ARM: dma-mapping: use himem for DMA buffers for IOMMU-mapped devices
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
5a0e3ad6 14#include <linux/gfp.h>
1da177e4
LT
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
c7909509 20#include <linux/dma-contiguous.h>
39af22a7 21#include <linux/highmem.h>
c7909509 22#include <linux/memblock.h>
99d1717d 23#include <linux/slab.h>
4ce63fcd 24#include <linux/iommu.h>
e9da6e99 25#include <linux/io.h>
4ce63fcd 26#include <linux/vmalloc.h>
158e8bfe 27#include <linux/sizes.h>
1da177e4 28
23759dc6 29#include <asm/memory.h>
43377453 30#include <asm/highmem.h>
1da177e4 31#include <asm/cacheflush.h>
1da177e4 32#include <asm/tlbflush.h>
99d1717d 33#include <asm/mach/arch.h>
4ce63fcd 34#include <asm/dma-iommu.h>
c7909509
MS
35#include <asm/mach/map.h>
36#include <asm/system_info.h>
37#include <asm/dma-contiguous.h>
37134cd5 38
022ae537
RK
39#include "mm.h"
40
15237e1f
MS
41/*
42 * The DMA API is built upon the notion of "buffer ownership". A buffer
43 * is either exclusively owned by the CPU (and therefore may be accessed
44 * by it) or exclusively owned by the DMA device. These helper functions
45 * represent the transitions between these two ownership states.
46 *
47 * Note, however, that on later ARMs, this notion does not work due to
48 * speculative prefetches. We model our approach on the assumption that
49 * the CPU does do speculative prefetches, which means we clean caches
50 * before transfers and delay cache invalidation until transfer completion.
51 *
15237e1f 52 */
51fde349 53static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 54 size_t, enum dma_data_direction);
51fde349 55static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
56 size_t, enum dma_data_direction);
57
2dc6a016
MS
58/**
59 * arm_dma_map_page - map a portion of a page for streaming DMA
60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61 * @page: page that buffer resides in
62 * @offset: offset into page for start of buffer
63 * @size: size of buffer to map
64 * @dir: DMA transfer direction
65 *
66 * Ensure that any data held in the cache is appropriately discarded
67 * or written back.
68 *
69 * The device owns this memory once this call has completed. The CPU
70 * can regain ownership by calling dma_unmap_page().
71 */
51fde349 72static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
73 unsigned long offset, size_t size, enum dma_data_direction dir,
74 struct dma_attrs *attrs)
75{
dd37e940 76 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
77 __dma_page_cpu_to_dev(page, offset, size, dir);
78 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
79}
80
dd37e940
RH
81static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82 unsigned long offset, size_t size, enum dma_data_direction dir,
83 struct dma_attrs *attrs)
84{
85 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
86}
87
2dc6a016
MS
88/**
89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91 * @handle: DMA address of buffer
92 * @size: size of buffer (same as passed to dma_map_page)
93 * @dir: DMA transfer direction (same as passed to dma_map_page)
94 *
95 * Unmap a page streaming mode DMA translation. The handle and size
96 * must match what was provided in the previous dma_map_page() call.
97 * All other usages are undefined.
98 *
99 * After this call, reads by the CPU to the buffer are guaranteed to see
100 * whatever the device wrote there.
101 */
51fde349 102static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
103 size_t size, enum dma_data_direction dir,
104 struct dma_attrs *attrs)
105{
dd37e940 106 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
107 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
109}
110
51fde349 111static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
112 dma_addr_t handle, size_t size, enum dma_data_direction dir)
113{
114 unsigned int offset = handle & (PAGE_SIZE - 1);
115 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 116 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
117}
118
51fde349 119static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
120 dma_addr_t handle, size_t size, enum dma_data_direction dir)
121{
122 unsigned int offset = handle & (PAGE_SIZE - 1);
123 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 124 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
125}
126
2dc6a016 127struct dma_map_ops arm_dma_ops = {
f99d6034
MS
128 .alloc = arm_dma_alloc,
129 .free = arm_dma_free,
130 .mmap = arm_dma_mmap,
dc2832e1 131 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
132 .map_page = arm_dma_map_page,
133 .unmap_page = arm_dma_unmap_page,
134 .map_sg = arm_dma_map_sg,
135 .unmap_sg = arm_dma_unmap_sg,
136 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
137 .sync_single_for_device = arm_dma_sync_single_for_device,
138 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
139 .sync_sg_for_device = arm_dma_sync_sg_for_device,
140 .set_dma_mask = arm_dma_set_mask,
141};
142EXPORT_SYMBOL(arm_dma_ops);
143
dd37e940
RH
144static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
145 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
146static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
147 dma_addr_t handle, struct dma_attrs *attrs);
148
149struct dma_map_ops arm_coherent_dma_ops = {
150 .alloc = arm_coherent_dma_alloc,
151 .free = arm_coherent_dma_free,
152 .mmap = arm_dma_mmap,
153 .get_sgtable = arm_dma_get_sgtable,
154 .map_page = arm_coherent_dma_map_page,
155 .map_sg = arm_dma_map_sg,
156 .set_dma_mask = arm_dma_set_mask,
157};
158EXPORT_SYMBOL(arm_coherent_dma_ops);
159
ab6494f0
CM
160static u64 get_coherent_dma_mask(struct device *dev)
161{
022ae537 162 u64 mask = (u64)arm_dma_limit;
ab6494f0
CM
163
164 if (dev) {
165 mask = dev->coherent_dma_mask;
166
167 /*
168 * Sanity check the DMA mask - it must be non-zero, and
169 * must be able to be satisfied by a DMA allocation.
170 */
171 if (mask == 0) {
172 dev_warn(dev, "coherent DMA mask is unset\n");
173 return 0;
174 }
175
022ae537 176 if ((~mask) & (u64)arm_dma_limit) {
ab6494f0
CM
177 dev_warn(dev, "coherent DMA mask %#llx is smaller "
178 "than system GFP_DMA mask %#llx\n",
022ae537 179 mask, (u64)arm_dma_limit);
ab6494f0
CM
180 return 0;
181 }
182 }
1da177e4 183
ab6494f0
CM
184 return mask;
185}
186
c7909509
MS
187static void __dma_clear_buffer(struct page *page, size_t size)
188{
c7909509
MS
189 /*
190 * Ensure that the allocated pages are zeroed, and that any data
191 * lurking in the kernel direct-mapped region is invalidated.
192 */
9848e48f
MS
193 if (PageHighMem(page)) {
194 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
195 phys_addr_t end = base + size;
196 while (size > 0) {
197 void *ptr = kmap_atomic(page);
198 memset(ptr, 0, PAGE_SIZE);
199 dmac_flush_range(ptr, ptr + PAGE_SIZE);
200 kunmap_atomic(ptr);
201 page++;
202 size -= PAGE_SIZE;
203 }
204 outer_flush_range(base, end);
205 } else {
206 void *ptr = page_address(page);
4ce63fcd
MS
207 memset(ptr, 0, size);
208 dmac_flush_range(ptr, ptr + size);
209 outer_flush_range(__pa(ptr), __pa(ptr) + size);
210 }
c7909509
MS
211}
212
7a9a32a9
RK
213/*
214 * Allocate a DMA buffer for 'dev' of size 'size' using the
215 * specified gfp mask. Note that 'size' must be page aligned.
216 */
217static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
218{
219 unsigned long order = get_order(size);
220 struct page *page, *p, *e;
7a9a32a9
RK
221
222 page = alloc_pages(gfp, order);
223 if (!page)
224 return NULL;
225
226 /*
227 * Now split the huge page and free the excess pages
228 */
229 split_page(page, order);
230 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
231 __free_page(p);
232
c7909509 233 __dma_clear_buffer(page, size);
7a9a32a9
RK
234
235 return page;
236}
237
238/*
239 * Free a DMA buffer. 'size' must be page aligned.
240 */
241static void __dma_free_buffer(struct page *page, size_t size)
242{
243 struct page *e = page + (size >> PAGE_SHIFT);
244
245 while (page < e) {
246 __free_page(page);
247 page++;
248 }
249}
250
ab6494f0 251#ifdef CONFIG_MMU
e9da6e99
MS
252#ifdef CONFIG_HUGETLB_PAGE
253#error ARM Coherent DMA allocator does not (yet) support huge TLB
254#endif
a5e9d38b 255
e9da6e99 256static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f
MS
257 pgprot_t prot, struct page **ret_page,
258 const void *caller);
99d1717d 259
e9da6e99
MS
260static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
261 pgprot_t prot, struct page **ret_page,
262 const void *caller);
99d1717d 263
e9da6e99
MS
264static void *
265__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
266 const void *caller)
99d1717d 267{
e9da6e99
MS
268 struct vm_struct *area;
269 unsigned long addr;
99d1717d 270
e9da6e99
MS
271 /*
272 * DMA allocation can be mapped to user space, so lets
273 * set VM_USERMAP flags too.
274 */
275 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
276 caller);
277 if (!area)
278 return NULL;
279 addr = (unsigned long)area->addr;
280 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
99d1717d 281
e9da6e99
MS
282 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
283 vunmap((void *)addr);
284 return NULL;
285 }
286 return (void *)addr;
99d1717d 287}
1da177e4 288
e9da6e99 289static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 290{
e9da6e99
MS
291 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
292 struct vm_struct *area = find_vm_area(cpu_addr);
293 if (!area || (area->flags & flags) != flags) {
294 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
295 return;
99d1717d 296 }
e9da6e99
MS
297 unmap_kernel_range((unsigned long)cpu_addr, size);
298 vunmap(cpu_addr);
88c58f3b 299}
88c58f3b 300
6e5267aa
MS
301#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
302
e9da6e99
MS
303struct dma_pool {
304 size_t size;
305 spinlock_t lock;
306 unsigned long *bitmap;
307 unsigned long nr_pages;
308 void *vaddr;
6b3fe472 309 struct page **pages;
c7909509
MS
310};
311
e9da6e99 312static struct dma_pool atomic_pool = {
6e5267aa 313 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
e9da6e99 314};
c7909509
MS
315
316static int __init early_coherent_pool(char *p)
317{
e9da6e99 318 atomic_pool.size = memparse(p, &p);
c7909509
MS
319 return 0;
320}
321early_param("coherent_pool", early_coherent_pool);
322
6e5267aa
MS
323void __init init_dma_coherent_pool_size(unsigned long size)
324{
325 /*
326 * Catch any attempt to set the pool size too late.
327 */
328 BUG_ON(atomic_pool.vaddr);
329
330 /*
331 * Set architecture specific coherent pool size only if
332 * it has not been changed by kernel command line parameter.
333 */
334 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
335 atomic_pool.size = size;
336}
337
c7909509
MS
338/*
339 * Initialise the coherent pool for atomic allocations.
340 */
e9da6e99 341static int __init atomic_pool_init(void)
c7909509 342{
e9da6e99 343 struct dma_pool *pool = &atomic_pool;
c7909509 344 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
e9da6e99
MS
345 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
346 unsigned long *bitmap;
c7909509 347 struct page *page;
6b3fe472 348 struct page **pages;
c7909509 349 void *ptr;
e9da6e99 350 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
c7909509 351
e9da6e99
MS
352 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
353 if (!bitmap)
354 goto no_bitmap;
c7909509 355
6b3fe472
HD
356 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
357 if (!pages)
358 goto no_pages;
359
e9da6e99 360 if (IS_ENABLED(CONFIG_CMA))
9848e48f
MS
361 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
362 atomic_pool_init);
e9da6e99
MS
363 else
364 ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
9848e48f 365 &page, atomic_pool_init);
c7909509 366 if (ptr) {
6b3fe472
HD
367 int i;
368
369 for (i = 0; i < nr_pages; i++)
370 pages[i] = page + i;
371
e9da6e99
MS
372 spin_lock_init(&pool->lock);
373 pool->vaddr = ptr;
6b3fe472 374 pool->pages = pages;
e9da6e99
MS
375 pool->bitmap = bitmap;
376 pool->nr_pages = nr_pages;
377 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
378 (unsigned)pool->size / 1024);
c7909509
MS
379 return 0;
380 }
ec10665c
SK
381
382 kfree(pages);
6b3fe472 383no_pages:
e9da6e99
MS
384 kfree(bitmap);
385no_bitmap:
386 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
387 (unsigned)pool->size / 1024);
c7909509
MS
388 return -ENOMEM;
389}
390/*
391 * CMA is activated by core_initcall, so we must be called after it.
392 */
e9da6e99 393postcore_initcall(atomic_pool_init);
c7909509
MS
394
395struct dma_contig_early_reserve {
396 phys_addr_t base;
397 unsigned long size;
398};
399
400static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
401
402static int dma_mmu_remap_num __initdata;
403
404void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
405{
406 dma_mmu_remap[dma_mmu_remap_num].base = base;
407 dma_mmu_remap[dma_mmu_remap_num].size = size;
408 dma_mmu_remap_num++;
409}
410
411void __init dma_contiguous_remap(void)
412{
413 int i;
414 for (i = 0; i < dma_mmu_remap_num; i++) {
415 phys_addr_t start = dma_mmu_remap[i].base;
416 phys_addr_t end = start + dma_mmu_remap[i].size;
417 struct map_desc map;
418 unsigned long addr;
419
420 if (end > arm_lowmem_limit)
421 end = arm_lowmem_limit;
422 if (start >= end)
39f78e70 423 continue;
c7909509
MS
424
425 map.pfn = __phys_to_pfn(start);
426 map.virtual = __phys_to_virt(start);
427 map.length = end - start;
428 map.type = MT_MEMORY_DMA_READY;
429
430 /*
431 * Clear previous low-memory mapping
432 */
433 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 434 addr += PMD_SIZE)
c7909509
MS
435 pmd_clear(pmd_off_k(addr));
436
437 iotable_init(&map, 1);
438 }
439}
440
c7909509
MS
441static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
442 void *data)
443{
444 struct page *page = virt_to_page(addr);
445 pgprot_t prot = *(pgprot_t *)data;
446
447 set_pte_ext(pte, mk_pte(page, prot), 0);
448 return 0;
449}
450
451static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
452{
453 unsigned long start = (unsigned long) page_address(page);
454 unsigned end = start + size;
455
456 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
457 dsb();
458 flush_tlb_kernel_range(start, end);
459}
460
461static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
462 pgprot_t prot, struct page **ret_page,
463 const void *caller)
464{
465 struct page *page;
466 void *ptr;
467 page = __dma_alloc_buffer(dev, size, gfp);
468 if (!page)
469 return NULL;
470
471 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
472 if (!ptr) {
473 __dma_free_buffer(page, size);
474 return NULL;
475 }
476
477 *ret_page = page;
478 return ptr;
479}
480
e9da6e99 481static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 482{
e9da6e99
MS
483 struct dma_pool *pool = &atomic_pool;
484 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
485 unsigned int pageno;
486 unsigned long flags;
487 void *ptr = NULL;
e4ea6918 488 unsigned long align_mask;
c7909509 489
e9da6e99
MS
490 if (!pool->vaddr) {
491 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
492 return NULL;
493 }
494
495 /*
496 * Align the region allocation - allocations from pool are rather
497 * small, so align them to their order in pages, minimum is a page
498 * size. This helps reduce fragmentation of the DMA space.
499 */
e4ea6918 500 align_mask = (1 << get_order(size)) - 1;
e9da6e99
MS
501
502 spin_lock_irqsave(&pool->lock, flags);
503 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
e4ea6918 504 0, count, align_mask);
e9da6e99
MS
505 if (pageno < pool->nr_pages) {
506 bitmap_set(pool->bitmap, pageno, count);
507 ptr = pool->vaddr + PAGE_SIZE * pageno;
6b3fe472 508 *ret_page = pool->pages[pageno];
fb71285f
MS
509 } else {
510 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
511 "Please increase it with coherent_pool= kernel parameter!\n",
512 (unsigned)pool->size / 1024);
c7909509 513 }
e9da6e99
MS
514 spin_unlock_irqrestore(&pool->lock, flags);
515
516 return ptr;
c7909509
MS
517}
518
21d0a759
HD
519static bool __in_atomic_pool(void *start, size_t size)
520{
521 struct dma_pool *pool = &atomic_pool;
522 void *end = start + size;
523 void *pool_start = pool->vaddr;
524 void *pool_end = pool->vaddr + pool->size;
525
f3d87524 526 if (start < pool_start || start >= pool_end)
21d0a759
HD
527 return false;
528
529 if (end <= pool_end)
530 return true;
531
532 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
533 start, end - 1, pool_start, pool_end - 1);
534
535 return false;
536}
537
e9da6e99 538static int __free_from_pool(void *start, size_t size)
c7909509 539{
e9da6e99
MS
540 struct dma_pool *pool = &atomic_pool;
541 unsigned long pageno, count;
542 unsigned long flags;
c7909509 543
21d0a759 544 if (!__in_atomic_pool(start, size))
c7909509
MS
545 return 0;
546
e9da6e99
MS
547 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
548 count = size >> PAGE_SHIFT;
549
550 spin_lock_irqsave(&pool->lock, flags);
551 bitmap_clear(pool->bitmap, pageno, count);
552 spin_unlock_irqrestore(&pool->lock, flags);
553
c7909509
MS
554 return 1;
555}
556
557static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f
MS
558 pgprot_t prot, struct page **ret_page,
559 const void *caller)
c7909509
MS
560{
561 unsigned long order = get_order(size);
562 size_t count = size >> PAGE_SHIFT;
563 struct page *page;
9848e48f 564 void *ptr;
c7909509
MS
565
566 page = dma_alloc_from_contiguous(dev, count, order);
567 if (!page)
568 return NULL;
569
570 __dma_clear_buffer(page, size);
c7909509 571
9848e48f
MS
572 if (PageHighMem(page)) {
573 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
574 if (!ptr) {
575 dma_release_from_contiguous(dev, page, count);
576 return NULL;
577 }
578 } else {
579 __dma_remap(page, size, prot);
580 ptr = page_address(page);
581 }
c7909509 582 *ret_page = page;
9848e48f 583 return ptr;
c7909509
MS
584}
585
586static void __free_from_contiguous(struct device *dev, struct page *page,
9848e48f 587 void *cpu_addr, size_t size)
c7909509 588{
9848e48f
MS
589 if (PageHighMem(page))
590 __dma_free_remap(cpu_addr, size);
591 else
592 __dma_remap(page, size, pgprot_kernel);
c7909509
MS
593 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
594}
595
f99d6034
MS
596static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
597{
598 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
599 pgprot_writecombine(prot) :
600 pgprot_dmacoherent(prot);
601 return prot;
602}
603
c7909509
MS
604#define nommu() 0
605
ab6494f0 606#else /* !CONFIG_MMU */
695ae0af 607
c7909509
MS
608#define nommu() 1
609
f99d6034 610#define __get_dma_pgprot(attrs, prot) __pgprot(0)
c7909509 611#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
e9da6e99 612#define __alloc_from_pool(size, ret_page) NULL
9848e48f 613#define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
c7909509 614#define __free_from_pool(cpu_addr, size) 0
9848e48f 615#define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
c7909509 616#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
617
618#endif /* CONFIG_MMU */
619
c7909509
MS
620static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
621 struct page **ret_page)
ab6494f0 622{
c7909509
MS
623 struct page *page;
624 page = __dma_alloc_buffer(dev, size, gfp);
625 if (!page)
626 return NULL;
627
628 *ret_page = page;
629 return page_address(page);
630}
631
632
633
634static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
dd37e940 635 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
c7909509
MS
636{
637 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 638 struct page *page = NULL;
31ebf944 639 void *addr;
ab6494f0 640
c7909509
MS
641#ifdef CONFIG_DMA_API_DEBUG
642 u64 limit = (mask + 1) & ~mask;
643 if (limit && size >= limit) {
644 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
645 size, mask);
646 return NULL;
647 }
648#endif
649
650 if (!mask)
651 return NULL;
652
653 if (mask < 0xffffffffULL)
654 gfp |= GFP_DMA;
655
ea2e7057
SB
656 /*
657 * Following is a work-around (a.k.a. hack) to prevent pages
658 * with __GFP_COMP being passed to split_page() which cannot
659 * handle them. The real problem is that this flag probably
660 * should be 0 on ARM as it is not supported on this
661 * platform; see CONFIG_HUGETLBFS.
662 */
663 gfp &= ~(__GFP_COMP);
664
553ac788 665 *handle = DMA_ERROR_CODE;
04da5694 666 size = PAGE_ALIGN(size);
ab6494f0 667
dd37e940 668 if (is_coherent || nommu())
c7909509 669 addr = __alloc_simple_buffer(dev, size, gfp, &page);
633dc92a 670 else if (!(gfp & __GFP_WAIT))
e9da6e99 671 addr = __alloc_from_pool(size, &page);
f1ae98da 672 else if (!IS_ENABLED(CONFIG_CMA))
c7909509 673 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
31ebf944 674 else
9848e48f 675 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
695ae0af 676
31ebf944 677 if (addr)
9eedd963 678 *handle = pfn_to_dma(dev, page_to_pfn(page));
695ae0af 679
31ebf944
RK
680 return addr;
681}
1da177e4
LT
682
683/*
684 * Allocate DMA-coherent memory space and return both the kernel remapped
685 * virtual and bus address for that space.
686 */
f99d6034
MS
687void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
688 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 689{
f99d6034 690 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1fe53268
DB
691 void *memory;
692
693 if (dma_alloc_from_coherent(dev, size, handle, &memory))
694 return memory;
695
dd37e940
RH
696 return __dma_alloc(dev, size, handle, gfp, prot, false,
697 __builtin_return_address(0));
698}
699
700static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
701 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
702{
703 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
704 void *memory;
705
706 if (dma_alloc_from_coherent(dev, size, handle, &memory))
707 return memory;
708
709 return __dma_alloc(dev, size, handle, gfp, prot, true,
45cd5290 710 __builtin_return_address(0));
1da177e4 711}
1da177e4
LT
712
713/*
f99d6034 714 * Create userspace mapping for the DMA-coherent memory.
1da177e4 715 */
f99d6034
MS
716int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
717 void *cpu_addr, dma_addr_t dma_addr, size_t size,
718 struct dma_attrs *attrs)
1da177e4 719{
ab6494f0
CM
720 int ret = -ENXIO;
721#ifdef CONFIG_MMU
50262a4b
MS
722 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
723 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 724 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
725 unsigned long off = vma->vm_pgoff;
726
f99d6034
MS
727 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
728
47142f07
MS
729 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
730 return ret;
731
50262a4b
MS
732 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
733 ret = remap_pfn_range(vma, vma->vm_start,
734 pfn + off,
735 vma->vm_end - vma->vm_start,
736 vma->vm_page_prot);
737 }
ab6494f0 738#endif /* CONFIG_MMU */
1da177e4
LT
739
740 return ret;
741}
742
1da177e4 743/*
c7909509 744 * Free a buffer as defined by the above mapping.
1da177e4 745 */
dd37e940
RH
746static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
747 dma_addr_t handle, struct dma_attrs *attrs,
748 bool is_coherent)
1da177e4 749{
c7909509 750 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
5edf71ae 751
1fe53268
DB
752 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
753 return;
754
3e82d012
RK
755 size = PAGE_ALIGN(size);
756
dd37e940 757 if (is_coherent || nommu()) {
c7909509 758 __dma_free_buffer(page, size);
d9e0d149
AK
759 } else if (__free_from_pool(cpu_addr, size)) {
760 return;
f1ae98da 761 } else if (!IS_ENABLED(CONFIG_CMA)) {
695ae0af 762 __dma_free_remap(cpu_addr, size);
c7909509
MS
763 __dma_free_buffer(page, size);
764 } else {
c7909509
MS
765 /*
766 * Non-atomic allocations cannot be freed with IRQs disabled
767 */
768 WARN_ON(irqs_disabled());
9848e48f 769 __free_from_contiguous(dev, page, cpu_addr, size);
c7909509 770 }
1da177e4 771}
afd1a321 772
dd37e940
RH
773void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
774 dma_addr_t handle, struct dma_attrs *attrs)
775{
776 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
777}
778
779static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
780 dma_addr_t handle, struct dma_attrs *attrs)
781{
782 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
783}
784
dc2832e1
MS
785int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
786 void *cpu_addr, dma_addr_t handle, size_t size,
787 struct dma_attrs *attrs)
788{
789 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
790 int ret;
791
792 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
793 if (unlikely(ret))
794 return ret;
795
796 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
797 return 0;
798}
799
4ea0d737 800static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
801 size_t size, enum dma_data_direction dir,
802 void (*op)(const void *, size_t, int))
43377453 803{
15653371
RK
804 unsigned long pfn;
805 size_t left = size;
806
807 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
808 offset %= PAGE_SIZE;
809
43377453
NP
810 /*
811 * A single sg entry may refer to multiple physically contiguous
812 * pages. But we still need to process highmem pages individually.
813 * If highmem is not configured then the bulk of this loop gets
814 * optimized out.
815 */
43377453
NP
816 do {
817 size_t len = left;
93f1d629
RK
818 void *vaddr;
819
15653371
RK
820 page = pfn_to_page(pfn);
821
93f1d629 822 if (PageHighMem(page)) {
15653371 823 if (len + offset > PAGE_SIZE)
93f1d629 824 len = PAGE_SIZE - offset;
93f1d629
RK
825 vaddr = kmap_high_get(page);
826 if (vaddr) {
827 vaddr += offset;
a9c9147e 828 op(vaddr, len, dir);
93f1d629 829 kunmap_high(page);
7e5a69e8 830 } else if (cache_is_vipt()) {
39af22a7
NP
831 /* unmapped pages might still be cached */
832 vaddr = kmap_atomic(page);
7e5a69e8 833 op(vaddr + offset, len, dir);
39af22a7 834 kunmap_atomic(vaddr);
43377453 835 }
93f1d629
RK
836 } else {
837 vaddr = page_address(page) + offset;
a9c9147e 838 op(vaddr, len, dir);
43377453 839 }
43377453 840 offset = 0;
15653371 841 pfn++;
43377453
NP
842 left -= len;
843 } while (left);
844}
4ea0d737 845
51fde349
MS
846/*
847 * Make an area consistent for devices.
848 * Note: Drivers should NOT use this function directly, as it will break
849 * platforms with CONFIG_DMABOUNCE.
850 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
851 */
852static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
853 size_t size, enum dma_data_direction dir)
854{
65af191a 855 unsigned long paddr;
65af191a 856
a9c9147e 857 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
858
859 paddr = page_to_phys(page) + off;
2ffe2da3
RK
860 if (dir == DMA_FROM_DEVICE) {
861 outer_inv_range(paddr, paddr + size);
862 } else {
863 outer_clean_range(paddr, paddr + size);
864 }
865 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 866}
4ea0d737 867
51fde349 868static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
869 size_t size, enum dma_data_direction dir)
870{
2ffe2da3
RK
871 unsigned long paddr = page_to_phys(page) + off;
872
873 /* FIXME: non-speculating: not required */
874 /* don't bother invalidating if DMA to device */
875 if (dir != DMA_TO_DEVICE)
876 outer_inv_range(paddr, paddr + size);
877
a9c9147e 878 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
c0177800
CM
879
880 /*
881 * Mark the D-cache clean for this page to avoid extra flushing.
882 */
883 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
884 set_bit(PG_dcache_clean, &page->flags);
4ea0d737 885}
43377453 886
afd1a321 887/**
2a550e73 888 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
889 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
890 * @sg: list of buffers
891 * @nents: number of buffers to map
892 * @dir: DMA transfer direction
893 *
894 * Map a set of buffers described by scatterlist in streaming mode for DMA.
895 * This is the scatter-gather version of the dma_map_single interface.
896 * Here the scatter gather list elements are each tagged with the
897 * appropriate dma address and length. They are obtained via
898 * sg_dma_{address,length}.
899 *
900 * Device ownership issues as mentioned for dma_map_single are the same
901 * here.
902 */
2dc6a016
MS
903int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
904 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 905{
2a550e73 906 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 907 struct scatterlist *s;
01135d92 908 int i, j;
afd1a321
RK
909
910 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
911#ifdef CONFIG_NEED_SG_DMA_LENGTH
912 s->dma_length = s->length;
913#endif
2a550e73
MS
914 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
915 s->length, dir, attrs);
01135d92
RK
916 if (dma_mapping_error(dev, s->dma_address))
917 goto bad_mapping;
afd1a321 918 }
afd1a321 919 return nents;
01135d92
RK
920
921 bad_mapping:
922 for_each_sg(sg, s, i, j)
2a550e73 923 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 924 return 0;
afd1a321 925}
afd1a321
RK
926
927/**
2a550e73 928 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
929 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
930 * @sg: list of buffers
0adfca6f 931 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
932 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
933 *
934 * Unmap a set of streaming mode DMA translations. Again, CPU access
935 * rules concerning calls here are the same as for dma_unmap_single().
936 */
2dc6a016
MS
937void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
938 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 939{
2a550e73 940 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 941 struct scatterlist *s;
01135d92 942
01135d92 943 int i;
24056f52 944
01135d92 945 for_each_sg(sg, s, nents, i)
2a550e73 946 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 947}
afd1a321
RK
948
949/**
2a550e73 950 * arm_dma_sync_sg_for_cpu
afd1a321
RK
951 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
952 * @sg: list of buffers
953 * @nents: number of buffers to map (returned from dma_map_sg)
954 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
955 */
2dc6a016 956void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
957 int nents, enum dma_data_direction dir)
958{
2a550e73 959 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
960 struct scatterlist *s;
961 int i;
962
2a550e73
MS
963 for_each_sg(sg, s, nents, i)
964 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
965 dir);
afd1a321 966}
afd1a321
RK
967
968/**
2a550e73 969 * arm_dma_sync_sg_for_device
afd1a321
RK
970 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
971 * @sg: list of buffers
972 * @nents: number of buffers to map (returned from dma_map_sg)
973 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
974 */
2dc6a016 975void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
976 int nents, enum dma_data_direction dir)
977{
2a550e73 978 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
979 struct scatterlist *s;
980 int i;
981
2a550e73
MS
982 for_each_sg(sg, s, nents, i)
983 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
984 dir);
afd1a321 985}
24056f52 986
022ae537
RK
987/*
988 * Return whether the given device DMA address mask can be supported
989 * properly. For example, if your device can only drive the low 24-bits
990 * during bus mastering, then you would pass 0x00ffffff as the mask
991 * to this function.
992 */
993int dma_supported(struct device *dev, u64 mask)
994{
995 if (mask < (u64)arm_dma_limit)
996 return 0;
997 return 1;
998}
999EXPORT_SYMBOL(dma_supported);
1000
87b54e78 1001int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
1002{
1003 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1004 return -EIO;
1005
022ae537 1006 *dev->dma_mask = dma_mask;
022ae537
RK
1007
1008 return 0;
1009}
022ae537 1010
24056f52
RK
1011#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1012
1013static int __init dma_debug_do_init(void)
1014{
1015 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1016 return 0;
1017}
1018fs_initcall(dma_debug_do_init);
4ce63fcd
MS
1019
1020#ifdef CONFIG_ARM_DMA_USE_IOMMU
1021
1022/* IOMMU */
1023
1024static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1025 size_t size)
1026{
1027 unsigned int order = get_order(size);
1028 unsigned int align = 0;
1029 unsigned int count, start;
1030 unsigned long flags;
1031
1032 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1033 (1 << mapping->order) - 1) >> mapping->order;
1034
1035 if (order > mapping->order)
1036 align = (1 << (order - mapping->order)) - 1;
1037
1038 spin_lock_irqsave(&mapping->lock, flags);
1039 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1040 count, align);
1041 if (start > mapping->bits) {
1042 spin_unlock_irqrestore(&mapping->lock, flags);
1043 return DMA_ERROR_CODE;
1044 }
1045
1046 bitmap_set(mapping->bitmap, start, count);
1047 spin_unlock_irqrestore(&mapping->lock, flags);
1048
1049 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1050}
1051
1052static inline void __free_iova(struct dma_iommu_mapping *mapping,
1053 dma_addr_t addr, size_t size)
1054{
1055 unsigned int start = (addr - mapping->base) >>
1056 (mapping->order + PAGE_SHIFT);
1057 unsigned int count = ((size >> PAGE_SHIFT) +
1058 (1 << mapping->order) - 1) >> mapping->order;
1059 unsigned long flags;
1060
1061 spin_lock_irqsave(&mapping->lock, flags);
1062 bitmap_clear(mapping->bitmap, start, count);
1063 spin_unlock_irqrestore(&mapping->lock, flags);
1064}
1065
549a17e4
MS
1066static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1067 gfp_t gfp, struct dma_attrs *attrs)
4ce63fcd
MS
1068{
1069 struct page **pages;
1070 int count = size >> PAGE_SHIFT;
1071 int array_size = count * sizeof(struct page *);
1072 int i = 0;
1073
1074 if (array_size <= PAGE_SIZE)
1075 pages = kzalloc(array_size, gfp);
1076 else
1077 pages = vzalloc(array_size);
1078 if (!pages)
1079 return NULL;
1080
549a17e4
MS
1081 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1082 {
1083 unsigned long order = get_order(size);
1084 struct page *page;
1085
1086 page = dma_alloc_from_contiguous(dev, count, order);
1087 if (!page)
1088 goto error;
1089
1090 __dma_clear_buffer(page, size);
1091
1092 for (i = 0; i < count; i++)
1093 pages[i] = page + i;
1094
1095 return pages;
1096 }
1097
f8669bef
MS
1098 /*
1099 * IOMMU can map any pages, so himem can also be used here
1100 */
1101 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1102
4ce63fcd 1103 while (count) {
593f4735 1104 int j, order = __fls(count);
4ce63fcd 1105
f8669bef 1106 pages[i] = alloc_pages(gfp, order);
4ce63fcd 1107 while (!pages[i] && order)
f8669bef 1108 pages[i] = alloc_pages(gfp, --order);
4ce63fcd
MS
1109 if (!pages[i])
1110 goto error;
1111
5a796eeb 1112 if (order) {
4ce63fcd 1113 split_page(pages[i], order);
5a796eeb
HD
1114 j = 1 << order;
1115 while (--j)
1116 pages[i + j] = pages[i] + j;
1117 }
4ce63fcd
MS
1118
1119 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1120 i += 1 << order;
1121 count -= 1 << order;
1122 }
1123
1124 return pages;
1125error:
9fa8af91 1126 while (i--)
4ce63fcd
MS
1127 if (pages[i])
1128 __free_pages(pages[i], 0);
46c87852 1129 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1130 kfree(pages);
1131 else
1132 vfree(pages);
1133 return NULL;
1134}
1135
549a17e4
MS
1136static int __iommu_free_buffer(struct device *dev, struct page **pages,
1137 size_t size, struct dma_attrs *attrs)
4ce63fcd
MS
1138{
1139 int count = size >> PAGE_SHIFT;
1140 int array_size = count * sizeof(struct page *);
1141 int i;
549a17e4
MS
1142
1143 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1144 dma_release_from_contiguous(dev, pages[0], count);
1145 } else {
1146 for (i = 0; i < count; i++)
1147 if (pages[i])
1148 __free_pages(pages[i], 0);
1149 }
1150
46c87852 1151 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1152 kfree(pages);
1153 else
1154 vfree(pages);
1155 return 0;
1156}
1157
1158/*
1159 * Create a CPU mapping for a specified pages
1160 */
1161static void *
e9da6e99
MS
1162__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1163 const void *caller)
4ce63fcd 1164{
e9da6e99
MS
1165 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1166 struct vm_struct *area;
1167 unsigned long p;
4ce63fcd 1168
e9da6e99
MS
1169 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1170 caller);
1171 if (!area)
4ce63fcd 1172 return NULL;
4ce63fcd 1173
e9da6e99
MS
1174 area->pages = pages;
1175 area->nr_pages = nr_pages;
1176 p = (unsigned long)area->addr;
4ce63fcd 1177
e9da6e99
MS
1178 for (i = 0; i < nr_pages; i++) {
1179 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1180 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1181 goto err;
1182 p += PAGE_SIZE;
4ce63fcd 1183 }
e9da6e99
MS
1184 return area->addr;
1185err:
1186 unmap_kernel_range((unsigned long)area->addr, size);
1187 vunmap(area->addr);
4ce63fcd
MS
1188 return NULL;
1189}
1190
1191/*
1192 * Create a mapping in device IO address space for specified pages
1193 */
1194static dma_addr_t
1195__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1196{
1197 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1198 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1199 dma_addr_t dma_addr, iova;
1200 int i, ret = DMA_ERROR_CODE;
1201
1202 dma_addr = __alloc_iova(mapping, size);
1203 if (dma_addr == DMA_ERROR_CODE)
1204 return dma_addr;
1205
1206 iova = dma_addr;
1207 for (i = 0; i < count; ) {
1208 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1209 phys_addr_t phys = page_to_phys(pages[i]);
1210 unsigned int len, j;
1211
1212 for (j = i + 1; j < count; j++, next_pfn++)
1213 if (page_to_pfn(pages[j]) != next_pfn)
1214 break;
1215
1216 len = (j - i) << PAGE_SHIFT;
1217 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1218 if (ret < 0)
1219 goto fail;
1220 iova += len;
1221 i = j;
1222 }
1223 return dma_addr;
1224fail:
1225 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1226 __free_iova(mapping, dma_addr, size);
1227 return DMA_ERROR_CODE;
1228}
1229
1230static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1231{
1232 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1233
1234 /*
1235 * add optional in-page offset from iova to size and align
1236 * result to page size
1237 */
1238 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1239 iova &= PAGE_MASK;
1240
1241 iommu_unmap(mapping->domain, iova, size);
1242 __free_iova(mapping, iova, size);
1243 return 0;
1244}
1245
665bad7b
HD
1246static struct page **__atomic_get_pages(void *addr)
1247{
1248 struct dma_pool *pool = &atomic_pool;
1249 struct page **pages = pool->pages;
1250 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1251
1252 return pages + offs;
1253}
1254
955c757e 1255static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1256{
1257 struct vm_struct *area;
1258
665bad7b
HD
1259 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1260 return __atomic_get_pages(cpu_addr);
1261
955c757e
MS
1262 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1263 return cpu_addr;
1264
e9da6e99
MS
1265 area = find_vm_area(cpu_addr);
1266 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1267 return area->pages;
1268 return NULL;
1269}
1270
479ed93a
HD
1271static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1272 dma_addr_t *handle)
1273{
1274 struct page *page;
1275 void *addr;
1276
1277 addr = __alloc_from_pool(size, &page);
1278 if (!addr)
1279 return NULL;
1280
1281 *handle = __iommu_create_mapping(dev, &page, size);
1282 if (*handle == DMA_ERROR_CODE)
1283 goto err_mapping;
1284
1285 return addr;
1286
1287err_mapping:
1288 __free_from_pool(addr, size);
1289 return NULL;
1290}
1291
1292static void __iommu_free_atomic(struct device *dev, struct page **pages,
1293 dma_addr_t handle, size_t size)
1294{
1295 __iommu_remove_mapping(dev, handle, size);
1296 __free_from_pool(page_address(pages[0]), size);
1297}
1298
4ce63fcd
MS
1299static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1300 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1301{
1302 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1303 struct page **pages;
1304 void *addr = NULL;
1305
1306 *handle = DMA_ERROR_CODE;
1307 size = PAGE_ALIGN(size);
1308
479ed93a
HD
1309 if (gfp & GFP_ATOMIC)
1310 return __iommu_alloc_atomic(dev, size, handle);
1311
549a17e4 1312 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
4ce63fcd
MS
1313 if (!pages)
1314 return NULL;
1315
1316 *handle = __iommu_create_mapping(dev, pages, size);
1317 if (*handle == DMA_ERROR_CODE)
1318 goto err_buffer;
1319
955c757e
MS
1320 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1321 return pages;
1322
e9da6e99
MS
1323 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1324 __builtin_return_address(0));
4ce63fcd
MS
1325 if (!addr)
1326 goto err_mapping;
1327
1328 return addr;
1329
1330err_mapping:
1331 __iommu_remove_mapping(dev, *handle, size);
1332err_buffer:
549a17e4 1333 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1334 return NULL;
1335}
1336
1337static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1338 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1339 struct dma_attrs *attrs)
1340{
e9da6e99
MS
1341 unsigned long uaddr = vma->vm_start;
1342 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1343 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1344
1345 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1346
e9da6e99
MS
1347 if (!pages)
1348 return -ENXIO;
4ce63fcd 1349
e9da6e99
MS
1350 do {
1351 int ret = vm_insert_page(vma, uaddr, *pages++);
1352 if (ret) {
1353 pr_err("Remapping memory failed: %d\n", ret);
1354 return ret;
1355 }
1356 uaddr += PAGE_SIZE;
1357 usize -= PAGE_SIZE;
1358 } while (usize > 0);
4ce63fcd 1359
4ce63fcd
MS
1360 return 0;
1361}
1362
1363/*
1364 * free a page as defined by the above mapping.
1365 * Must not be called with IRQs disabled.
1366 */
1367void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1368 dma_addr_t handle, struct dma_attrs *attrs)
1369{
955c757e 1370 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1371 size = PAGE_ALIGN(size);
1372
e9da6e99
MS
1373 if (!pages) {
1374 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1375 return;
4ce63fcd 1376 }
e9da6e99 1377
479ed93a
HD
1378 if (__in_atomic_pool(cpu_addr, size)) {
1379 __iommu_free_atomic(dev, pages, handle, size);
1380 return;
1381 }
1382
955c757e
MS
1383 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1384 unmap_kernel_range((unsigned long)cpu_addr, size);
1385 vunmap(cpu_addr);
1386 }
e9da6e99
MS
1387
1388 __iommu_remove_mapping(dev, handle, size);
549a17e4 1389 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1390}
1391
dc2832e1
MS
1392static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1393 void *cpu_addr, dma_addr_t dma_addr,
1394 size_t size, struct dma_attrs *attrs)
1395{
1396 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1397 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1398
1399 if (!pages)
1400 return -ENXIO;
1401
1402 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1403 GFP_KERNEL);
4ce63fcd
MS
1404}
1405
1406/*
1407 * Map a part of the scatter-gather list into contiguous io address space
1408 */
1409static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1410 size_t size, dma_addr_t *handle,
0fa478df
RH
1411 enum dma_data_direction dir, struct dma_attrs *attrs,
1412 bool is_coherent)
4ce63fcd
MS
1413{
1414 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1415 dma_addr_t iova, iova_base;
1416 int ret = 0;
1417 unsigned int count;
1418 struct scatterlist *s;
1419
1420 size = PAGE_ALIGN(size);
1421 *handle = DMA_ERROR_CODE;
1422
1423 iova_base = iova = __alloc_iova(mapping, size);
1424 if (iova == DMA_ERROR_CODE)
1425 return -ENOMEM;
1426
1427 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1428 phys_addr_t phys = page_to_phys(sg_page(s));
1429 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1430
0fa478df
RH
1431 if (!is_coherent &&
1432 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1433 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1434
1435 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1436 if (ret < 0)
1437 goto fail;
1438 count += len >> PAGE_SHIFT;
1439 iova += len;
1440 }
1441 *handle = iova_base;
1442
1443 return 0;
1444fail:
1445 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1446 __free_iova(mapping, iova_base, size);
1447 return ret;
1448}
1449
0fa478df
RH
1450static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1451 enum dma_data_direction dir, struct dma_attrs *attrs,
1452 bool is_coherent)
4ce63fcd
MS
1453{
1454 struct scatterlist *s = sg, *dma = sg, *start = sg;
1455 int i, count = 0;
1456 unsigned int offset = s->offset;
1457 unsigned int size = s->offset + s->length;
1458 unsigned int max = dma_get_max_seg_size(dev);
1459
1460 for (i = 1; i < nents; i++) {
1461 s = sg_next(s);
1462
1463 s->dma_address = DMA_ERROR_CODE;
1464 s->dma_length = 0;
1465
1466 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1467 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1468 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1469 goto bad_mapping;
1470
1471 dma->dma_address += offset;
1472 dma->dma_length = size - offset;
1473
1474 size = offset = s->offset;
1475 start = s;
1476 dma = sg_next(dma);
1477 count += 1;
1478 }
1479 size += s->length;
1480 }
0fa478df
RH
1481 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1482 is_coherent) < 0)
4ce63fcd
MS
1483 goto bad_mapping;
1484
1485 dma->dma_address += offset;
1486 dma->dma_length = size - offset;
1487
1488 return count+1;
1489
1490bad_mapping:
1491 for_each_sg(sg, s, count, i)
1492 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1493 return 0;
1494}
1495
1496/**
0fa478df 1497 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1498 * @dev: valid struct device pointer
1499 * @sg: list of buffers
0fa478df
RH
1500 * @nents: number of buffers to map
1501 * @dir: DMA transfer direction
4ce63fcd 1502 *
0fa478df
RH
1503 * Map a set of i/o coherent buffers described by scatterlist in streaming
1504 * mode for DMA. The scatter gather list elements are merged together (if
1505 * possible) and tagged with the appropriate dma address and length. They are
1506 * obtained via sg_dma_{address,length}.
4ce63fcd 1507 */
0fa478df
RH
1508int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1509 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1510{
1511 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1512}
1513
1514/**
1515 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1516 * @dev: valid struct device pointer
1517 * @sg: list of buffers
1518 * @nents: number of buffers to map
1519 * @dir: DMA transfer direction
1520 *
1521 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1522 * The scatter gather list elements are merged together (if possible) and
1523 * tagged with the appropriate dma address and length. They are obtained via
1524 * sg_dma_{address,length}.
1525 */
1526int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1527 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1528{
1529 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1530}
1531
1532static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1533 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1534 bool is_coherent)
4ce63fcd
MS
1535{
1536 struct scatterlist *s;
1537 int i;
1538
1539 for_each_sg(sg, s, nents, i) {
1540 if (sg_dma_len(s))
1541 __iommu_remove_mapping(dev, sg_dma_address(s),
1542 sg_dma_len(s));
0fa478df 1543 if (!is_coherent &&
97ef952a 1544 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1545 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1546 s->length, dir);
1547 }
1548}
1549
0fa478df
RH
1550/**
1551 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1552 * @dev: valid struct device pointer
1553 * @sg: list of buffers
1554 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1555 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1556 *
1557 * Unmap a set of streaming mode DMA translations. Again, CPU access
1558 * rules concerning calls here are the same as for dma_unmap_single().
1559 */
1560void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1561 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1562{
1563 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1564}
1565
1566/**
1567 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1568 * @dev: valid struct device pointer
1569 * @sg: list of buffers
1570 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1571 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1572 *
1573 * Unmap a set of streaming mode DMA translations. Again, CPU access
1574 * rules concerning calls here are the same as for dma_unmap_single().
1575 */
1576void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1577 enum dma_data_direction dir, struct dma_attrs *attrs)
1578{
1579 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1580}
1581
4ce63fcd
MS
1582/**
1583 * arm_iommu_sync_sg_for_cpu
1584 * @dev: valid struct device pointer
1585 * @sg: list of buffers
1586 * @nents: number of buffers to map (returned from dma_map_sg)
1587 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1588 */
1589void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1590 int nents, enum dma_data_direction dir)
1591{
1592 struct scatterlist *s;
1593 int i;
1594
1595 for_each_sg(sg, s, nents, i)
0fa478df 1596 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1597
1598}
1599
1600/**
1601 * arm_iommu_sync_sg_for_device
1602 * @dev: valid struct device pointer
1603 * @sg: list of buffers
1604 * @nents: number of buffers to map (returned from dma_map_sg)
1605 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1606 */
1607void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1608 int nents, enum dma_data_direction dir)
1609{
1610 struct scatterlist *s;
1611 int i;
1612
1613 for_each_sg(sg, s, nents, i)
0fa478df 1614 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1615}
1616
1617
1618/**
0fa478df 1619 * arm_coherent_iommu_map_page
4ce63fcd
MS
1620 * @dev: valid struct device pointer
1621 * @page: page that buffer resides in
1622 * @offset: offset into page for start of buffer
1623 * @size: size of buffer to map
1624 * @dir: DMA transfer direction
1625 *
0fa478df 1626 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1627 */
0fa478df 1628static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd
MS
1629 unsigned long offset, size_t size, enum dma_data_direction dir,
1630 struct dma_attrs *attrs)
1631{
1632 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1633 dma_addr_t dma_addr;
1634 int ret, len = PAGE_ALIGN(size + offset);
1635
4ce63fcd
MS
1636 dma_addr = __alloc_iova(mapping, len);
1637 if (dma_addr == DMA_ERROR_CODE)
1638 return dma_addr;
1639
1640 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1641 if (ret < 0)
1642 goto fail;
1643
1644 return dma_addr + offset;
1645fail:
1646 __free_iova(mapping, dma_addr, len);
1647 return DMA_ERROR_CODE;
1648}
1649
0fa478df
RH
1650/**
1651 * arm_iommu_map_page
1652 * @dev: valid struct device pointer
1653 * @page: page that buffer resides in
1654 * @offset: offset into page for start of buffer
1655 * @size: size of buffer to map
1656 * @dir: DMA transfer direction
1657 *
1658 * IOMMU aware version of arm_dma_map_page()
1659 */
1660static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1661 unsigned long offset, size_t size, enum dma_data_direction dir,
1662 struct dma_attrs *attrs)
1663{
1664 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1665 __dma_page_cpu_to_dev(page, offset, size, dir);
1666
1667 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1668}
1669
1670/**
1671 * arm_coherent_iommu_unmap_page
1672 * @dev: valid struct device pointer
1673 * @handle: DMA address of buffer
1674 * @size: size of buffer (same as passed to dma_map_page)
1675 * @dir: DMA transfer direction (same as passed to dma_map_page)
1676 *
1677 * Coherent IOMMU aware version of arm_dma_unmap_page()
1678 */
1679static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1680 size_t size, enum dma_data_direction dir,
1681 struct dma_attrs *attrs)
1682{
1683 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1684 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1685 int offset = handle & ~PAGE_MASK;
1686 int len = PAGE_ALIGN(size + offset);
1687
1688 if (!iova)
1689 return;
1690
1691 iommu_unmap(mapping->domain, iova, len);
1692 __free_iova(mapping, iova, len);
1693}
1694
4ce63fcd
MS
1695/**
1696 * arm_iommu_unmap_page
1697 * @dev: valid struct device pointer
1698 * @handle: DMA address of buffer
1699 * @size: size of buffer (same as passed to dma_map_page)
1700 * @dir: DMA transfer direction (same as passed to dma_map_page)
1701 *
1702 * IOMMU aware version of arm_dma_unmap_page()
1703 */
1704static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1705 size_t size, enum dma_data_direction dir,
1706 struct dma_attrs *attrs)
1707{
1708 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1709 dma_addr_t iova = handle & PAGE_MASK;
1710 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1711 int offset = handle & ~PAGE_MASK;
1712 int len = PAGE_ALIGN(size + offset);
1713
1714 if (!iova)
1715 return;
1716
0fa478df 1717 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1718 __dma_page_dev_to_cpu(page, offset, size, dir);
1719
1720 iommu_unmap(mapping->domain, iova, len);
1721 __free_iova(mapping, iova, len);
1722}
1723
1724static void arm_iommu_sync_single_for_cpu(struct device *dev,
1725 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1726{
1727 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1728 dma_addr_t iova = handle & PAGE_MASK;
1729 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1730 unsigned int offset = handle & ~PAGE_MASK;
1731
1732 if (!iova)
1733 return;
1734
0fa478df 1735 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
1736}
1737
1738static void arm_iommu_sync_single_for_device(struct device *dev,
1739 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1740{
1741 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1742 dma_addr_t iova = handle & PAGE_MASK;
1743 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1744 unsigned int offset = handle & ~PAGE_MASK;
1745
1746 if (!iova)
1747 return;
1748
1749 __dma_page_cpu_to_dev(page, offset, size, dir);
1750}
1751
1752struct dma_map_ops iommu_ops = {
1753 .alloc = arm_iommu_alloc_attrs,
1754 .free = arm_iommu_free_attrs,
1755 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1756 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1757
1758 .map_page = arm_iommu_map_page,
1759 .unmap_page = arm_iommu_unmap_page,
1760 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1761 .sync_single_for_device = arm_iommu_sync_single_for_device,
1762
1763 .map_sg = arm_iommu_map_sg,
1764 .unmap_sg = arm_iommu_unmap_sg,
1765 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1766 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
d09e1333
HD
1767
1768 .set_dma_mask = arm_dma_set_mask,
4ce63fcd
MS
1769};
1770
0fa478df
RH
1771struct dma_map_ops iommu_coherent_ops = {
1772 .alloc = arm_iommu_alloc_attrs,
1773 .free = arm_iommu_free_attrs,
1774 .mmap = arm_iommu_mmap_attrs,
1775 .get_sgtable = arm_iommu_get_sgtable,
1776
1777 .map_page = arm_coherent_iommu_map_page,
1778 .unmap_page = arm_coherent_iommu_unmap_page,
1779
1780 .map_sg = arm_coherent_iommu_map_sg,
1781 .unmap_sg = arm_coherent_iommu_unmap_sg,
d09e1333
HD
1782
1783 .set_dma_mask = arm_dma_set_mask,
0fa478df
RH
1784};
1785
4ce63fcd
MS
1786/**
1787 * arm_iommu_create_mapping
1788 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1789 * @base: start address of the valid IO address space
1790 * @size: size of the valid IO address space
1791 * @order: accuracy of the IO addresses allocations
1792 *
1793 * Creates a mapping structure which holds information about used/unused
1794 * IO address ranges, which is required to perform memory allocation and
1795 * mapping with IOMMU aware functions.
1796 *
1797 * The client device need to be attached to the mapping with
1798 * arm_iommu_attach_device function.
1799 */
1800struct dma_iommu_mapping *
1801arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1802 int order)
1803{
1804 unsigned int count = size >> (PAGE_SHIFT + order);
1805 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1806 struct dma_iommu_mapping *mapping;
1807 int err = -ENOMEM;
1808
1809 if (!count)
1810 return ERR_PTR(-EINVAL);
1811
1812 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1813 if (!mapping)
1814 goto err;
1815
1816 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1817 if (!mapping->bitmap)
1818 goto err2;
1819
1820 mapping->base = base;
1821 mapping->bits = BITS_PER_BYTE * bitmap_size;
1822 mapping->order = order;
1823 spin_lock_init(&mapping->lock);
1824
1825 mapping->domain = iommu_domain_alloc(bus);
1826 if (!mapping->domain)
1827 goto err3;
1828
1829 kref_init(&mapping->kref);
1830 return mapping;
1831err3:
1832 kfree(mapping->bitmap);
1833err2:
1834 kfree(mapping);
1835err:
1836 return ERR_PTR(err);
1837}
18177d12 1838EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
1839
1840static void release_iommu_mapping(struct kref *kref)
1841{
1842 struct dma_iommu_mapping *mapping =
1843 container_of(kref, struct dma_iommu_mapping, kref);
1844
1845 iommu_domain_free(mapping->domain);
1846 kfree(mapping->bitmap);
1847 kfree(mapping);
1848}
1849
1850void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1851{
1852 if (mapping)
1853 kref_put(&mapping->kref, release_iommu_mapping);
1854}
18177d12 1855EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd
MS
1856
1857/**
1858 * arm_iommu_attach_device
1859 * @dev: valid struct device pointer
1860 * @mapping: io address space mapping structure (returned from
1861 * arm_iommu_create_mapping)
1862 *
1863 * Attaches specified io address space mapping to the provided device,
1864 * this replaces the dma operations (dma_map_ops pointer) with the
1865 * IOMMU aware version. More than one client might be attached to
1866 * the same io address space mapping.
1867 */
1868int arm_iommu_attach_device(struct device *dev,
1869 struct dma_iommu_mapping *mapping)
1870{
1871 int err;
1872
1873 err = iommu_attach_device(mapping->domain, dev);
1874 if (err)
1875 return err;
1876
1877 kref_get(&mapping->kref);
1878 dev->archdata.mapping = mapping;
1879 set_dma_ops(dev, &iommu_ops);
1880
75c59716 1881 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
4ce63fcd
MS
1882 return 0;
1883}
18177d12 1884EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 1885
6fe36758
HD
1886/**
1887 * arm_iommu_detach_device
1888 * @dev: valid struct device pointer
1889 *
1890 * Detaches the provided device from a previously attached map.
1891 * This voids the dma operations (dma_map_ops pointer)
1892 */
1893void arm_iommu_detach_device(struct device *dev)
1894{
1895 struct dma_iommu_mapping *mapping;
1896
1897 mapping = to_dma_iommu_mapping(dev);
1898 if (!mapping) {
1899 dev_warn(dev, "Not attached\n");
1900 return;
1901 }
1902
1903 iommu_detach_device(mapping->domain, dev);
1904 kref_put(&mapping->kref, release_iommu_mapping);
1905 mapping = NULL;
1906 set_dma_ops(dev, NULL);
1907
1908 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1909}
18177d12 1910EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 1911
4ce63fcd 1912#endif