 memset(ptr, 0, size);
f1270896
GC
130 if (coherent_flag != COHERENT) {
131 dmac_flush_range(ptr, ptr + size);
132 outer_flush_range(__pa(ptr), __pa(ptr) + size);
133 }
4ce63fcd 134 }
c7909509
MS
135}
136
7a9a32a9
RK
137/*
138 * Allocate a DMA buffer for 'dev' of size 'size' using the
139 * specified gfp mask. Note that 'size' must be page aligned.
140 */
f1270896
GC
141static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
142 gfp_t gfp, int coherent_flag)
7a9a32a9
RK
143{
144 unsigned long order = get_order(size);
145 struct page *page, *p, *e;
7a9a32a9
RK
146
147 page = alloc_pages(gfp, order);
148 if (!page)
149 return NULL;
150
151 /*
152 * Now split the huge page and free the excess pages
153 */
154 split_page(page, order);
155 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
156 __free_page(p);
157
f1270896 158 __dma_clear_buffer(page, size, coherent_flag);
7a9a32a9
RK
159
160 return page;
161}
162
163/*
164 * Free a DMA buffer. 'size' must be page aligned.
165 */
166static void __dma_free_buffer(struct page *page, size_t size)
167{
168 struct page *e = page + (size >> PAGE_SHIFT);
169
170 while (page < e) {
171 __free_page(page);
172 page++;
173 }
174}
175
e9da6e99 176static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 177 pgprot_t prot, struct page **ret_page,
f1270896 178 const void *caller, bool want_vaddr,
712c604d 179 int coherent_flag, gfp_t gfp);
99d1717d 180
e9da6e99
MS
181static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
182 pgprot_t prot, struct page **ret_page,
6e8266e3 183 const void *caller, bool want_vaddr);
99d1717d 184
6e5267aa 185#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
b337e1c4 186static struct gen_pool *atomic_pool __ro_after_init;
6e5267aa 187
b337e1c4 188static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
c7909509
MS
189
190static int __init early_coherent_pool(char *p)
191{
36d0fd21 192 atomic_pool_size = memparse(p, &p);
c7909509
MS
193 return 0;
194}
195early_param("coherent_pool", early_coherent_pool);
196
197/*
198 * Initialise the coherent pool for atomic allocations.
199 */
e9da6e99 200static int __init atomic_pool_init(void)
c7909509 201{
71b55663 202 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
9d1400cf 203 gfp_t gfp = GFP_KERNEL | GFP_DMA;
c7909509
MS
204 struct page *page;
205 void *ptr;
c7909509 206
36d0fd21
LA
207 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
208 if (!atomic_pool)
209 goto out;
f1270896
GC
210 /*
211 * The atomic pool is only used for non-coherent allocations
212 * so we must pass NORMAL for coherent_flag.
213 */
e464ef16 214 if (dev_get_cma_area(NULL))
36d0fd21 215 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
712c604d
LS
216 &page, atomic_pool_init, true, NORMAL,
217 GFP_KERNEL);
e9da6e99 218 else
36d0fd21 219 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
6e8266e3 220 &page, atomic_pool_init, true);
c7909509 221 if (ptr) {
36d0fd21
LA
222 int ret;
223
224 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
225 page_to_phys(page),
226 atomic_pool_size, -1);
227 if (ret)
228 goto destroy_genpool;
229
230 gen_pool_set_algo(atomic_pool,
231 gen_pool_first_fit_order_align,
acb62448 232 NULL);
bf31c5e0 233 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
36d0fd21 234 atomic_pool_size / 1024);
c7909509
MS
235 return 0;
236 }
ec10665c 237
36d0fd21
LA
238destroy_genpool:
239 gen_pool_destroy(atomic_pool);
240 atomic_pool = NULL;
241out:
bf31c5e0 242 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
36d0fd21 243 atomic_pool_size / 1024);
c7909509
MS
244 return -ENOMEM;
245}
246/*
247 * CMA is activated by core_initcall, so we must be called after it.
248 */
e9da6e99 249postcore_initcall(atomic_pool_init);
c7909509 250
229a08a4 251#ifdef CONFIG_CMA_AREAS
c7909509
MS
252struct dma_contig_early_reserve {
253 phys_addr_t base;
254 unsigned long size;
255};
256
257static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
258
259static int dma_mmu_remap_num __initdata;
260
a9f8f2b2 261#ifdef CONFIG_DMA_CMA
c7909509
MS
262void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
263{
264 dma_mmu_remap[dma_mmu_remap_num].base = base;
265 dma_mmu_remap[dma_mmu_remap_num].size = size;
266 dma_mmu_remap_num++;
267}
a9f8f2b2 268#endif
c7909509
MS
269
270void __init dma_contiguous_remap(void)
271{
272 int i;
273 for (i = 0; i < dma_mmu_remap_num; i++) {
274 phys_addr_t start = dma_mmu_remap[i].base;
275 phys_addr_t end = start + dma_mmu_remap[i].size;
276 struct map_desc map;
277 unsigned long addr;
278
279 if (end > arm_lowmem_limit)
280 end = arm_lowmem_limit;
281 if (start >= end)
39f78e70 282 continue;
c7909509
MS
283
284 map.pfn = __phys_to_pfn(start);
285 map.virtual = __phys_to_virt(start);
286 map.length = end - start;
287 map.type = MT_MEMORY_DMA_READY;
288
289 /*
6b076991
RK
290 * Clear previous low-memory mapping to ensure that the
291 * TLB does not see any conflicting entries, then flush
292 * the TLB of the old entries before creating new mappings.
293 *
294 * This ensures that any speculatively loaded TLB entries
295 * (even though they may be rare) can not cause any problems,
296 * and ensures that this code is architecturally compliant.
c7909509
MS
297 */
298 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 299 addr += PMD_SIZE)
c7909509
MS
300 pmd_clear(pmd_off_k(addr));
301
6b076991
RK
302 flush_tlb_kernel_range(__phys_to_virt(start),
303 __phys_to_virt(end));
304
d883c6cf 305 iotable_init(&map, 1);
c7909509
MS
306 }
307}
229a08a4 308#endif
c7909509 309
8b1e0f81 310static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
c7909509 311{
8770b9e5 312 struct page *page = virt_to_page((void *)addr);
c7909509
MS
313 pgprot_t prot = *(pgprot_t *)data;
314
315 set_pte_ext(pte, mk_pte(page, prot), 0);
316 return 0;
317}
318
319static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
320{
321 unsigned long start = (unsigned long) page_address(page);
322 unsigned end = start + size;
323
324 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
c7909509
MS
325 flush_tlb_kernel_range(start, end);
326}
327
328static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
329 pgprot_t prot, struct page **ret_page,
6e8266e3 330 const void *caller, bool want_vaddr)
c7909509
MS
331{
332 struct page *page;
6e8266e3 333 void *ptr = NULL;
f1270896
GC
334 /*
335 * __alloc_remap_buffer is only called when the device is
336 * non-coherent
337 */
338 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
c7909509
MS
339 if (!page)
340 return NULL;
6e8266e3
CC
341 if (!want_vaddr)
342 goto out;
c7909509 343
78406ff5 344 ptr = dma_common_contiguous_remap(page, size, prot, caller);
c7909509
MS
345 if (!ptr) {
346 __dma_free_buffer(page, size);
347 return NULL;
348 }
349
6e8266e3 350 out:
c7909509
MS
351 *ret_page = page;
352 return ptr;
353}
354
e9da6e99 355static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 356{
36d0fd21 357 unsigned long val;
e9da6e99 358 void *ptr = NULL;
c7909509 359
36d0fd21 360 if (!atomic_pool) {
e9da6e99 361 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
362 return NULL;
363 }
364
36d0fd21
LA
365 val = gen_pool_alloc(atomic_pool, size);
366 if (val) {
367 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
368
369 *ret_page = phys_to_page(phys);
370 ptr = (void *)val;
c7909509 371 }
e9da6e99
MS
372
373 return ptr;
c7909509
MS
374}
375
21d0a759
HD
376static bool __in_atomic_pool(void *start, size_t size)
377{
964975ac 378 return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
21d0a759
HD
379}
380
e9da6e99 381static int __free_from_pool(void *start, size_t size)
c7909509 382{
21d0a759 383 if (!__in_atomic_pool(start, size))
c7909509
MS
384 return 0;
385
36d0fd21 386 gen_pool_free(atomic_pool, (unsigned long)start, size);
e9da6e99 387
c7909509
MS
388 return 1;
389}
390
391static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 392 pgprot_t prot, struct page **ret_page,
f1270896 393 const void *caller, bool want_vaddr,
712c604d 394 int coherent_flag, gfp_t gfp)
c7909509
MS
395{
396 unsigned long order = get_order(size);
397 size_t count = size >> PAGE_SHIFT;
398 struct page *page;
6e8266e3 399 void *ptr = NULL;
c7909509 400
d834c5ab 401 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
c7909509
MS
402 if (!page)
403 return NULL;
404
f1270896 405 __dma_clear_buffer(page, size, coherent_flag);
c7909509 406
6e8266e3
CC
407 if (!want_vaddr)
408 goto out;
409
9848e48f 410 if (PageHighMem(page)) {
78406ff5 411 ptr = dma_common_contiguous_remap(page, size, prot, caller);
9848e48f
MS
412 if (!ptr) {
413 dma_release_from_contiguous(dev, page, count);
414 return NULL;
415 }
416 } else {
417 __dma_remap(page, size, prot);
418 ptr = page_address(page);
419 }
6e8266e3
CC
420
421 out:
c7909509 422 *ret_page = page;
9848e48f 423 return ptr;
c7909509
MS
424}
425
426static void __free_from_contiguous(struct device *dev, struct page *page,
6e8266e3 427 void *cpu_addr, size_t size, bool want_vaddr)
c7909509 428{
6e8266e3
CC
429 if (want_vaddr) {
430 if (PageHighMem(page))
78406ff5 431 dma_common_free_remap(cpu_addr, size);
6e8266e3
CC
432 else
433 __dma_remap(page, size, PAGE_KERNEL);
434 }
c7909509
MS
435 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
436}
437
00085f1e 438static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
f99d6034 439{
00085f1e
KK
440 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
441 pgprot_writecombine(prot) :
442 pgprot_dmacoherent(prot);
f99d6034
MS
443 return prot;
444}
445
c7909509
MS
446static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
447 struct page **ret_page)
ab6494f0 448{
c7909509 449 struct page *page;
f1270896
GC
450 /* __alloc_simple_buffer is only called when the device is coherent */
451 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
c7909509
MS
452 if (!page)
453 return NULL;
454
455 *ret_page = page;
456 return page_address(page);
457}
458
b4268676
RV
459static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
460 struct page **ret_page)
461{
462 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
463 ret_page);
464}
c7909509 465
b4268676
RV
466static void simple_allocator_free(struct arm_dma_free_args *args)
467{
468 __dma_free_buffer(args->page, args->size);
469}
470
471static struct arm_dma_allocator simple_allocator = {
472 .alloc = simple_allocator_alloc,
473 .free = simple_allocator_free,
474};
475
476static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
477 struct page **ret_page)
478{
479 return __alloc_from_contiguous(args->dev, args->size, args->prot,
480 ret_page, args->caller,
712c604d
LS
481 args->want_vaddr, args->coherent_flag,
482 args->gfp);
b4268676
RV
483}
484
485static void cma_allocator_free(struct arm_dma_free_args *args)
486{
487 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
488 args->size, args->want_vaddr);
489}
490
491static struct arm_dma_allocator cma_allocator = {
492 .alloc = cma_allocator_alloc,
493 .free = cma_allocator_free,
494};
495
496static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
497 struct page **ret_page)
498{
499 return __alloc_from_pool(args->size, ret_page);
500}
501
502static void pool_allocator_free(struct arm_dma_free_args *args)
503{
504 __free_from_pool(args->cpu_addr, args->size);
505}
506
507static struct arm_dma_allocator pool_allocator = {
508 .alloc = pool_allocator_alloc,
509 .free = pool_allocator_free,
510};
511
512static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
513 struct page **ret_page)
514{
515 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
516 args->prot, ret_page, args->caller,
517 args->want_vaddr);
518}
519
520static void remap_allocator_free(struct arm_dma_free_args *args)
521{
522 if (args->want_vaddr)
78406ff5 523 dma_common_free_remap(args->cpu_addr, args->size);
b4268676
RV
524
525 __dma_free_buffer(args->page, args->size);
526}
527
528static struct arm_dma_allocator remap_allocator = {
529 .alloc = remap_allocator_alloc,
530 .free = remap_allocator_free,
531};
c7909509
MS
532
533static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
6e8266e3 534 gfp_t gfp, pgprot_t prot, bool is_coherent,
00085f1e 535 unsigned long attrs, const void *caller)
c7909509 536{
7607cb73 537 u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
3dd7ea92 538 struct page *page = NULL;
31ebf944 539 void *addr;
b4268676 540 bool allowblock, cma;
19e6e5e5 541 struct arm_dma_buffer *buf;
b4268676
RV
542 struct arm_dma_alloc_args args = {
543 .dev = dev,
544 .size = PAGE_ALIGN(size),
545 .gfp = gfp,
546 .prot = prot,
547 .caller = caller,
00085f1e 548 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
f1270896 549 .coherent_flag = is_coherent ? COHERENT : NORMAL,
b4268676 550 };
ab6494f0 551
c7909509
MS
552#ifdef CONFIG_DMA_API_DEBUG
553 u64 limit = (mask + 1) & ~mask;
554 if (limit && size >= limit) {
555 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
556 size, mask);
557 return NULL;
558 }
559#endif
560
9c18fcf7
AC
561 buf = kzalloc(sizeof(*buf),
562 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
19e6e5e5
RV
563 if (!buf)
564 return NULL;
565
c7909509
MS
566 if (mask < 0xffffffffULL)
567 gfp |= GFP_DMA;
568
b4268676 569 args.gfp = gfp;
ea2e7057 570
72fd97bf 571 *handle = DMA_MAPPING_ERROR;
b4268676 572 allowblock = gfpflags_allow_blocking(gfp);
34370214 573 cma = allowblock ? dev_get_cma_area(dev) : NULL;
b4268676
RV
574
575 if (cma)
576 buf->allocator = &cma_allocator;
1655cf88 577 else if (is_coherent)
b4268676
RV
578 buf->allocator = &simple_allocator;
579 else if (allowblock)
580 buf->allocator = &remap_allocator;
31ebf944 581 else
b4268676
RV
582 buf->allocator = &pool_allocator;
583
584 addr = buf->allocator->alloc(&args, &page);
695ae0af 585
19e6e5e5
RV
586 if (page) {
587 unsigned long flags;
588
f9774cfd 589 *handle = phys_to_dma(dev, page_to_phys(page));
b4268676 590 buf->virt = args.want_vaddr ? addr : page;
19e6e5e5
RV
591
592 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
593 list_add(&buf->list, &arm_dma_bufs);
594 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
595 } else {
596 kfree(buf);
597 }
695ae0af 598
b4268676 599 return args.want_vaddr ? addr : page;
31ebf944 600}
1da177e4 601
1da177e4 602/*
c7909509 603 * Free a buffer as defined by the above mapping.
1da177e4 604 */
dd37e940 605static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
00085f1e 606 dma_addr_t handle, unsigned long attrs,
dd37e940 607 bool is_coherent)
1da177e4 608{
f9774cfd 609 struct page *page = phys_to_page(dma_to_phys(dev, handle));
19e6e5e5 610 struct arm_dma_buffer *buf;
b4268676
RV
611 struct arm_dma_free_args args = {
612 .dev = dev,
613 .size = PAGE_ALIGN(size),
614 .cpu_addr = cpu_addr,
615 .page = page,
00085f1e 616 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
b4268676 617 };
19e6e5e5
RV
618
619 buf = arm_dma_buffer_find(cpu_addr);
620 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
621 return;
5edf71ae 622
b4268676 623 buf->allocator->free(&args);
19e6e5e5 624 kfree(buf);
1da177e4 625}
afd1a321 626
4ea0d737 627static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
628 size_t size, enum dma_data_direction dir,
629 void (*op)(const void *, size_t, int))
43377453 630{
15653371
RK
631 unsigned long pfn;
632 size_t left = size;
633
634 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
635 offset %= PAGE_SIZE;
636
43377453
NP
637 /*
638 * A single sg entry may refer to multiple physically contiguous
639 * pages. But we still need to process highmem pages individually.
640 * If highmem is not configured then the bulk of this loop gets
641 * optimized out.
642 */
43377453
NP
643 do {
644 size_t len = left;
93f1d629
RK
645 void *vaddr;
646
15653371
RK
647 page = pfn_to_page(pfn);
648
93f1d629 649 if (PageHighMem(page)) {
15653371 650 if (len + offset > PAGE_SIZE)
93f1d629 651 len = PAGE_SIZE - offset;
dd0f67f4
JK
652
653 if (cache_is_vipt_nonaliasing()) {
39af22a7 654 vaddr = kmap_atomic(page);
7e5a69e8 655 op(vaddr + offset, len, dir);
39af22a7 656 kunmap_atomic(vaddr);
dd0f67f4
JK
657 } else {
658 vaddr = kmap_high_get(page);
659 if (vaddr) {
660 op(vaddr + offset, len, dir);
661 kunmap_high(page);
662 }
43377453 663 }
93f1d629
RK
664 } else {
665 vaddr = page_address(page) + offset;
a9c9147e 666 op(vaddr, len, dir);
43377453 667 }
43377453 668 offset = 0;
15653371 669 pfn++;
43377453
NP
670 left -= len;
671 } while (left);
672}
4ea0d737 673
51fde349
MS
674/*
675 * Make an area consistent for devices.
a45e52bf 676 * Note: Drivers should NOT use this function directly.
51fde349
MS
677 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
678 */
679static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
680 size_t size, enum dma_data_direction dir)
681{
2161c248 682 phys_addr_t paddr;
65af191a 683
a9c9147e 684 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
685
686 paddr = page_to_phys(page) + off;
2ffe2da3
RK
687 if (dir == DMA_FROM_DEVICE) {
688 outer_inv_range(paddr, paddr + size);
689 } else {
690 outer_clean_range(paddr, paddr + size);
691 }
692 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 693}
4ea0d737 694
51fde349 695static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
696 size_t size, enum dma_data_direction dir)
697{
2161c248 698 phys_addr_t paddr = page_to_phys(page) + off;
2ffe2da3
RK
699
700 /* FIXME: non-speculating: not required */
deace4a6
RK
701 /* in any case, don't bother invalidating if DMA to device */
702 if (dir != DMA_TO_DEVICE) {
2ffe2da3
RK
703 outer_inv_range(paddr, paddr + size);
704
deace4a6
RK
705 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
706 }
c0177800
CM
707
708 /*
b2a234ed 709 * Mark the D-cache clean for these pages to avoid extra flushing.
c0177800 710 */
b2a234ed 711 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
8b5989f3
MWO
712 struct folio *folio = pfn_folio(paddr / PAGE_SIZE);
713 size_t offset = offset_in_folio(folio, paddr);
714
715 for (;;) {
716 size_t sz = folio_size(folio) - offset;
717
718 if (size < sz)
719 break;
720 if (!offset)
721 set_bit(PG_dcache_clean, &folio->flags);
722 offset = 0;
723 size -= sz;
724 if (!size)
725 break;
726 folio = folio_next(folio);
b2a234ed
ML
727 }
728 }
4ea0d737 729}
43377453 730
4ce63fcd
MS
731#ifdef CONFIG_ARM_DMA_USE_IOMMU
732
7d2822df
S
733static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
734{
735 int prot = 0;
736
737 if (attrs & DMA_ATTR_PRIVILEGED)
738 prot |= IOMMU_PRIV;
739
740 switch (dir) {
741 case DMA_BIDIRECTIONAL:
742 return prot | IOMMU_READ | IOMMU_WRITE;
743 case DMA_TO_DEVICE:
744 return prot | IOMMU_READ;
745 case DMA_FROM_DEVICE:
746 return prot | IOMMU_WRITE;
747 default:
748 return prot;
749 }
750}
751
4ce63fcd
MS
752/* IOMMU */
753
4d852ef8
AH
754static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
755
4ce63fcd
MS
756static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
757 size_t size)
758{
759 unsigned int order = get_order(size);
760 unsigned int align = 0;
761 unsigned int count, start;
006f841d 762 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 763 unsigned long flags;
4d852ef8
AH
764 dma_addr_t iova;
765 int i;
4ce63fcd 766
60460abf
SWK
767 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
768 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
769
68efd7d2
MS
770 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
771 align = (1 << order) - 1;
4ce63fcd
MS
772
773 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8
AH
774 for (i = 0; i < mapping->nr_bitmaps; i++) {
775 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
776 mapping->bits, 0, count, align);
777
778 if (start > mapping->bits)
779 continue;
780
781 bitmap_set(mapping->bitmaps[i], start, count);
782 break;
4ce63fcd
MS
783 }
784
4d852ef8
AH
785 /*
786 * No unused range found. Try to extend the existing mapping
787 * and perform a second attempt to reserve an IO virtual
788 * address range of size bytes.
789 */
790 if (i == mapping->nr_bitmaps) {
791 if (extend_iommu_mapping(mapping)) {
792 spin_unlock_irqrestore(&mapping->lock, flags);
72fd97bf 793 return DMA_MAPPING_ERROR;
4d852ef8
AH
794 }
795
796 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
797 mapping->bits, 0, count, align);
798
799 if (start > mapping->bits) {
800 spin_unlock_irqrestore(&mapping->lock, flags);
72fd97bf 801 return DMA_MAPPING_ERROR;
4d852ef8
AH
802 }
803
804 bitmap_set(mapping->bitmaps[i], start, count);
805 }
4ce63fcd
MS
806 spin_unlock_irqrestore(&mapping->lock, flags);
807
006f841d 808 iova = mapping->base + (mapping_size * i);
68efd7d2 809 iova += start << PAGE_SHIFT;
4d852ef8
AH
810
811 return iova;
4ce63fcd
MS
812}
813
814static inline void __free_iova(struct dma_iommu_mapping *mapping,
815 dma_addr_t addr, size_t size)
816{
4d852ef8 817 unsigned int start, count;
006f841d 818 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 819 unsigned long flags;
4d852ef8
AH
820 dma_addr_t bitmap_base;
821 u32 bitmap_index;
822
823 if (!size)
824 return;
825
006f841d 826 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
4d852ef8
AH
827 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
828
006f841d 829 bitmap_base = mapping->base + mapping_size * bitmap_index;
4d852ef8 830
68efd7d2 831 start = (addr - bitmap_base) >> PAGE_SHIFT;
4d852ef8 832
006f841d 833 if (addr + size > bitmap_base + mapping_size) {
4d852ef8
AH
834 /*
835 * The address range to be freed reaches into the iova
836 * range of the next bitmap. This should not happen as
837 * we don't allow this in __alloc_iova (at the
838 * moment).
839 */
840 BUG();
841 } else
68efd7d2 842 count = size >> PAGE_SHIFT;
4ce63fcd
MS
843
844 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8 845 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
4ce63fcd
MS
846 spin_unlock_irqrestore(&mapping->lock, flags);
847}
848
33298ef6
DA
849/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
850static const int iommu_order_array[] = { 9, 8, 4, 0 };
851
549a17e4 852static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
00085f1e 853 gfp_t gfp, unsigned long attrs,
f1270896 854 int coherent_flag)
4ce63fcd
MS
855{
856 struct page **pages;
857 int count = size >> PAGE_SHIFT;
858 int array_size = count * sizeof(struct page *);
859 int i = 0;
33298ef6 860 int order_idx = 0;
4ce63fcd 861
c17d8847 862 pages = kvzalloc(array_size, GFP_KERNEL);
4ce63fcd
MS
863 if (!pages)
864 return NULL;
865
00085f1e 866 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
549a17e4
MS
867 {
868 unsigned long order = get_order(size);
869 struct page *page;
870
d834c5ab
MS
871 page = dma_alloc_from_contiguous(dev, count, order,
872 gfp & __GFP_NOWARN);
549a17e4
MS
873 if (!page)
874 goto error;
875
f1270896 876 __dma_clear_buffer(page, size, coherent_flag);
549a17e4
MS
877
878 for (i = 0; i < count; i++)
879 pages[i] = page + i;
880
881 return pages;
882 }
883
14d3ae2e 884 /* Go straight to 4K chunks if caller says it's OK. */
00085f1e 885 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
14d3ae2e
DA
886 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
887
f8669bef
MS
888 /*
889 * IOMMU can map any pages, so himem can also be used here
890 */
891 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
892
4ce63fcd 893 while (count) {
49f28aa6
TF
894 int j, order;
895
33298ef6
DA
896 order = iommu_order_array[order_idx];
897
898 /* Drop down when we get small */
899 if (__fls(count) < order) {
900 order_idx++;
901 continue;
49f28aa6 902 }
4ce63fcd 903
33298ef6
DA
904 if (order) {
905 /* See if it's easy to allocate a high-order chunk */
906 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
907
908 /* Go down a notch at first sign of pressure */
909 if (!pages[i]) {
910 order_idx++;
911 continue;
912 }
913 } else {
49f28aa6
TF
914 pages[i] = alloc_pages(gfp, 0);
915 if (!pages[i])
916 goto error;
917 }
4ce63fcd 918
5a796eeb 919 if (order) {
4ce63fcd 920 split_page(pages[i], order);
5a796eeb
HD
921 j = 1 << order;
922 while (--j)
923 pages[i + j] = pages[i] + j;
924 }
4ce63fcd 925
f1270896 926 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
4ce63fcd
MS
927 i += 1 << order;
928 count -= 1 << order;
929 }
930
931 return pages;
932error:
9fa8af91 933 while (i--)
4ce63fcd
MS
934 if (pages[i])
935 __free_pages(pages[i], 0);
1d5cfdb0 936 kvfree(pages);
4ce63fcd
MS
937 return NULL;
938}
939
549a17e4 940static int __iommu_free_buffer(struct device *dev, struct page **pages,
00085f1e 941 size_t size, unsigned long attrs)
4ce63fcd
MS
942{
943 int count = size >> PAGE_SHIFT;
4ce63fcd 944 int i;
549a17e4 945
00085f1e 946 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
549a17e4
MS
947 dma_release_from_contiguous(dev, pages[0], count);
948 } else {
949 for (i = 0; i < count; i++)
950 if (pages[i])
951 __free_pages(pages[i], 0);
952 }
953
1d5cfdb0 954 kvfree(pages);
4ce63fcd
MS
955 return 0;
956}
957
4ce63fcd
MS
958/*
959 * Create a mapping in device IO address space for specified pages
960 */
961static dma_addr_t
7d2822df
S
962__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
963 unsigned long attrs)
4ce63fcd 964{
89cfdb19 965 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
966 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
967 dma_addr_t dma_addr, iova;
90cde558 968 int i;
4ce63fcd
MS
969
970 dma_addr = __alloc_iova(mapping, size);
72fd97bf 971 if (dma_addr == DMA_MAPPING_ERROR)
4ce63fcd
MS
972 return dma_addr;
973
974 iova = dma_addr;
975 for (i = 0; i < count; ) {
90cde558
AP
976 int ret;
977
4ce63fcd
MS
978 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
979 phys_addr_t phys = page_to_phys(pages[i]);
980 unsigned int len, j;
981
982 for (j = i + 1; j < count; j++, next_pfn++)
983 if (page_to_pfn(pages[j]) != next_pfn)
984 break;
985
986 len = (j - i) << PAGE_SHIFT;
c9b24996 987 ret = iommu_map(mapping->domain, iova, phys, len,
1369459b
JG
988 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs),
989 GFP_KERNEL);
4ce63fcd
MS
990 if (ret < 0)
991 goto fail;
992 iova += len;
993 i = j;
994 }
995 return dma_addr;
996fail:
997 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
998 __free_iova(mapping, dma_addr, size);
72fd97bf 999 return DMA_MAPPING_ERROR;
4ce63fcd
MS
1000}
1001
1002static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1003{
89cfdb19 1004 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1005
1006 /*
1007 * add optional in-page offset from iova to size and align
1008 * result to page size
1009 */
1010 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1011 iova &= PAGE_MASK;
1012
1013 iommu_unmap(mapping->domain, iova, size);
1014 __free_iova(mapping, iova, size);
1015 return 0;
1016}
1017
665bad7b
HD
1018static struct page **__atomic_get_pages(void *addr)
1019{
36d0fd21
LA
1020 struct page *page;
1021 phys_addr_t phys;
1022
1023 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1024 page = phys_to_page(phys);
665bad7b 1025
36d0fd21 1026 return (struct page **)page;
665bad7b
HD
1027}
1028
00085f1e 1029static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
e9da6e99 1030{
665bad7b
HD
1031 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1032 return __atomic_get_pages(cpu_addr);
1033
00085f1e 1034 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
955c757e
MS
1035 return cpu_addr;
1036
5cf45379 1037 return dma_common_find_pages(cpu_addr);
e9da6e99
MS
1038}
1039
56506822 1040static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
7d2822df
S
1041 dma_addr_t *handle, int coherent_flag,
1042 unsigned long attrs)
479ed93a
HD
1043{
1044 struct page *page;
1045 void *addr;
1046
56506822
GC
1047 if (coherent_flag == COHERENT)
1048 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1049 else
1050 addr = __alloc_from_pool(size, &page);
479ed93a
HD
1051 if (!addr)
1052 return NULL;
1053
7d2822df 1054 *handle = __iommu_create_mapping(dev, &page, size, attrs);
72fd97bf 1055 if (*handle == DMA_MAPPING_ERROR)
479ed93a
HD
1056 goto err_mapping;
1057
1058 return addr;
1059
1060err_mapping:
1061 __free_from_pool(addr, size);
1062 return NULL;
1063}
1064
d5898291 1065static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
56506822 1066 dma_addr_t handle, size_t size, int coherent_flag)
479ed93a
HD
1067{
1068 __iommu_remove_mapping(dev, handle, size);
56506822
GC
1069 if (coherent_flag == COHERENT)
1070 __dma_free_buffer(virt_to_page(cpu_addr), size);
1071 else
1072 __free_from_pool(cpu_addr, size);
479ed93a
HD
1073}
1074
d563bccf
RM
1075static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1076 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
4ce63fcd 1077{
71b55663 1078 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
4ce63fcd
MS
1079 struct page **pages;
1080 void *addr = NULL;
d563bccf 1081 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
4ce63fcd 1082
72fd97bf 1083 *handle = DMA_MAPPING_ERROR;
4ce63fcd
MS
1084 size = PAGE_ALIGN(size);
1085
56506822
GC
1086 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1087 return __iommu_alloc_simple(dev, size, gfp, handle,
7d2822df 1088 coherent_flag, attrs);
479ed93a 1089
56506822 1090 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
4ce63fcd
MS
1091 if (!pages)
1092 return NULL;
1093
7d2822df 1094 *handle = __iommu_create_mapping(dev, pages, size, attrs);
72fd97bf 1095 if (*handle == DMA_MAPPING_ERROR)
4ce63fcd
MS
1096 goto err_buffer;
1097
00085f1e 1098 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
955c757e
MS
1099 return pages;
1100
78406ff5 1101 addr = dma_common_pages_remap(pages, size, prot,
e9da6e99 1102 __builtin_return_address(0));
4ce63fcd
MS
1103 if (!addr)
1104 goto err_mapping;
1105
1106 return addr;
1107
1108err_mapping:
1109 __iommu_remove_mapping(dev, *handle, size);
1110err_buffer:
549a17e4 1111 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1112 return NULL;
1113}
1114
d563bccf 1115static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
4ce63fcd 1116 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 1117 unsigned long attrs)
4ce63fcd 1118{
955c757e 1119 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
371f0f08 1120 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
6248461d 1121 int err;
4ce63fcd 1122
e9da6e99
MS
1123 if (!pages)
1124 return -ENXIO;
4ce63fcd 1125
6248461d 1126 if (vma->vm_pgoff >= nr_pages)
371f0f08
MS
1127 return -ENXIO;
1128
d563bccf
RM
1129 if (!dev->dma_coherent)
1130 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1131
6248461d
SJ
1132 err = vm_map_pages(vma, pages, nr_pages);
1133 if (err)
1134 pr_err("Remapping memory failed: %d\n", err);
7e312103 1135
6248461d 1136 return err;
4ce63fcd
MS
1137}
1138
1139/*
1140 * free a page as defined by the above mapping.
1141 * Must not be called with IRQs disabled.
1142 */
d563bccf
RM
1143static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1144 dma_addr_t handle, unsigned long attrs)
4ce63fcd 1145{
d563bccf 1146 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
836bfa0d 1147 struct page **pages;
4ce63fcd
MS
1148 size = PAGE_ALIGN(size);
1149
56506822
GC
1150 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1151 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
e9da6e99 1152 return;
4ce63fcd 1153 }
e9da6e99 1154
836bfa0d
YC
1155 pages = __iommu_get_pages(cpu_addr, attrs);
1156 if (!pages) {
1157 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
479ed93a
HD
1158 return;
1159 }
1160
fe9041c2 1161 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
51231740 1162 dma_common_free_remap(cpu_addr, size);
e9da6e99
MS
1163
1164 __iommu_remove_mapping(dev, handle, size);
549a17e4 1165 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1166}
1167
dc2832e1
MS
1168static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1169 void *cpu_addr, dma_addr_t dma_addr,
00085f1e 1170 size_t size, unsigned long attrs)
dc2832e1
MS
1171{
1172 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1173 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1174
1175 if (!pages)
1176 return -ENXIO;
1177
1178 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1179 GFP_KERNEL);
4ce63fcd
MS
1180}
1181
1182/*
1183 * Map a part of the scatter-gather list into contiguous io address space
1184 */
1185static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1186 size_t size, dma_addr_t *handle,
d563bccf 1187 enum dma_data_direction dir, unsigned long attrs)
4ce63fcd 1188{
89cfdb19 1189 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1190 dma_addr_t iova, iova_base;
1191 int ret = 0;
1192 unsigned int count;
1193 struct scatterlist *s;
c9b24996 1194 int prot;
4ce63fcd
MS
1195
1196 size = PAGE_ALIGN(size);
72fd97bf 1197 *handle = DMA_MAPPING_ERROR;
4ce63fcd
MS
1198
1199 iova_base = iova = __alloc_iova(mapping, size);
72fd97bf 1200 if (iova == DMA_MAPPING_ERROR)
4ce63fcd
MS
1201 return -ENOMEM;
1202
1203 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
3e6110fd 1204 phys_addr_t phys = page_to_phys(sg_page(s));
4ce63fcd
MS
1205 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1206
d563bccf 1207 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
4ce63fcd
MS
1208 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1209
7d2822df 1210 prot = __dma_info_to_prot(dir, attrs);
c9b24996 1211
1369459b
JG
1212 ret = iommu_map(mapping->domain, iova, phys, len, prot,
1213 GFP_KERNEL);
4ce63fcd
MS
1214 if (ret < 0)
1215 goto fail;
1216 count += len >> PAGE_SHIFT;
1217 iova += len;
1218 }
1219 *handle = iova_base;
1220
1221 return 0;
1222fail:
1223 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1224 __free_iova(mapping, iova_base, size);
1225 return ret;
1226}
1227
d563bccf
RM
1228/**
1229 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1230 * @dev: valid struct device pointer
1231 * @sg: list of buffers
1232 * @nents: number of buffers to map
1233 * @dir: DMA transfer direction
1234 *
1235 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1236 * The scatter gather list elements are merged together (if possible) and
1237 * tagged with the appropriate dma address and length. They are obtained via
1238 * sg_dma_{address,length}.
1239 */
1240static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1241 int nents, enum dma_data_direction dir, unsigned long attrs)
4ce63fcd
MS
1242{
1243 struct scatterlist *s = sg, *dma = sg, *start = sg;
6506932b 1244 int i, count = 0, ret;
4ce63fcd
MS
1245 unsigned int offset = s->offset;
1246 unsigned int size = s->offset + s->length;
1247 unsigned int max = dma_get_max_seg_size(dev);
1248
1249 for (i = 1; i < nents; i++) {
1250 s = sg_next(s);
1251
4ce63fcd
MS
1252 s->dma_length = 0;
1253
1254 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
6506932b 1255 ret = __map_sg_chunk(dev, start, size,
d563bccf 1256 &dma->dma_address, dir, attrs);
6506932b 1257 if (ret < 0)
4ce63fcd
MS
1258 goto bad_mapping;
1259
1260 dma->dma_address += offset;
1261 dma->dma_length = size - offset;
1262
1263 size = offset = s->offset;
1264 start = s;
1265 dma = sg_next(dma);
1266 count += 1;
1267 }
1268 size += s->length;
1269 }
d563bccf 1270 ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
6506932b 1271 if (ret < 0)
4ce63fcd
MS
1272 goto bad_mapping;
1273
1274 dma->dma_address += offset;
1275 dma->dma_length = size - offset;
1276
1277 return count+1;
1278
1279bad_mapping:
1280 for_each_sg(sg, s, count, i)
1281 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
6506932b
MO
1282 if (ret == -ENOMEM)
1283 return ret;
1284 return -EINVAL;
4ce63fcd
MS
1285}
1286
1287/**
d563bccf 1288 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
0fa478df
RH
1289 * @dev: valid struct device pointer
1290 * @sg: list of buffers
d563bccf
RM
1291 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1292 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
0fa478df 1293 *
d563bccf
RM
1294 * Unmap a set of streaming mode DMA translations. Again, CPU access
1295 * rules concerning calls here are the same as for dma_unmap_single().
0fa478df 1296 */
d563bccf
RM
1297static void arm_iommu_unmap_sg(struct device *dev,
1298 struct scatterlist *sg, int nents,
1299 enum dma_data_direction dir,
1300 unsigned long attrs)
4ce63fcd
MS
1301{
1302 struct scatterlist *s;
1303 int i;
1304
1305 for_each_sg(sg, s, nents, i) {
1306 if (sg_dma_len(s))
1307 __iommu_remove_mapping(dev, sg_dma_address(s),
1308 sg_dma_len(s));
d563bccf 1309 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
4ce63fcd
MS
1310 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1311 s->length, dir);
1312 }
1313}
1314
1315/**
1316 * arm_iommu_sync_sg_for_cpu
1317 * @dev: valid struct device pointer
1318 * @sg: list of buffers
1319 * @nents: number of buffers to map (returned from dma_map_sg)
1320 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1321 */
17fe8684
BD
1322static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1323 struct scatterlist *sg,
4ce63fcd
MS
1324 int nents, enum dma_data_direction dir)
1325{
1326 struct scatterlist *s;
1327 int i;
1328
4136ce90
RM
1329 if (dev->dma_coherent)
1330 return;
1331
4ce63fcd 1332 for_each_sg(sg, s, nents, i)
0fa478df 1333 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1334
1335}
1336
1337/**
1338 * arm_iommu_sync_sg_for_device
1339 * @dev: valid struct device pointer
1340 * @sg: list of buffers
1341 * @nents: number of buffers to map (returned from dma_map_sg)
1342 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1343 */
17fe8684
BD
1344static void arm_iommu_sync_sg_for_device(struct device *dev,
1345 struct scatterlist *sg,
4ce63fcd
MS
1346 int nents, enum dma_data_direction dir)
1347{
1348 struct scatterlist *s;
1349 int i;
1350
4136ce90
RM
1351 if (dev->dma_coherent)
1352 return;
1353
4ce63fcd 1354 for_each_sg(sg, s, nents, i)
0fa478df 1355 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1356}
1357
4ce63fcd 1358/**
d563bccf 1359 * arm_iommu_map_page
4ce63fcd
MS
1360 * @dev: valid struct device pointer
1361 * @page: page that buffer resides in
1362 * @offset: offset into page for start of buffer
1363 * @size: size of buffer to map
1364 * @dir: DMA transfer direction
1365 *
d563bccf 1366 * IOMMU aware version of arm_dma_map_page()
4ce63fcd 1367 */
d563bccf 1368static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd 1369 unsigned long offset, size_t size, enum dma_data_direction dir,
00085f1e 1370 unsigned long attrs)
4ce63fcd 1371{
89cfdb19 1372 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd 1373 dma_addr_t dma_addr;
13987d68 1374 int ret, prot, len = PAGE_ALIGN(size + offset);
4ce63fcd 1375
d563bccf
RM
1376 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1377 __dma_page_cpu_to_dev(page, offset, size, dir);
1378
4ce63fcd 1379 dma_addr = __alloc_iova(mapping, len);
72fd97bf 1380 if (dma_addr == DMA_MAPPING_ERROR)
4ce63fcd
MS
1381 return dma_addr;
1382
7d2822df 1383 prot = __dma_info_to_prot(dir, attrs);
13987d68 1384
1369459b
JG
1385 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len,
1386 prot, GFP_KERNEL);
4ce63fcd
MS
1387 if (ret < 0)
1388 goto fail;
1389
1390 return dma_addr + offset;
1391fail:
1392 __free_iova(mapping, dma_addr, len);
72fd97bf 1393 return DMA_MAPPING_ERROR;
4ce63fcd
MS
1394}
1395
1396/**
1397 * arm_iommu_unmap_page
1398 * @dev: valid struct device pointer
1399 * @handle: DMA address of buffer
1400 * @size: size of buffer (same as passed to dma_map_page)
1401 * @dir: DMA transfer direction (same as passed to dma_map_page)
1402 *
1403 * IOMMU aware version of arm_dma_unmap_page()
1404 */
1405static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
00085f1e 1406 size_t size, enum dma_data_direction dir, unsigned long attrs)
4ce63fcd 1407{
89cfdb19 1408 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd 1409 dma_addr_t iova = handle & PAGE_MASK;
d563bccf 1410 struct page *page;
4ce63fcd
MS
1411 int offset = handle & ~PAGE_MASK;
1412 int len = PAGE_ALIGN(size + offset);
1413
1414 if (!iova)
1415 return;
1416
d563bccf
RM
1417 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1418 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
4ce63fcd 1419 __dma_page_dev_to_cpu(page, offset, size, dir);
d563bccf 1420 }
4ce63fcd
MS
1421
1422 iommu_unmap(mapping->domain, iova, len);
1423 __free_iova(mapping, iova, len);
1424}
1425
24ed5d2c
NS
1426/**
1427 * arm_iommu_map_resource - map a device resource for DMA
1428 * @dev: valid struct device pointer
1429 * @phys_addr: physical address of resource
1430 * @size: size of resource to map
1431 * @dir: DMA transfer direction
1432 */
1433static dma_addr_t arm_iommu_map_resource(struct device *dev,
1434 phys_addr_t phys_addr, size_t size,
1435 enum dma_data_direction dir, unsigned long attrs)
1436{
1437 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1438 dma_addr_t dma_addr;
1439 int ret, prot;
1440 phys_addr_t addr = phys_addr & PAGE_MASK;
1441 unsigned int offset = phys_addr & ~PAGE_MASK;
1442 size_t len = PAGE_ALIGN(size + offset);
1443
1444 dma_addr = __alloc_iova(mapping, len);
72fd97bf 1445 if (dma_addr == DMA_MAPPING_ERROR)
24ed5d2c
NS
1446 return dma_addr;
1447
7d2822df 1448 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
24ed5d2c 1449
1369459b 1450 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL);
24ed5d2c
NS
1451 if (ret < 0)
1452 goto fail;
1453
1454 return dma_addr + offset;
1455fail:
1456 __free_iova(mapping, dma_addr, len);
72fd97bf 1457 return DMA_MAPPING_ERROR;
24ed5d2c
NS
1458}
1459
1460/**
1461 * arm_iommu_unmap_resource - unmap a device DMA resource
1462 * @dev: valid struct device pointer
1463 * @dma_handle: DMA address to resource
1464 * @size: size of resource to map
1465 * @dir: DMA transfer direction
1466 */
1467static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1468 size_t size, enum dma_data_direction dir,
1469 unsigned long attrs)
1470{
1471 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1472 dma_addr_t iova = dma_handle & PAGE_MASK;
1473 unsigned int offset = dma_handle & ~PAGE_MASK;
1474 size_t len = PAGE_ALIGN(size + offset);
1475
1476 if (!iova)
1477 return;
1478
1479 iommu_unmap(mapping->domain, iova, len);
1480 __free_iova(mapping, iova, len);
1481}
1482
4ce63fcd
MS
1483static void arm_iommu_sync_single_for_cpu(struct device *dev,
1484 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1485{
89cfdb19 1486 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd 1487 dma_addr_t iova = handle & PAGE_MASK;
4136ce90 1488 struct page *page;
4ce63fcd
MS
1489 unsigned int offset = handle & ~PAGE_MASK;
1490
4136ce90 1491 if (dev->dma_coherent || !iova)
4ce63fcd
MS
1492 return;
1493
4136ce90 1494 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
0fa478df 1495 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
1496}
1497
1498static void arm_iommu_sync_single_for_device(struct device *dev,
1499 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1500{
89cfdb19 1501 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd 1502 dma_addr_t iova = handle & PAGE_MASK;
4136ce90 1503 struct page *page;
4ce63fcd
MS
1504 unsigned int offset = handle & ~PAGE_MASK;
1505
4136ce90 1506 if (dev->dma_coherent || !iova)
4ce63fcd
MS
1507 return;
1508
4136ce90 1509 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
4ce63fcd
MS
1510 __dma_page_cpu_to_dev(page, offset, size, dir);
1511}
1512
17fe8684 1513static const struct dma_map_ops iommu_ops = {
4ce63fcd
MS
1514 .alloc = arm_iommu_alloc_attrs,
1515 .free = arm_iommu_free_attrs,
1516 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1517 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1518
1519 .map_page = arm_iommu_map_page,
1520 .unmap_page = arm_iommu_unmap_page,
1521 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1522 .sync_single_for_device = arm_iommu_sync_single_for_device,
1523
1524 .map_sg = arm_iommu_map_sg,
1525 .unmap_sg = arm_iommu_unmap_sg,
1526 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1527 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
24ed5d2c
NS
1528
1529 .map_resource = arm_iommu_map_resource,
1530 .unmap_resource = arm_iommu_unmap_resource,
0fa478df
RH
1531};
1532
4ce63fcd
MS
1533/**
1534 * arm_iommu_create_mapping
1535 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1536 * @base: start address of the valid IO address space
68efd7d2 1537 * @size: maximum size of the valid IO address space
4ce63fcd
MS
1538 *
1539 * Creates a mapping structure which holds information about used/unused
1540 * IO address ranges, which is required to perform memory allocation and
1541 * mapping with IOMMU aware functions.
1542 *
1543 * The client device need to be attached to the mapping with
1544 * arm_iommu_attach_device function.
1545 */
1546struct dma_iommu_mapping *
a3ea9fbc 1547arm_iommu_create_mapping(const struct bus_type *bus, dma_addr_t base, u64 size)
4ce63fcd 1548{
68efd7d2
MS
1549 unsigned int bits = size >> PAGE_SHIFT;
1550 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
4ce63fcd 1551 struct dma_iommu_mapping *mapping;
68efd7d2 1552 int extensions = 1;
4ce63fcd
MS
1553 int err = -ENOMEM;
1554
1424532b
MS
1555 /* currently only 32-bit DMA address space is supported */
1556 if (size > DMA_BIT_MASK(32) + 1)
1557 return ERR_PTR(-ERANGE);
1558
68efd7d2 1559 if (!bitmap_size)
4ce63fcd
MS
1560 return ERR_PTR(-EINVAL);
1561
68efd7d2
MS
1562 if (bitmap_size > PAGE_SIZE) {
1563 extensions = bitmap_size / PAGE_SIZE;
1564 bitmap_size = PAGE_SIZE;
1565 }
1566
4ce63fcd
MS
1567 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1568 if (!mapping)
1569 goto err;
1570
68efd7d2 1571 mapping->bitmap_size = bitmap_size;
6396bb22
KC
1572 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1573 GFP_KERNEL);
4d852ef8 1574 if (!mapping->bitmaps)
4ce63fcd
MS
1575 goto err2;
1576
68efd7d2 1577 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
4d852ef8
AH
1578 if (!mapping->bitmaps[0])
1579 goto err3;
1580
1581 mapping->nr_bitmaps = 1;
1582 mapping->extensions = extensions;
4ce63fcd 1583 mapping->base = base;
68efd7d2 1584 mapping->bits = BITS_PER_BYTE * bitmap_size;
4d852ef8 1585
4ce63fcd
MS
1586 spin_lock_init(&mapping->lock);
1587
1588 mapping->domain = iommu_domain_alloc(bus);
1589 if (!mapping->domain)
4d852ef8 1590 goto err4;
4ce63fcd
MS
1591
1592 kref_init(&mapping->kref);
1593 return mapping;
4d852ef8
AH
1594err4:
1595 kfree(mapping->bitmaps[0]);
4ce63fcd 1596err3:
4d852ef8 1597 kfree(mapping->bitmaps);
4ce63fcd
MS
1598err2:
1599 kfree(mapping);
1600err:
1601 return ERR_PTR(err);
1602}
18177d12 1603EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
1604
1605static void release_iommu_mapping(struct kref *kref)
1606{
4d852ef8 1607 int i;
4ce63fcd
MS
1608 struct dma_iommu_mapping *mapping =
1609 container_of(kref, struct dma_iommu_mapping, kref);
1610
1611 iommu_domain_free(mapping->domain);
4d852ef8
AH
1612 for (i = 0; i < mapping->nr_bitmaps; i++)
1613 kfree(mapping->bitmaps[i]);
1614 kfree(mapping->bitmaps);
4ce63fcd
MS
1615 kfree(mapping);
1616}
1617
4d852ef8
AH
1618static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1619{
1620 int next_bitmap;
1621
462859aa 1622 if (mapping->nr_bitmaps >= mapping->extensions)
4d852ef8
AH
1623 return -EINVAL;
1624
1625 next_bitmap = mapping->nr_bitmaps;
1626 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1627 GFP_ATOMIC);
1628 if (!mapping->bitmaps[next_bitmap])
1629 return -ENOMEM;
1630
1631 mapping->nr_bitmaps++;
1632
1633 return 0;
1634}
1635
4ce63fcd
MS
1636void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1637{
1638 if (mapping)
1639 kref_put(&mapping->kref, release_iommu_mapping);
1640}
18177d12 1641EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd 1642
eab8d653
LP
1643static int __arm_iommu_attach_device(struct device *dev,
1644 struct dma_iommu_mapping *mapping)
1645{
1646 int err;
1647
1648 err = iommu_attach_device(mapping->domain, dev);
1649 if (err)
1650 return err;
1651
1652 kref_get(&mapping->kref);
89cfdb19 1653 to_dma_iommu_mapping(dev) = mapping;
eab8d653
LP
1654
1655 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1656 return 0;
1657}
1658
4ce63fcd
MS
1659/**
1660 * arm_iommu_attach_device
1661 * @dev: valid struct device pointer
1662 * @mapping: io address space mapping structure (returned from
1663 * arm_iommu_create_mapping)
1664 *
eab8d653
LP
1665 * Attaches specified io address space mapping to the provided device.
1666 * This replaces the dma operations (dma_map_ops pointer) with the
1667 * IOMMU aware version.
1668 *
4bb25789
WD
1669 * More than one client might be attached to the same io address space
1670 * mapping.
4ce63fcd
MS
1671 */
1672int arm_iommu_attach_device(struct device *dev,
1673 struct dma_iommu_mapping *mapping)
1674{
1675 int err;
1676
eab8d653 1677 err = __arm_iommu_attach_device(dev, mapping);
4ce63fcd
MS
1678 if (err)
1679 return err;
1680
eab8d653 1681 set_dma_ops(dev, &iommu_ops);
4ce63fcd
MS
1682 return 0;
1683}
18177d12 1684EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 1685
d3e01c51
S
1686/**
1687 * arm_iommu_detach_device
1688 * @dev: valid struct device pointer
1689 *
1690 * Detaches the provided device from a previously attached map.
4a4d68fc 1691 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
d3e01c51
S
1692 */
1693void arm_iommu_detach_device(struct device *dev)
6fe36758
HD
1694{
1695 struct dma_iommu_mapping *mapping;
1696
1697 mapping = to_dma_iommu_mapping(dev);
1698 if (!mapping) {
1699 dev_warn(dev, "Not attached\n");
1700 return;
1701 }
1702
1703 iommu_detach_device(mapping->domain, dev);
1704 kref_put(&mapping->kref, release_iommu_mapping);
89cfdb19 1705 to_dma_iommu_mapping(dev) = NULL;
ae626eb9 1706 set_dma_ops(dev, NULL);
6fe36758
HD
1707
1708 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1709}
18177d12 1710EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 1711
f091e933 1712static void arm_setup_iommu_dma_ops(struct device *dev)
4bb25789
WD
1713{
1714 struct dma_iommu_mapping *mapping;
f091e933 1715 u64 dma_base = 0, size = 1ULL << 32;
4bb25789 1716
f091e933
RM
1717 if (dev->dma_range_map) {
1718 dma_base = dma_range_map_min(dev->dma_range_map);
1719 size = dma_range_map_max(dev->dma_range_map) - dma_base;
1720 }
4bb25789
WD
1721 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
1722 if (IS_ERR(mapping)) {
1723 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1724 size, dev_name(dev));
ae626eb9 1725 return;
4bb25789
WD
1726 }
1727
eab8d653 1728 if (__arm_iommu_attach_device(dev, mapping)) {
4bb25789
WD
1729 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1730 dev_name(dev));
1731 arm_iommu_release_mapping(mapping);
ae626eb9 1732 return;
4bb25789
WD
1733 }
1734
4136ce90 1735 set_dma_ops(dev, &iommu_ops);
4bb25789
WD
1736}
1737
1738static void arm_teardown_iommu_dma_ops(struct device *dev)
1739{
89cfdb19 1740 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4bb25789 1741
c2273a18
WD
1742 if (!mapping)
1743 return;
1744
d3e01c51 1745 arm_iommu_detach_device(dev);
4bb25789
WD
1746 arm_iommu_release_mapping(mapping);
1747}
1748
1749#else
1750
f091e933 1751static void arm_setup_iommu_dma_ops(struct device *dev)
4bb25789 1752{
4bb25789
WD
1753}
1754
1755static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1756
4bb25789
WD
1757#endif /* CONFIG_ARM_DMA_USE_IOMMU */
1758
f091e933 1759void arch_setup_dma_ops(struct device *dev, bool coherent)
4bb25789 1760{
49bc8beb
CH
1761 /*
1762 * Due to legacy code that sets the ->dma_coherent flag from a bus
1763 * notifier we can't just assign coherent to the ->dma_coherent flag
1764 * here, but instead have to make sure we only set but never clear it
1765 * for now.
1766 */
c9cb0136 1767 if (coherent)
49bc8beb 1768 dev->dma_coherent = true;
26b37b94
LP
1769
1770 /*
1771 * Don't override the dma_ops if they have already been set. Ideally
1772 * this should be the only location where dma_ops are set, remove this
1773 * check when all other callers of set_dma_ops will have disappeared.
1774 */
1775 if (dev->dma_ops)
1776 return;
1777
4720287c 1778 if (device_iommu_mapped(dev))
f091e933 1779 arm_setup_iommu_dma_ops(dev);
e0586326 1780
9bf22421 1781 xen_setup_dma_ops(dev);
a93a121a 1782 dev->archdata.dma_ops_setup = true;
4bb25789
WD
1783}
1784
1785void arch_teardown_dma_ops(struct device *dev)
1786{
a93a121a
LP
1787 if (!dev->archdata.dma_ops_setup)
1788 return;
1789
4bb25789 1790 arm_teardown_iommu_dma_ops(dev);
fc67e6f1
RM
1791 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1792 set_dma_ops(dev, NULL);
4bb25789 1793}
ad3c7b18 1794
56e35f9c
CH
1795void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1796 enum dma_data_direction dir)
ad3c7b18
CH
1797{
1798 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1799 size, dir);
1800}
1801
56e35f9c
CH
1802void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1803 enum dma_data_direction dir)
ad3c7b18
CH
1804{
1805 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1806 size, dir);
1807}
1808
ad3c7b18
CH
1809void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1810 gfp_t gfp, unsigned long attrs)
1811{
1812 return __dma_alloc(dev, size, dma_handle, gfp,
1813 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1814 attrs, __builtin_return_address(0));
1815}
1816
1817void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1818 dma_addr_t dma_handle, unsigned long attrs)
1819{
1820 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1821}