ARM: dma-mapping: clean up coherent arch dma allocation
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
14#include <linux/slab.h>
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
20
23759dc6 21#include <asm/memory.h>
43377453 22#include <asm/highmem.h>
1da177e4 23#include <asm/cacheflush.h>
1da177e4 24#include <asm/tlbflush.h>
37134cd5
KH
25#include <asm/sizes.h>
26
27/* Sanity check size */
28#if (CONSISTENT_DMA_SIZE % SZ_2M)
29#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
30#endif
1da177e4 31
1da177e4 32#define CONSISTENT_END (0xffe00000)
37134cd5
KH
33#define CONSISTENT_BASE (CONSISTENT_END - CONSISTENT_DMA_SIZE)
34
1da177e4 35#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
37134cd5
KH
36#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
37#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
38
ab6494f0
CM
39static u64 get_coherent_dma_mask(struct device *dev)
40{
41 u64 mask = ISA_DMA_THRESHOLD;
42
43 if (dev) {
44 mask = dev->coherent_dma_mask;
45
46 /*
47 * Sanity check the DMA mask - it must be non-zero, and
48 * must be able to be satisfied by a DMA allocation.
49 */
50 if (mask == 0) {
51 dev_warn(dev, "coherent DMA mask is unset\n");
52 return 0;
53 }
54
55 if ((~mask) & ISA_DMA_THRESHOLD) {
56 dev_warn(dev, "coherent DMA mask %#llx is smaller "
57 "than system GFP_DMA mask %#llx\n",
58 mask, (unsigned long long)ISA_DMA_THRESHOLD);
59 return 0;
60 }
61 }
1da177e4 62
ab6494f0
CM
63 return mask;
64}
65
7a9a32a9
RK
66/*
67 * Allocate a DMA buffer for 'dev' of size 'size' using the
68 * specified gfp mask. Note that 'size' must be page aligned.
69 */
70static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
71{
72 unsigned long order = get_order(size);
73 struct page *page, *p, *e;
74 void *ptr;
75 u64 mask = get_coherent_dma_mask(dev);
76
77#ifdef CONFIG_DMA_API_DEBUG
78 u64 limit = (mask + 1) & ~mask;
79 if (limit && size >= limit) {
80 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
81 size, mask);
82 return NULL;
83 }
84#endif
85
86 if (!mask)
87 return NULL;
88
89 if (mask < 0xffffffffULL)
90 gfp |= GFP_DMA;
91
92 page = alloc_pages(gfp, order);
93 if (!page)
94 return NULL;
95
96 /*
97 * Now split the huge page and free the excess pages
98 */
99 split_page(page, order);
100 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
101 __free_page(p);
102
103 /*
104 * Ensure that the allocated pages are zeroed, and that any data
105 * lurking in the kernel direct-mapped region is invalidated.
106 */
107 ptr = page_address(page);
108 memset(ptr, 0, size);
109 dmac_flush_range(ptr, ptr + size);
110 outer_flush_range(__pa(ptr), __pa(ptr) + size);
111
112 return page;
113}
114
115/*
116 * Free a DMA buffer. 'size' must be page aligned.
117 */
118static void __dma_free_buffer(struct page *page, size_t size)
119{
120 struct page *e = page + (size >> PAGE_SHIFT);
121
122 while (page < e) {
123 __free_page(page);
124 page++;
125 }
126}
127
ab6494f0 128#ifdef CONFIG_MMU
1da177e4 129/*
37134cd5 130 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
1da177e4 131 */
37134cd5 132static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
1da177e4 133
13ccf3ad 134#include "vmregion.h"
1da177e4 135
13ccf3ad
RK
136static struct arm_vmregion_head consistent_head = {
137 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
1da177e4
LT
138 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
139 .vm_start = CONSISTENT_BASE,
140 .vm_end = CONSISTENT_END,
141};
142
1da177e4
LT
143#ifdef CONFIG_HUGETLB_PAGE
144#error ARM Coherent DMA allocator does not (yet) support huge TLB
145#endif
146
88c58f3b
RK
147/*
148 * Initialise the consistent memory allocation.
149 */
150static int __init consistent_init(void)
151{
152 int ret = 0;
153 pgd_t *pgd;
154 pmd_t *pmd;
155 pte_t *pte;
156 int i = 0;
157 u32 base = CONSISTENT_BASE;
158
159 do {
160 pgd = pgd_offset(&init_mm, base);
161 pmd = pmd_alloc(&init_mm, pgd, base);
162 if (!pmd) {
163 printk(KERN_ERR "%s: no pmd tables\n", __func__);
164 ret = -ENOMEM;
165 break;
166 }
167 WARN_ON(!pmd_none(*pmd));
168
169 pte = pte_alloc_kernel(pmd, base);
170 if (!pte) {
171 printk(KERN_ERR "%s: no pte tables\n", __func__);
172 ret = -ENOMEM;
173 break;
174 }
175
176 consistent_pte[i++] = pte;
177 base += (1 << PGDIR_SHIFT);
178 } while (base < CONSISTENT_END);
179
180 return ret;
181}
182
183core_initcall(consistent_init);
184
1da177e4 185static void *
f9e3214a 186__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
1da177e4
LT
187 pgprot_t prot)
188{
189 struct page *page;
13ccf3ad 190 struct arm_vmregion *c;
1da177e4 191
1da177e4 192 size = PAGE_ALIGN(size);
1da177e4 193
7a9a32a9 194 page = __dma_alloc_buffer(dev, size, gfp);
1da177e4
LT
195 if (!page)
196 goto no_page;
197
ebd7a845
RK
198 if (arch_is_coherent()) {
199 *handle = page_to_dma(dev, page);
200 return page_address(page);
201 }
202
203 if (!consistent_pte[0]) {
204 printk(KERN_ERR "%s: not initialised\n", __func__);
205 dump_stack();
206 __dma_free_buffer(page, size);
207 return NULL;
208 }
209
1da177e4
LT
210 /*
211 * Allocate a virtual address in the consistent mapping region.
212 */
13ccf3ad 213 c = arm_vmregion_alloc(&consistent_head, size,
1da177e4
LT
214 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
215 if (c) {
37134cd5 216 pte_t *pte;
37134cd5
KH
217 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
218 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
1da177e4 219
37134cd5 220 pte = consistent_pte[idx] + off;
1da177e4
LT
221 c->vm_pages = page;
222
223 /*
224 * Set the "dma handle"
225 */
226 *handle = page_to_dma(dev, page);
227
228 do {
229 BUG_ON(!pte_none(*pte));
230
1da177e4
LT
231 /*
232 * x86 does not mark the pages reserved...
233 */
234 SetPageReserved(page);
ad1ae2fe 235 set_pte_ext(pte, mk_pte(page, prot), 0);
1da177e4
LT
236 page++;
237 pte++;
37134cd5
KH
238 off++;
239 if (off >= PTRS_PER_PTE) {
240 off = 0;
241 pte = consistent_pte[++idx];
242 }
1da177e4
LT
243 } while (size -= PAGE_SIZE);
244
1da177e4
LT
245 return (void *)c->vm_start;
246 }
247
248 if (page)
7a9a32a9 249 __dma_free_buffer(page, size);
1da177e4
LT
250 no_page:
251 *handle = ~0;
252 return NULL;
253}
695ae0af
RK
254
255static void __dma_free_remap(void *cpu_addr, size_t size)
256{
257 struct arm_vmregion *c;
258 unsigned long addr;
259 pte_t *ptep;
260 int idx;
261 u32 off;
262
263 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
264 if (!c) {
265 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
266 __func__, cpu_addr);
267 dump_stack();
268 return;
269 }
270
271 if ((c->vm_end - c->vm_start) != size) {
272 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
273 __func__, c->vm_end - c->vm_start, size);
274 dump_stack();
275 size = c->vm_end - c->vm_start;
276 }
277
278 idx = CONSISTENT_PTE_INDEX(c->vm_start);
279 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
280 ptep = consistent_pte[idx] + off;
281 addr = c->vm_start;
282 do {
283 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
284 unsigned long pfn;
285
286 ptep++;
287 addr += PAGE_SIZE;
288 off++;
289 if (off >= PTRS_PER_PTE) {
290 off = 0;
291 ptep = consistent_pte[++idx];
292 }
293
294 if (!pte_none(pte) && pte_present(pte)) {
295 pfn = pte_pfn(pte);
296
297 if (pfn_valid(pfn)) {
298 struct page *page = pfn_to_page(pfn);
299
300 /*
301 * x86 does not mark the pages reserved...
302 */
303 ClearPageReserved(page);
304 continue;
305 }
306 }
307 printk(KERN_CRIT "%s: bad page in kernel page table\n",
308 __func__);
309 } while (size -= PAGE_SIZE);
310
311 flush_tlb_kernel_range(c->vm_start, c->vm_end);
312
313 arm_vmregion_free(&consistent_head, c);
314}
315
ab6494f0 316#else /* !CONFIG_MMU */
695ae0af 317
ab6494f0
CM
318static void *
319__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
320 pgprot_t prot)
321{
04da5694 322 struct page *page;
ab6494f0 323
04da5694
RK
324 *handle = ~0;
325 size = PAGE_ALIGN(size);
ab6494f0 326
04da5694
RK
327 page = __dma_alloc_buffer(dev, size, gfp);
328 if (!page)
329 return NULL;
ab6494f0 330
04da5694
RK
331 *handle = page_to_dma(dev, page);
332 return page_address(page);
ab6494f0 333}
695ae0af
RK
334
335#define __dma_free_remap(addr, size) do { } while (0)
336
ab6494f0 337#endif /* CONFIG_MMU */
1da177e4
LT
338
339/*
340 * Allocate DMA-coherent memory space and return both the kernel remapped
341 * virtual and bus address for that space.
342 */
343void *
f9e3214a 344dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4 345{
1fe53268
DB
346 void *memory;
347
348 if (dma_alloc_from_coherent(dev, size, handle, &memory))
349 return memory;
350
1da177e4
LT
351 return __dma_alloc(dev, size, handle, gfp,
352 pgprot_noncached(pgprot_kernel));
353}
354EXPORT_SYMBOL(dma_alloc_coherent);
355
356/*
357 * Allocate a writecombining region, in much the same way as
358 * dma_alloc_coherent above.
359 */
360void *
f9e3214a 361dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4
LT
362{
363 return __dma_alloc(dev, size, handle, gfp,
364 pgprot_writecombine(pgprot_kernel));
365}
366EXPORT_SYMBOL(dma_alloc_writecombine);
367
368static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
369 void *cpu_addr, dma_addr_t dma_addr, size_t size)
370{
ab6494f0
CM
371 int ret = -ENXIO;
372#ifdef CONFIG_MMU
13ccf3ad
RK
373 unsigned long user_size, kern_size;
374 struct arm_vmregion *c;
1da177e4
LT
375
376 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
377
13ccf3ad 378 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1da177e4
LT
379 if (c) {
380 unsigned long off = vma->vm_pgoff;
381
382 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
383
384 if (off < kern_size &&
385 user_size <= (kern_size - off)) {
1da177e4
LT
386 ret = remap_pfn_range(vma, vma->vm_start,
387 page_to_pfn(c->vm_pages) + off,
388 user_size << PAGE_SHIFT,
389 vma->vm_page_prot);
390 }
391 }
ab6494f0 392#endif /* CONFIG_MMU */
1da177e4
LT
393
394 return ret;
395}
396
397int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
398 void *cpu_addr, dma_addr_t dma_addr, size_t size)
399{
400 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
401 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
402}
403EXPORT_SYMBOL(dma_mmap_coherent);
404
405int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
406 void *cpu_addr, dma_addr_t dma_addr, size_t size)
407{
408 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
409 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
410}
411EXPORT_SYMBOL(dma_mmap_writecombine);
412
413/*
414 * free a page as defined by the above mapping.
5edf71ae 415 * Must not be called with IRQs disabled.
1da177e4
LT
416 */
417void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
418{
5edf71ae
RK
419 WARN_ON(irqs_disabled());
420
1fe53268
DB
421 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
422 return;
423
3e82d012
RK
424 size = PAGE_ALIGN(size);
425
695ae0af
RK
426 if (!arch_is_coherent())
427 __dma_free_remap(cpu_addr, size);
7a9a32a9
RK
428
429 __dma_free_buffer(dma_to_page(dev, handle), size);
1da177e4
LT
430}
431EXPORT_SYMBOL(dma_free_coherent);
432
1da177e4
LT
433/*
434 * Make an area consistent for devices.
105ef9a0
DW
435 * Note: Drivers should NOT use this function directly, as it will break
436 * platforms with CONFIG_DMABOUNCE.
437 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1da177e4 438 */
84aa462e 439void dma_cache_maint(const void *start, size_t size, int direction)
1da177e4 440{
1522ac3e
RK
441 void (*inner_op)(const void *, const void *);
442 void (*outer_op)(unsigned long, unsigned long);
1da177e4 443
1522ac3e 444 BUG_ON(!virt_addr_valid(start) || !virt_addr_valid(start + size - 1));
953233dc 445
1da177e4
LT
446 switch (direction) {
447 case DMA_FROM_DEVICE: /* invalidate only */
1522ac3e
RK
448 inner_op = dmac_inv_range;
449 outer_op = outer_inv_range;
1da177e4
LT
450 break;
451 case DMA_TO_DEVICE: /* writeback only */
1522ac3e
RK
452 inner_op = dmac_clean_range;
453 outer_op = outer_clean_range;
1da177e4
LT
454 break;
455 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
1522ac3e
RK
456 inner_op = dmac_flush_range;
457 outer_op = outer_flush_range;
1da177e4
LT
458 break;
459 default:
460 BUG();
461 }
1522ac3e
RK
462
463 inner_op(start, start + size);
464 outer_op(__pa(start), __pa(start) + size);
1da177e4 465}
84aa462e 466EXPORT_SYMBOL(dma_cache_maint);
afd1a321 467
43377453
NP
468static void dma_cache_maint_contiguous(struct page *page, unsigned long offset,
469 size_t size, int direction)
470{
471 void *vaddr;
472 unsigned long paddr;
473 void (*inner_op)(const void *, const void *);
474 void (*outer_op)(unsigned long, unsigned long);
475
476 switch (direction) {
477 case DMA_FROM_DEVICE: /* invalidate only */
478 inner_op = dmac_inv_range;
479 outer_op = outer_inv_range;
480 break;
481 case DMA_TO_DEVICE: /* writeback only */
482 inner_op = dmac_clean_range;
483 outer_op = outer_clean_range;
484 break;
485 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
486 inner_op = dmac_flush_range;
487 outer_op = outer_flush_range;
488 break;
489 default:
490 BUG();
491 }
492
493 if (!PageHighMem(page)) {
494 vaddr = page_address(page) + offset;
495 inner_op(vaddr, vaddr + size);
496 } else {
497 vaddr = kmap_high_get(page);
498 if (vaddr) {
499 vaddr += offset;
500 inner_op(vaddr, vaddr + size);
501 kunmap_high(page);
502 }
503 }
504
505 paddr = page_to_phys(page) + offset;
506 outer_op(paddr, paddr + size);
507}
508
509void dma_cache_maint_page(struct page *page, unsigned long offset,
510 size_t size, int dir)
511{
512 /*
513 * A single sg entry may refer to multiple physically contiguous
514 * pages. But we still need to process highmem pages individually.
515 * If highmem is not configured then the bulk of this loop gets
516 * optimized out.
517 */
518 size_t left = size;
519 do {
520 size_t len = left;
521 if (PageHighMem(page) && len + offset > PAGE_SIZE) {
522 if (offset >= PAGE_SIZE) {
523 page += offset / PAGE_SIZE;
524 offset %= PAGE_SIZE;
525 }
526 len = PAGE_SIZE - offset;
527 }
528 dma_cache_maint_contiguous(page, offset, len, dir);
529 offset = 0;
530 page++;
531 left -= len;
532 } while (left);
533}
534EXPORT_SYMBOL(dma_cache_maint_page);
535
afd1a321
RK
536/**
537 * dma_map_sg - map a set of SG buffers for streaming mode DMA
538 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
539 * @sg: list of buffers
540 * @nents: number of buffers to map
541 * @dir: DMA transfer direction
542 *
543 * Map a set of buffers described by scatterlist in streaming mode for DMA.
544 * This is the scatter-gather version of the dma_map_single interface.
545 * Here the scatter gather list elements are each tagged with the
546 * appropriate dma address and length. They are obtained via
547 * sg_dma_{address,length}.
548 *
549 * Device ownership issues as mentioned for dma_map_single are the same
550 * here.
551 */
552int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
553 enum dma_data_direction dir)
554{
555 struct scatterlist *s;
01135d92 556 int i, j;
afd1a321
RK
557
558 for_each_sg(sg, s, nents, i) {
01135d92
RK
559 s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
560 s->length, dir);
561 if (dma_mapping_error(dev, s->dma_address))
562 goto bad_mapping;
afd1a321 563 }
afd1a321 564 return nents;
01135d92
RK
565
566 bad_mapping:
567 for_each_sg(sg, s, i, j)
568 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
569 return 0;
afd1a321
RK
570}
571EXPORT_SYMBOL(dma_map_sg);
572
573/**
574 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
575 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
576 * @sg: list of buffers
577 * @nents: number of buffers to unmap (returned from dma_map_sg)
578 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
579 *
580 * Unmap a set of streaming mode DMA translations. Again, CPU access
581 * rules concerning calls here are the same as for dma_unmap_single().
582 */
583void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
584 enum dma_data_direction dir)
585{
01135d92
RK
586 struct scatterlist *s;
587 int i;
588
589 for_each_sg(sg, s, nents, i)
590 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
afd1a321
RK
591}
592EXPORT_SYMBOL(dma_unmap_sg);
593
594/**
595 * dma_sync_sg_for_cpu
596 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
597 * @sg: list of buffers
598 * @nents: number of buffers to map (returned from dma_map_sg)
599 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
600 */
601void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
602 int nents, enum dma_data_direction dir)
603{
604 struct scatterlist *s;
605 int i;
606
607 for_each_sg(sg, s, nents, i) {
309dbbab
RK
608 dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
609 sg_dma_len(s), dir);
afd1a321
RK
610 }
611}
612EXPORT_SYMBOL(dma_sync_sg_for_cpu);
613
614/**
615 * dma_sync_sg_for_device
616 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
617 * @sg: list of buffers
618 * @nents: number of buffers to map (returned from dma_map_sg)
619 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
620 */
621void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
622 int nents, enum dma_data_direction dir)
623{
624 struct scatterlist *s;
625 int i;
626
627 for_each_sg(sg, s, nents, i) {
2638b4db
RK
628 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
629 sg_dma_len(s), dir))
630 continue;
631
afd1a321 632 if (!arch_is_coherent())
43377453
NP
633 dma_cache_maint_page(sg_page(s), s->offset,
634 s->length, dir);
afd1a321
RK
635 }
636}
637EXPORT_SYMBOL(dma_sync_sg_for_device);