ARM: 6621/1: bitops: remove condition code clobber for CLZ
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
5a0e3ad6 14#include <linux/gfp.h>
1da177e4
LT
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
39af22a7 20#include <linux/highmem.h>
1da177e4 21
23759dc6 22#include <asm/memory.h>
43377453 23#include <asm/highmem.h>
1da177e4 24#include <asm/cacheflush.h>
1da177e4 25#include <asm/tlbflush.h>
37134cd5
KH
26#include <asm/sizes.h>
27
ab6494f0
CM
28static u64 get_coherent_dma_mask(struct device *dev)
29{
30 u64 mask = ISA_DMA_THRESHOLD;
31
32 if (dev) {
33 mask = dev->coherent_dma_mask;
34
35 /*
36 * Sanity check the DMA mask - it must be non-zero, and
37 * must be able to be satisfied by a DMA allocation.
38 */
39 if (mask == 0) {
40 dev_warn(dev, "coherent DMA mask is unset\n");
41 return 0;
42 }
43
44 if ((~mask) & ISA_DMA_THRESHOLD) {
45 dev_warn(dev, "coherent DMA mask %#llx is smaller "
46 "than system GFP_DMA mask %#llx\n",
47 mask, (unsigned long long)ISA_DMA_THRESHOLD);
48 return 0;
49 }
50 }
1da177e4 51
ab6494f0
CM
52 return mask;
53}
54
7a9a32a9
RK
55/*
56 * Allocate a DMA buffer for 'dev' of size 'size' using the
57 * specified gfp mask. Note that 'size' must be page aligned.
58 */
59static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
60{
61 unsigned long order = get_order(size);
62 struct page *page, *p, *e;
63 void *ptr;
64 u64 mask = get_coherent_dma_mask(dev);
65
66#ifdef CONFIG_DMA_API_DEBUG
67 u64 limit = (mask + 1) & ~mask;
68 if (limit && size >= limit) {
69 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
70 size, mask);
71 return NULL;
72 }
73#endif
74
75 if (!mask)
76 return NULL;
77
78 if (mask < 0xffffffffULL)
79 gfp |= GFP_DMA;
80
81 page = alloc_pages(gfp, order);
82 if (!page)
83 return NULL;
84
85 /*
86 * Now split the huge page and free the excess pages
87 */
88 split_page(page, order);
89 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
90 __free_page(p);
91
92 /*
93 * Ensure that the allocated pages are zeroed, and that any data
94 * lurking in the kernel direct-mapped region is invalidated.
95 */
96 ptr = page_address(page);
97 memset(ptr, 0, size);
98 dmac_flush_range(ptr, ptr + size);
99 outer_flush_range(__pa(ptr), __pa(ptr) + size);
100
101 return page;
102}
103
104/*
105 * Free a DMA buffer. 'size' must be page aligned.
106 */
107static void __dma_free_buffer(struct page *page, size_t size)
108{
109 struct page *e = page + (size >> PAGE_SHIFT);
110
111 while (page < e) {
112 __free_page(page);
113 page++;
114 }
115}
116
ab6494f0 117#ifdef CONFIG_MMU
a5e9d38b
CM
118/* Sanity check size */
119#if (CONSISTENT_DMA_SIZE % SZ_2M)
120#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
121#endif
122
123#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
124#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
125#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
126
1da177e4 127/*
37134cd5 128 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
1da177e4 129 */
37134cd5 130static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
1da177e4 131
13ccf3ad 132#include "vmregion.h"
1da177e4 133
13ccf3ad
RK
134static struct arm_vmregion_head consistent_head = {
135 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
1da177e4
LT
136 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
137 .vm_start = CONSISTENT_BASE,
138 .vm_end = CONSISTENT_END,
139};
140
1da177e4
LT
141#ifdef CONFIG_HUGETLB_PAGE
142#error ARM Coherent DMA allocator does not (yet) support huge TLB
143#endif
144
88c58f3b
RK
145/*
146 * Initialise the consistent memory allocation.
147 */
148static int __init consistent_init(void)
149{
150 int ret = 0;
151 pgd_t *pgd;
152 pmd_t *pmd;
153 pte_t *pte;
154 int i = 0;
155 u32 base = CONSISTENT_BASE;
156
157 do {
158 pgd = pgd_offset(&init_mm, base);
159 pmd = pmd_alloc(&init_mm, pgd, base);
160 if (!pmd) {
161 printk(KERN_ERR "%s: no pmd tables\n", __func__);
162 ret = -ENOMEM;
163 break;
164 }
165 WARN_ON(!pmd_none(*pmd));
166
167 pte = pte_alloc_kernel(pmd, base);
168 if (!pte) {
169 printk(KERN_ERR "%s: no pte tables\n", __func__);
170 ret = -ENOMEM;
171 break;
172 }
173
174 consistent_pte[i++] = pte;
175 base += (1 << PGDIR_SHIFT);
176 } while (base < CONSISTENT_END);
177
178 return ret;
179}
180
181core_initcall(consistent_init);
182
1da177e4 183static void *
31ebf944 184__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
1da177e4 185{
13ccf3ad 186 struct arm_vmregion *c;
5bc23d32
RK
187 size_t align;
188 int bit;
1da177e4 189
ebd7a845
RK
190 if (!consistent_pte[0]) {
191 printk(KERN_ERR "%s: not initialised\n", __func__);
192 dump_stack();
ebd7a845
RK
193 return NULL;
194 }
195
5bc23d32
RK
196 /*
197 * Align the virtual region allocation - maximum alignment is
198 * a section size, minimum is a page size. This helps reduce
199 * fragmentation of the DMA space, and also prevents allocations
200 * smaller than a section from crossing a section boundary.
201 */
c947f69f 202 bit = fls(size - 1);
5bc23d32
RK
203 if (bit > SECTION_SHIFT)
204 bit = SECTION_SHIFT;
205 align = 1 << bit;
206
1da177e4
LT
207 /*
208 * Allocate a virtual address in the consistent mapping region.
209 */
5bc23d32 210 c = arm_vmregion_alloc(&consistent_head, align, size,
1da177e4
LT
211 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
212 if (c) {
37134cd5 213 pte_t *pte;
37134cd5
KH
214 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
215 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
1da177e4 216
37134cd5 217 pte = consistent_pte[idx] + off;
1da177e4
LT
218 c->vm_pages = page;
219
1da177e4
LT
220 do {
221 BUG_ON(!pte_none(*pte));
222
ad1ae2fe 223 set_pte_ext(pte, mk_pte(page, prot), 0);
1da177e4
LT
224 page++;
225 pte++;
37134cd5
KH
226 off++;
227 if (off >= PTRS_PER_PTE) {
228 off = 0;
229 pte = consistent_pte[++idx];
230 }
1da177e4
LT
231 } while (size -= PAGE_SIZE);
232
2be23c47
RK
233 dsb();
234
1da177e4
LT
235 return (void *)c->vm_start;
236 }
1da177e4
LT
237 return NULL;
238}
695ae0af
RK
239
240static void __dma_free_remap(void *cpu_addr, size_t size)
241{
242 struct arm_vmregion *c;
243 unsigned long addr;
244 pte_t *ptep;
245 int idx;
246 u32 off;
247
248 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
249 if (!c) {
250 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
251 __func__, cpu_addr);
252 dump_stack();
253 return;
254 }
255
256 if ((c->vm_end - c->vm_start) != size) {
257 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
258 __func__, c->vm_end - c->vm_start, size);
259 dump_stack();
260 size = c->vm_end - c->vm_start;
261 }
262
263 idx = CONSISTENT_PTE_INDEX(c->vm_start);
264 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
265 ptep = consistent_pte[idx] + off;
266 addr = c->vm_start;
267 do {
268 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
695ae0af
RK
269
270 ptep++;
271 addr += PAGE_SIZE;
272 off++;
273 if (off >= PTRS_PER_PTE) {
274 off = 0;
275 ptep = consistent_pte[++idx];
276 }
277
acaac256
RK
278 if (pte_none(pte) || !pte_present(pte))
279 printk(KERN_CRIT "%s: bad page in kernel page table\n",
280 __func__);
695ae0af
RK
281 } while (size -= PAGE_SIZE);
282
283 flush_tlb_kernel_range(c->vm_start, c->vm_end);
284
285 arm_vmregion_free(&consistent_head, c);
286}
287
ab6494f0 288#else /* !CONFIG_MMU */
695ae0af 289
31ebf944
RK
290#define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
291#define __dma_free_remap(addr, size) do { } while (0)
292
293#endif /* CONFIG_MMU */
294
ab6494f0
CM
295static void *
296__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
297 pgprot_t prot)
298{
04da5694 299 struct page *page;
31ebf944 300 void *addr;
ab6494f0 301
04da5694
RK
302 *handle = ~0;
303 size = PAGE_ALIGN(size);
ab6494f0 304
04da5694
RK
305 page = __dma_alloc_buffer(dev, size, gfp);
306 if (!page)
307 return NULL;
ab6494f0 308
31ebf944
RK
309 if (!arch_is_coherent())
310 addr = __dma_alloc_remap(page, size, gfp, prot);
311 else
312 addr = page_address(page);
695ae0af 313
31ebf944 314 if (addr)
9eedd963 315 *handle = pfn_to_dma(dev, page_to_pfn(page));
695ae0af 316
31ebf944
RK
317 return addr;
318}
1da177e4
LT
319
320/*
321 * Allocate DMA-coherent memory space and return both the kernel remapped
322 * virtual and bus address for that space.
323 */
324void *
f9e3214a 325dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4 326{
1fe53268
DB
327 void *memory;
328
329 if (dma_alloc_from_coherent(dev, size, handle, &memory))
330 return memory;
331
1da177e4 332 return __dma_alloc(dev, size, handle, gfp,
26a26d32 333 pgprot_dmacoherent(pgprot_kernel));
1da177e4
LT
334}
335EXPORT_SYMBOL(dma_alloc_coherent);
336
337/*
338 * Allocate a writecombining region, in much the same way as
339 * dma_alloc_coherent above.
340 */
341void *
f9e3214a 342dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4
LT
343{
344 return __dma_alloc(dev, size, handle, gfp,
345 pgprot_writecombine(pgprot_kernel));
346}
347EXPORT_SYMBOL(dma_alloc_writecombine);
348
349static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
350 void *cpu_addr, dma_addr_t dma_addr, size_t size)
351{
ab6494f0
CM
352 int ret = -ENXIO;
353#ifdef CONFIG_MMU
13ccf3ad
RK
354 unsigned long user_size, kern_size;
355 struct arm_vmregion *c;
1da177e4
LT
356
357 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
358
13ccf3ad 359 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1da177e4
LT
360 if (c) {
361 unsigned long off = vma->vm_pgoff;
362
363 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
364
365 if (off < kern_size &&
366 user_size <= (kern_size - off)) {
1da177e4
LT
367 ret = remap_pfn_range(vma, vma->vm_start,
368 page_to_pfn(c->vm_pages) + off,
369 user_size << PAGE_SHIFT,
370 vma->vm_page_prot);
371 }
372 }
ab6494f0 373#endif /* CONFIG_MMU */
1da177e4
LT
374
375 return ret;
376}
377
378int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
379 void *cpu_addr, dma_addr_t dma_addr, size_t size)
380{
26a26d32 381 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
1da177e4
LT
382 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
383}
384EXPORT_SYMBOL(dma_mmap_coherent);
385
386int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
387 void *cpu_addr, dma_addr_t dma_addr, size_t size)
388{
389 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
390 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
391}
392EXPORT_SYMBOL(dma_mmap_writecombine);
393
394/*
395 * free a page as defined by the above mapping.
5edf71ae 396 * Must not be called with IRQs disabled.
1da177e4
LT
397 */
398void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
399{
5edf71ae
RK
400 WARN_ON(irqs_disabled());
401
1fe53268
DB
402 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
403 return;
404
3e82d012
RK
405 size = PAGE_ALIGN(size);
406
695ae0af
RK
407 if (!arch_is_coherent())
408 __dma_free_remap(cpu_addr, size);
7a9a32a9 409
9eedd963 410 __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
1da177e4
LT
411}
412EXPORT_SYMBOL(dma_free_coherent);
413
1da177e4
LT
414/*
415 * Make an area consistent for devices.
105ef9a0
DW
416 * Note: Drivers should NOT use this function directly, as it will break
417 * platforms with CONFIG_DMABOUNCE.
418 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1da177e4 419 */
4ea0d737
RK
420void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
421 enum dma_data_direction dir)
422{
2ffe2da3
RK
423 unsigned long paddr;
424
a9c9147e
RK
425 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
426
427 dmac_map_area(kaddr, size, dir);
2ffe2da3
RK
428
429 paddr = __pa(kaddr);
430 if (dir == DMA_FROM_DEVICE) {
431 outer_inv_range(paddr, paddr + size);
432 } else {
433 outer_clean_range(paddr, paddr + size);
434 }
435 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737
RK
436}
437EXPORT_SYMBOL(___dma_single_cpu_to_dev);
438
439void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
440 enum dma_data_direction dir)
441{
a9c9147e
RK
442 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
443
2ffe2da3
RK
444 /* FIXME: non-speculating: not required */
445 /* don't bother invalidating if DMA to device */
446 if (dir != DMA_TO_DEVICE) {
447 unsigned long paddr = __pa(kaddr);
448 outer_inv_range(paddr, paddr + size);
449 }
450
a9c9147e 451 dmac_unmap_area(kaddr, size, dir);
4ea0d737
RK
452}
453EXPORT_SYMBOL(___dma_single_dev_to_cpu);
afd1a321 454
4ea0d737 455static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
456 size_t size, enum dma_data_direction dir,
457 void (*op)(const void *, size_t, int))
43377453
NP
458{
459 /*
460 * A single sg entry may refer to multiple physically contiguous
461 * pages. But we still need to process highmem pages individually.
462 * If highmem is not configured then the bulk of this loop gets
463 * optimized out.
464 */
465 size_t left = size;
466 do {
467 size_t len = left;
93f1d629
RK
468 void *vaddr;
469
470 if (PageHighMem(page)) {
471 if (len + offset > PAGE_SIZE) {
472 if (offset >= PAGE_SIZE) {
473 page += offset / PAGE_SIZE;
474 offset %= PAGE_SIZE;
475 }
476 len = PAGE_SIZE - offset;
477 }
478 vaddr = kmap_high_get(page);
479 if (vaddr) {
480 vaddr += offset;
a9c9147e 481 op(vaddr, len, dir);
93f1d629 482 kunmap_high(page);
7e5a69e8 483 } else if (cache_is_vipt()) {
39af22a7
NP
484 /* unmapped pages might still be cached */
485 vaddr = kmap_atomic(page);
7e5a69e8 486 op(vaddr + offset, len, dir);
39af22a7 487 kunmap_atomic(vaddr);
43377453 488 }
93f1d629
RK
489 } else {
490 vaddr = page_address(page) + offset;
a9c9147e 491 op(vaddr, len, dir);
43377453 492 }
43377453
NP
493 offset = 0;
494 page++;
495 left -= len;
496 } while (left);
497}
4ea0d737
RK
498
499void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
500 size_t size, enum dma_data_direction dir)
501{
65af191a 502 unsigned long paddr;
65af191a 503
a9c9147e 504 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
505
506 paddr = page_to_phys(page) + off;
2ffe2da3
RK
507 if (dir == DMA_FROM_DEVICE) {
508 outer_inv_range(paddr, paddr + size);
509 } else {
510 outer_clean_range(paddr, paddr + size);
511 }
512 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737
RK
513}
514EXPORT_SYMBOL(___dma_page_cpu_to_dev);
515
516void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
517 size_t size, enum dma_data_direction dir)
518{
2ffe2da3
RK
519 unsigned long paddr = page_to_phys(page) + off;
520
521 /* FIXME: non-speculating: not required */
522 /* don't bother invalidating if DMA to device */
523 if (dir != DMA_TO_DEVICE)
524 outer_inv_range(paddr, paddr + size);
525
a9c9147e 526 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
c0177800
CM
527
528 /*
529 * Mark the D-cache clean for this page to avoid extra flushing.
530 */
531 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
532 set_bit(PG_dcache_clean, &page->flags);
4ea0d737
RK
533}
534EXPORT_SYMBOL(___dma_page_dev_to_cpu);
43377453 535
afd1a321
RK
536/**
537 * dma_map_sg - map a set of SG buffers for streaming mode DMA
538 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
539 * @sg: list of buffers
540 * @nents: number of buffers to map
541 * @dir: DMA transfer direction
542 *
543 * Map a set of buffers described by scatterlist in streaming mode for DMA.
544 * This is the scatter-gather version of the dma_map_single interface.
545 * Here the scatter gather list elements are each tagged with the
546 * appropriate dma address and length. They are obtained via
547 * sg_dma_{address,length}.
548 *
549 * Device ownership issues as mentioned for dma_map_single are the same
550 * here.
551 */
552int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
553 enum dma_data_direction dir)
554{
555 struct scatterlist *s;
01135d92 556 int i, j;
afd1a321 557
24056f52
RK
558 BUG_ON(!valid_dma_direction(dir));
559
afd1a321 560 for_each_sg(sg, s, nents, i) {
24056f52 561 s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
01135d92
RK
562 s->length, dir);
563 if (dma_mapping_error(dev, s->dma_address))
564 goto bad_mapping;
afd1a321 565 }
24056f52 566 debug_dma_map_sg(dev, sg, nents, nents, dir);
afd1a321 567 return nents;
01135d92
RK
568
569 bad_mapping:
570 for_each_sg(sg, s, i, j)
24056f52 571 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
01135d92 572 return 0;
afd1a321
RK
573}
574EXPORT_SYMBOL(dma_map_sg);
575
576/**
577 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
578 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
579 * @sg: list of buffers
580 * @nents: number of buffers to unmap (returned from dma_map_sg)
581 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
582 *
583 * Unmap a set of streaming mode DMA translations. Again, CPU access
584 * rules concerning calls here are the same as for dma_unmap_single().
585 */
586void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
587 enum dma_data_direction dir)
588{
01135d92
RK
589 struct scatterlist *s;
590 int i;
591
24056f52
RK
592 debug_dma_unmap_sg(dev, sg, nents, dir);
593
01135d92 594 for_each_sg(sg, s, nents, i)
24056f52 595 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
afd1a321
RK
596}
597EXPORT_SYMBOL(dma_unmap_sg);
598
599/**
600 * dma_sync_sg_for_cpu
601 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
602 * @sg: list of buffers
603 * @nents: number of buffers to map (returned from dma_map_sg)
604 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
605 */
606void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
607 int nents, enum dma_data_direction dir)
608{
609 struct scatterlist *s;
610 int i;
611
612 for_each_sg(sg, s, nents, i) {
18eabe23
RK
613 if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
614 sg_dma_len(s), dir))
615 continue;
616
617 __dma_page_dev_to_cpu(sg_page(s), s->offset,
618 s->length, dir);
afd1a321 619 }
24056f52
RK
620
621 debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
afd1a321
RK
622}
623EXPORT_SYMBOL(dma_sync_sg_for_cpu);
624
625/**
626 * dma_sync_sg_for_device
627 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
628 * @sg: list of buffers
629 * @nents: number of buffers to map (returned from dma_map_sg)
630 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
631 */
632void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
633 int nents, enum dma_data_direction dir)
634{
635 struct scatterlist *s;
636 int i;
637
638 for_each_sg(sg, s, nents, i) {
2638b4db
RK
639 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
640 sg_dma_len(s), dir))
641 continue;
642
18eabe23
RK
643 __dma_page_cpu_to_dev(sg_page(s), s->offset,
644 s->length, dir);
afd1a321 645 }
24056f52
RK
646
647 debug_dma_sync_sg_for_device(dev, sg, nents, dir);
afd1a321
RK
648}
649EXPORT_SYMBOL(dma_sync_sg_for_device);
24056f52
RK
650
651#define PREALLOC_DMA_DEBUG_ENTRIES 4096
652
653static int __init dma_debug_do_init(void)
654{
655 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
656 return 0;
657}
658fs_initcall(dma_debug_do_init);