ARM: Kirkwood: increase atomic coherent pool size
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
5a0e3ad6 14#include <linux/gfp.h>
1da177e4
LT
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
c7909509 20#include <linux/dma-contiguous.h>
39af22a7 21#include <linux/highmem.h>
c7909509 22#include <linux/memblock.h>
99d1717d 23#include <linux/slab.h>
4ce63fcd 24#include <linux/iommu.h>
e9da6e99 25#include <linux/io.h>
4ce63fcd 26#include <linux/vmalloc.h>
158e8bfe 27#include <linux/sizes.h>
1da177e4 28
23759dc6 29#include <asm/memory.h>
43377453 30#include <asm/highmem.h>
1da177e4 31#include <asm/cacheflush.h>
1da177e4 32#include <asm/tlbflush.h>
99d1717d 33#include <asm/mach/arch.h>
4ce63fcd 34#include <asm/dma-iommu.h>
c7909509
MS
35#include <asm/mach/map.h>
36#include <asm/system_info.h>
37#include <asm/dma-contiguous.h>
37134cd5 38
022ae537
RK
39#include "mm.h"
40
15237e1f
MS
41/*
42 * The DMA API is built upon the notion of "buffer ownership". A buffer
43 * is either exclusively owned by the CPU (and therefore may be accessed
44 * by it) or exclusively owned by the DMA device. These helper functions
45 * represent the transitions between these two ownership states.
46 *
47 * Note, however, that on later ARMs, this notion does not work due to
48 * speculative prefetches. We model our approach on the assumption that
49 * the CPU does do speculative prefetches, which means we clean caches
50 * before transfers and delay cache invalidation until transfer completion.
51 *
15237e1f 52 */
51fde349 53static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 54 size_t, enum dma_data_direction);
51fde349 55static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
56 size_t, enum dma_data_direction);
57
2dc6a016
MS
58/**
59 * arm_dma_map_page - map a portion of a page for streaming DMA
60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61 * @page: page that buffer resides in
62 * @offset: offset into page for start of buffer
63 * @size: size of buffer to map
64 * @dir: DMA transfer direction
65 *
66 * Ensure that any data held in the cache is appropriately discarded
67 * or written back.
68 *
69 * The device owns this memory once this call has completed. The CPU
70 * can regain ownership by calling dma_unmap_page().
71 */
51fde349 72static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
73 unsigned long offset, size_t size, enum dma_data_direction dir,
74 struct dma_attrs *attrs)
75{
97ef952a 76 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
77 __dma_page_cpu_to_dev(page, offset, size, dir);
78 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
79}
80
81/**
82 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
83 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
84 * @handle: DMA address of buffer
85 * @size: size of buffer (same as passed to dma_map_page)
86 * @dir: DMA transfer direction (same as passed to dma_map_page)
87 *
88 * Unmap a page streaming mode DMA translation. The handle and size
89 * must match what was provided in the previous dma_map_page() call.
90 * All other usages are undefined.
91 *
92 * After this call, reads by the CPU to the buffer are guaranteed to see
93 * whatever the device wrote there.
94 */
51fde349 95static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
96 size_t size, enum dma_data_direction dir,
97 struct dma_attrs *attrs)
98{
97ef952a 99 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
100 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
101 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
102}
103
51fde349 104static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
105 dma_addr_t handle, size_t size, enum dma_data_direction dir)
106{
107 unsigned int offset = handle & (PAGE_SIZE - 1);
108 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
51fde349
MS
109 if (!arch_is_coherent())
110 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
111}
112
51fde349 113static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
114 dma_addr_t handle, size_t size, enum dma_data_direction dir)
115{
116 unsigned int offset = handle & (PAGE_SIZE - 1);
117 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
51fde349
MS
118 if (!arch_is_coherent())
119 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
120}
121
122static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
123
124struct dma_map_ops arm_dma_ops = {
f99d6034
MS
125 .alloc = arm_dma_alloc,
126 .free = arm_dma_free,
127 .mmap = arm_dma_mmap,
dc2832e1 128 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
129 .map_page = arm_dma_map_page,
130 .unmap_page = arm_dma_unmap_page,
131 .map_sg = arm_dma_map_sg,
132 .unmap_sg = arm_dma_unmap_sg,
133 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
134 .sync_single_for_device = arm_dma_sync_single_for_device,
135 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
136 .sync_sg_for_device = arm_dma_sync_sg_for_device,
137 .set_dma_mask = arm_dma_set_mask,
138};
139EXPORT_SYMBOL(arm_dma_ops);
140
ab6494f0
CM
141static u64 get_coherent_dma_mask(struct device *dev)
142{
022ae537 143 u64 mask = (u64)arm_dma_limit;
ab6494f0
CM
144
145 if (dev) {
146 mask = dev->coherent_dma_mask;
147
148 /*
149 * Sanity check the DMA mask - it must be non-zero, and
150 * must be able to be satisfied by a DMA allocation.
151 */
152 if (mask == 0) {
153 dev_warn(dev, "coherent DMA mask is unset\n");
154 return 0;
155 }
156
022ae537 157 if ((~mask) & (u64)arm_dma_limit) {
ab6494f0
CM
158 dev_warn(dev, "coherent DMA mask %#llx is smaller "
159 "than system GFP_DMA mask %#llx\n",
022ae537 160 mask, (u64)arm_dma_limit);
ab6494f0
CM
161 return 0;
162 }
163 }
1da177e4 164
ab6494f0
CM
165 return mask;
166}
167
c7909509
MS
168static void __dma_clear_buffer(struct page *page, size_t size)
169{
170 void *ptr;
171 /*
172 * Ensure that the allocated pages are zeroed, and that any data
173 * lurking in the kernel direct-mapped region is invalidated.
174 */
175 ptr = page_address(page);
4ce63fcd
MS
176 if (ptr) {
177 memset(ptr, 0, size);
178 dmac_flush_range(ptr, ptr + size);
179 outer_flush_range(__pa(ptr), __pa(ptr) + size);
180 }
c7909509
MS
181}
182
7a9a32a9
RK
183/*
184 * Allocate a DMA buffer for 'dev' of size 'size' using the
185 * specified gfp mask. Note that 'size' must be page aligned.
186 */
187static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
188{
189 unsigned long order = get_order(size);
190 struct page *page, *p, *e;
7a9a32a9
RK
191
192 page = alloc_pages(gfp, order);
193 if (!page)
194 return NULL;
195
196 /*
197 * Now split the huge page and free the excess pages
198 */
199 split_page(page, order);
200 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
201 __free_page(p);
202
c7909509 203 __dma_clear_buffer(page, size);
7a9a32a9
RK
204
205 return page;
206}
207
208/*
209 * Free a DMA buffer. 'size' must be page aligned.
210 */
211static void __dma_free_buffer(struct page *page, size_t size)
212{
213 struct page *e = page + (size >> PAGE_SHIFT);
214
215 while (page < e) {
216 __free_page(page);
217 page++;
218 }
219}
220
ab6494f0 221#ifdef CONFIG_MMU
e9da6e99
MS
222#ifdef CONFIG_HUGETLB_PAGE
223#error ARM Coherent DMA allocator does not (yet) support huge TLB
224#endif
a5e9d38b 225
e9da6e99
MS
226static void *__alloc_from_contiguous(struct device *dev, size_t size,
227 pgprot_t prot, struct page **ret_page);
99d1717d 228
e9da6e99
MS
229static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
230 pgprot_t prot, struct page **ret_page,
231 const void *caller);
99d1717d 232
e9da6e99
MS
233static void *
234__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
235 const void *caller)
99d1717d 236{
e9da6e99
MS
237 struct vm_struct *area;
238 unsigned long addr;
99d1717d 239
e9da6e99
MS
240 /*
241 * DMA allocation can be mapped to user space, so lets
242 * set VM_USERMAP flags too.
243 */
244 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
245 caller);
246 if (!area)
247 return NULL;
248 addr = (unsigned long)area->addr;
249 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
99d1717d 250
e9da6e99
MS
251 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
252 vunmap((void *)addr);
253 return NULL;
254 }
255 return (void *)addr;
99d1717d 256}
1da177e4 257
e9da6e99 258static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 259{
e9da6e99
MS
260 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
261 struct vm_struct *area = find_vm_area(cpu_addr);
262 if (!area || (area->flags & flags) != flags) {
263 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
264 return;
99d1717d 265 }
e9da6e99
MS
266 unmap_kernel_range((unsigned long)cpu_addr, size);
267 vunmap(cpu_addr);
88c58f3b 268}
88c58f3b 269
6e5267aa
MS
270#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
271
e9da6e99
MS
272struct dma_pool {
273 size_t size;
274 spinlock_t lock;
275 unsigned long *bitmap;
276 unsigned long nr_pages;
277 void *vaddr;
278 struct page *page;
c7909509
MS
279};
280
e9da6e99 281static struct dma_pool atomic_pool = {
6e5267aa 282 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
e9da6e99 283};
c7909509
MS
284
285static int __init early_coherent_pool(char *p)
286{
e9da6e99 287 atomic_pool.size = memparse(p, &p);
c7909509
MS
288 return 0;
289}
290early_param("coherent_pool", early_coherent_pool);
291
6e5267aa
MS
292void __init init_dma_coherent_pool_size(unsigned long size)
293{
294 /*
295 * Catch any attempt to set the pool size too late.
296 */
297 BUG_ON(atomic_pool.vaddr);
298
299 /*
300 * Set architecture specific coherent pool size only if
301 * it has not been changed by kernel command line parameter.
302 */
303 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
304 atomic_pool.size = size;
305}
306
c7909509
MS
307/*
308 * Initialise the coherent pool for atomic allocations.
309 */
e9da6e99 310static int __init atomic_pool_init(void)
c7909509 311{
e9da6e99 312 struct dma_pool *pool = &atomic_pool;
c7909509 313 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
e9da6e99
MS
314 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
315 unsigned long *bitmap;
c7909509
MS
316 struct page *page;
317 void *ptr;
e9da6e99 318 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
c7909509 319
e9da6e99
MS
320 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
321 if (!bitmap)
322 goto no_bitmap;
c7909509 323
e9da6e99
MS
324 if (IS_ENABLED(CONFIG_CMA))
325 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
326 else
327 ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
328 &page, NULL);
c7909509 329 if (ptr) {
e9da6e99
MS
330 spin_lock_init(&pool->lock);
331 pool->vaddr = ptr;
332 pool->page = page;
333 pool->bitmap = bitmap;
334 pool->nr_pages = nr_pages;
335 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
336 (unsigned)pool->size / 1024);
c7909509
MS
337 return 0;
338 }
e9da6e99
MS
339 kfree(bitmap);
340no_bitmap:
341 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
342 (unsigned)pool->size / 1024);
c7909509
MS
343 return -ENOMEM;
344}
345/*
346 * CMA is activated by core_initcall, so we must be called after it.
347 */
e9da6e99 348postcore_initcall(atomic_pool_init);
c7909509
MS
349
350struct dma_contig_early_reserve {
351 phys_addr_t base;
352 unsigned long size;
353};
354
355static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
356
357static int dma_mmu_remap_num __initdata;
358
359void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
360{
361 dma_mmu_remap[dma_mmu_remap_num].base = base;
362 dma_mmu_remap[dma_mmu_remap_num].size = size;
363 dma_mmu_remap_num++;
364}
365
366void __init dma_contiguous_remap(void)
367{
368 int i;
369 for (i = 0; i < dma_mmu_remap_num; i++) {
370 phys_addr_t start = dma_mmu_remap[i].base;
371 phys_addr_t end = start + dma_mmu_remap[i].size;
372 struct map_desc map;
373 unsigned long addr;
374
375 if (end > arm_lowmem_limit)
376 end = arm_lowmem_limit;
377 if (start >= end)
39f78e70 378 continue;
c7909509
MS
379
380 map.pfn = __phys_to_pfn(start);
381 map.virtual = __phys_to_virt(start);
382 map.length = end - start;
383 map.type = MT_MEMORY_DMA_READY;
384
385 /*
386 * Clear previous low-memory mapping
387 */
388 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 389 addr += PMD_SIZE)
c7909509
MS
390 pmd_clear(pmd_off_k(addr));
391
392 iotable_init(&map, 1);
393 }
394}
395
c7909509
MS
396static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
397 void *data)
398{
399 struct page *page = virt_to_page(addr);
400 pgprot_t prot = *(pgprot_t *)data;
401
402 set_pte_ext(pte, mk_pte(page, prot), 0);
403 return 0;
404}
405
406static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
407{
408 unsigned long start = (unsigned long) page_address(page);
409 unsigned end = start + size;
410
411 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
412 dsb();
413 flush_tlb_kernel_range(start, end);
414}
415
416static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
417 pgprot_t prot, struct page **ret_page,
418 const void *caller)
419{
420 struct page *page;
421 void *ptr;
422 page = __dma_alloc_buffer(dev, size, gfp);
423 if (!page)
424 return NULL;
425
426 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
427 if (!ptr) {
428 __dma_free_buffer(page, size);
429 return NULL;
430 }
431
432 *ret_page = page;
433 return ptr;
434}
435
e9da6e99 436static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 437{
e9da6e99
MS
438 struct dma_pool *pool = &atomic_pool;
439 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
440 unsigned int pageno;
441 unsigned long flags;
442 void *ptr = NULL;
e4ea6918 443 unsigned long align_mask;
c7909509 444
e9da6e99
MS
445 if (!pool->vaddr) {
446 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
447 return NULL;
448 }
449
450 /*
451 * Align the region allocation - allocations from pool are rather
452 * small, so align them to their order in pages, minimum is a page
453 * size. This helps reduce fragmentation of the DMA space.
454 */
e4ea6918 455 align_mask = (1 << get_order(size)) - 1;
e9da6e99
MS
456
457 spin_lock_irqsave(&pool->lock, flags);
458 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
e4ea6918 459 0, count, align_mask);
e9da6e99
MS
460 if (pageno < pool->nr_pages) {
461 bitmap_set(pool->bitmap, pageno, count);
462 ptr = pool->vaddr + PAGE_SIZE * pageno;
463 *ret_page = pool->page + pageno;
fb71285f
MS
464 } else {
465 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
466 "Please increase it with coherent_pool= kernel parameter!\n",
467 (unsigned)pool->size / 1024);
c7909509 468 }
e9da6e99
MS
469 spin_unlock_irqrestore(&pool->lock, flags);
470
471 return ptr;
c7909509
MS
472}
473
e9da6e99 474static int __free_from_pool(void *start, size_t size)
c7909509 475{
e9da6e99
MS
476 struct dma_pool *pool = &atomic_pool;
477 unsigned long pageno, count;
478 unsigned long flags;
c7909509 479
e9da6e99 480 if (start < pool->vaddr || start > pool->vaddr + pool->size)
c7909509
MS
481 return 0;
482
e9da6e99
MS
483 if (start + size > pool->vaddr + pool->size) {
484 WARN(1, "freeing wrong coherent size from pool\n");
485 return 0;
c7909509
MS
486 }
487
e9da6e99
MS
488 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
489 count = size >> PAGE_SHIFT;
490
491 spin_lock_irqsave(&pool->lock, flags);
492 bitmap_clear(pool->bitmap, pageno, count);
493 spin_unlock_irqrestore(&pool->lock, flags);
494
c7909509
MS
495 return 1;
496}
497
498static void *__alloc_from_contiguous(struct device *dev, size_t size,
499 pgprot_t prot, struct page **ret_page)
500{
501 unsigned long order = get_order(size);
502 size_t count = size >> PAGE_SHIFT;
503 struct page *page;
504
505 page = dma_alloc_from_contiguous(dev, count, order);
506 if (!page)
507 return NULL;
508
509 __dma_clear_buffer(page, size);
510 __dma_remap(page, size, prot);
511
512 *ret_page = page;
513 return page_address(page);
514}
515
516static void __free_from_contiguous(struct device *dev, struct page *page,
517 size_t size)
518{
519 __dma_remap(page, size, pgprot_kernel);
520 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
521}
522
f99d6034
MS
523static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
524{
525 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
526 pgprot_writecombine(prot) :
527 pgprot_dmacoherent(prot);
528 return prot;
529}
530
c7909509
MS
531#define nommu() 0
532
ab6494f0 533#else /* !CONFIG_MMU */
695ae0af 534
c7909509
MS
535#define nommu() 1
536
f99d6034 537#define __get_dma_pgprot(attrs, prot) __pgprot(0)
c7909509 538#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
e9da6e99 539#define __alloc_from_pool(size, ret_page) NULL
c7909509
MS
540#define __alloc_from_contiguous(dev, size, prot, ret) NULL
541#define __free_from_pool(cpu_addr, size) 0
542#define __free_from_contiguous(dev, page, size) do { } while (0)
543#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
544
545#endif /* CONFIG_MMU */
546
c7909509
MS
547static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
548 struct page **ret_page)
ab6494f0 549{
c7909509
MS
550 struct page *page;
551 page = __dma_alloc_buffer(dev, size, gfp);
552 if (!page)
553 return NULL;
554
555 *ret_page = page;
556 return page_address(page);
557}
558
559
560
561static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
562 gfp_t gfp, pgprot_t prot, const void *caller)
563{
564 u64 mask = get_coherent_dma_mask(dev);
04da5694 565 struct page *page;
31ebf944 566 void *addr;
ab6494f0 567
c7909509
MS
568#ifdef CONFIG_DMA_API_DEBUG
569 u64 limit = (mask + 1) & ~mask;
570 if (limit && size >= limit) {
571 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
572 size, mask);
573 return NULL;
574 }
575#endif
576
577 if (!mask)
578 return NULL;
579
580 if (mask < 0xffffffffULL)
581 gfp |= GFP_DMA;
582
ea2e7057
SB
583 /*
584 * Following is a work-around (a.k.a. hack) to prevent pages
585 * with __GFP_COMP being passed to split_page() which cannot
586 * handle them. The real problem is that this flag probably
587 * should be 0 on ARM as it is not supported on this
588 * platform; see CONFIG_HUGETLBFS.
589 */
590 gfp &= ~(__GFP_COMP);
591
553ac788 592 *handle = DMA_ERROR_CODE;
04da5694 593 size = PAGE_ALIGN(size);
ab6494f0 594
c7909509
MS
595 if (arch_is_coherent() || nommu())
596 addr = __alloc_simple_buffer(dev, size, gfp, &page);
e9da6e99
MS
597 else if (gfp & GFP_ATOMIC)
598 addr = __alloc_from_pool(size, &page);
f1ae98da 599 else if (!IS_ENABLED(CONFIG_CMA))
c7909509 600 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
31ebf944 601 else
c7909509 602 addr = __alloc_from_contiguous(dev, size, prot, &page);
695ae0af 603
31ebf944 604 if (addr)
9eedd963 605 *handle = pfn_to_dma(dev, page_to_pfn(page));
695ae0af 606
31ebf944
RK
607 return addr;
608}
1da177e4
LT
609
610/*
611 * Allocate DMA-coherent memory space and return both the kernel remapped
612 * virtual and bus address for that space.
613 */
f99d6034
MS
614void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
615 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 616{
f99d6034 617 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1fe53268
DB
618 void *memory;
619
620 if (dma_alloc_from_coherent(dev, size, handle, &memory))
621 return memory;
622
f99d6034 623 return __dma_alloc(dev, size, handle, gfp, prot,
45cd5290 624 __builtin_return_address(0));
1da177e4 625}
1da177e4
LT
626
627/*
f99d6034 628 * Create userspace mapping for the DMA-coherent memory.
1da177e4 629 */
f99d6034
MS
630int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
631 void *cpu_addr, dma_addr_t dma_addr, size_t size,
632 struct dma_attrs *attrs)
1da177e4 633{
ab6494f0
CM
634 int ret = -ENXIO;
635#ifdef CONFIG_MMU
50262a4b
MS
636 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
637 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 638 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
639 unsigned long off = vma->vm_pgoff;
640
f99d6034
MS
641 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
642
47142f07
MS
643 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
644 return ret;
645
50262a4b
MS
646 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
647 ret = remap_pfn_range(vma, vma->vm_start,
648 pfn + off,
649 vma->vm_end - vma->vm_start,
650 vma->vm_page_prot);
651 }
ab6494f0 652#endif /* CONFIG_MMU */
1da177e4
LT
653
654 return ret;
655}
656
1da177e4 657/*
c7909509 658 * Free a buffer as defined by the above mapping.
1da177e4 659 */
f99d6034
MS
660void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
661 dma_addr_t handle, struct dma_attrs *attrs)
1da177e4 662{
c7909509 663 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
5edf71ae 664
1fe53268
DB
665 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
666 return;
667
3e82d012
RK
668 size = PAGE_ALIGN(size);
669
c7909509
MS
670 if (arch_is_coherent() || nommu()) {
671 __dma_free_buffer(page, size);
d9e0d149
AK
672 } else if (__free_from_pool(cpu_addr, size)) {
673 return;
f1ae98da 674 } else if (!IS_ENABLED(CONFIG_CMA)) {
695ae0af 675 __dma_free_remap(cpu_addr, size);
c7909509
MS
676 __dma_free_buffer(page, size);
677 } else {
c7909509
MS
678 /*
679 * Non-atomic allocations cannot be freed with IRQs disabled
680 */
681 WARN_ON(irqs_disabled());
682 __free_from_contiguous(dev, page, size);
683 }
1da177e4 684}
afd1a321 685
dc2832e1
MS
686int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
687 void *cpu_addr, dma_addr_t handle, size_t size,
688 struct dma_attrs *attrs)
689{
690 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
691 int ret;
692
693 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
694 if (unlikely(ret))
695 return ret;
696
697 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
698 return 0;
699}
700
4ea0d737 701static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
702 size_t size, enum dma_data_direction dir,
703 void (*op)(const void *, size_t, int))
43377453
NP
704{
705 /*
706 * A single sg entry may refer to multiple physically contiguous
707 * pages. But we still need to process highmem pages individually.
708 * If highmem is not configured then the bulk of this loop gets
709 * optimized out.
710 */
711 size_t left = size;
712 do {
713 size_t len = left;
93f1d629
RK
714 void *vaddr;
715
716 if (PageHighMem(page)) {
717 if (len + offset > PAGE_SIZE) {
718 if (offset >= PAGE_SIZE) {
719 page += offset / PAGE_SIZE;
720 offset %= PAGE_SIZE;
721 }
722 len = PAGE_SIZE - offset;
723 }
724 vaddr = kmap_high_get(page);
725 if (vaddr) {
726 vaddr += offset;
a9c9147e 727 op(vaddr, len, dir);
93f1d629 728 kunmap_high(page);
7e5a69e8 729 } else if (cache_is_vipt()) {
39af22a7
NP
730 /* unmapped pages might still be cached */
731 vaddr = kmap_atomic(page);
7e5a69e8 732 op(vaddr + offset, len, dir);
39af22a7 733 kunmap_atomic(vaddr);
43377453 734 }
93f1d629
RK
735 } else {
736 vaddr = page_address(page) + offset;
a9c9147e 737 op(vaddr, len, dir);
43377453 738 }
43377453
NP
739 offset = 0;
740 page++;
741 left -= len;
742 } while (left);
743}
4ea0d737 744
51fde349
MS
745/*
746 * Make an area consistent for devices.
747 * Note: Drivers should NOT use this function directly, as it will break
748 * platforms with CONFIG_DMABOUNCE.
749 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
750 */
751static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
752 size_t size, enum dma_data_direction dir)
753{
65af191a 754 unsigned long paddr;
65af191a 755
a9c9147e 756 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
757
758 paddr = page_to_phys(page) + off;
2ffe2da3
RK
759 if (dir == DMA_FROM_DEVICE) {
760 outer_inv_range(paddr, paddr + size);
761 } else {
762 outer_clean_range(paddr, paddr + size);
763 }
764 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 765}
4ea0d737 766
51fde349 767static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
768 size_t size, enum dma_data_direction dir)
769{
2ffe2da3
RK
770 unsigned long paddr = page_to_phys(page) + off;
771
772 /* FIXME: non-speculating: not required */
773 /* don't bother invalidating if DMA to device */
774 if (dir != DMA_TO_DEVICE)
775 outer_inv_range(paddr, paddr + size);
776
a9c9147e 777 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
c0177800
CM
778
779 /*
780 * Mark the D-cache clean for this page to avoid extra flushing.
781 */
782 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
783 set_bit(PG_dcache_clean, &page->flags);
4ea0d737 784}
43377453 785
afd1a321 786/**
2a550e73 787 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
788 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
789 * @sg: list of buffers
790 * @nents: number of buffers to map
791 * @dir: DMA transfer direction
792 *
793 * Map a set of buffers described by scatterlist in streaming mode for DMA.
794 * This is the scatter-gather version of the dma_map_single interface.
795 * Here the scatter gather list elements are each tagged with the
796 * appropriate dma address and length. They are obtained via
797 * sg_dma_{address,length}.
798 *
799 * Device ownership issues as mentioned for dma_map_single are the same
800 * here.
801 */
2dc6a016
MS
802int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
803 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 804{
2a550e73 805 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 806 struct scatterlist *s;
01135d92 807 int i, j;
afd1a321
RK
808
809 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
810#ifdef CONFIG_NEED_SG_DMA_LENGTH
811 s->dma_length = s->length;
812#endif
2a550e73
MS
813 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
814 s->length, dir, attrs);
01135d92
RK
815 if (dma_mapping_error(dev, s->dma_address))
816 goto bad_mapping;
afd1a321 817 }
afd1a321 818 return nents;
01135d92
RK
819
820 bad_mapping:
821 for_each_sg(sg, s, i, j)
2a550e73 822 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 823 return 0;
afd1a321 824}
afd1a321
RK
825
826/**
2a550e73 827 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
828 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
829 * @sg: list of buffers
0adfca6f 830 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
831 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
832 *
833 * Unmap a set of streaming mode DMA translations. Again, CPU access
834 * rules concerning calls here are the same as for dma_unmap_single().
835 */
2dc6a016
MS
836void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
837 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 838{
2a550e73 839 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 840 struct scatterlist *s;
01135d92 841
01135d92 842 int i;
24056f52 843
01135d92 844 for_each_sg(sg, s, nents, i)
2a550e73 845 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 846}
afd1a321
RK
847
848/**
2a550e73 849 * arm_dma_sync_sg_for_cpu
afd1a321
RK
850 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
851 * @sg: list of buffers
852 * @nents: number of buffers to map (returned from dma_map_sg)
853 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
854 */
2dc6a016 855void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
856 int nents, enum dma_data_direction dir)
857{
2a550e73 858 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
859 struct scatterlist *s;
860 int i;
861
2a550e73
MS
862 for_each_sg(sg, s, nents, i)
863 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
864 dir);
afd1a321 865}
afd1a321
RK
866
867/**
2a550e73 868 * arm_dma_sync_sg_for_device
afd1a321
RK
869 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
870 * @sg: list of buffers
871 * @nents: number of buffers to map (returned from dma_map_sg)
872 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
873 */
2dc6a016 874void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
875 int nents, enum dma_data_direction dir)
876{
2a550e73 877 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
878 struct scatterlist *s;
879 int i;
880
2a550e73
MS
881 for_each_sg(sg, s, nents, i)
882 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
883 dir);
afd1a321 884}
24056f52 885
022ae537
RK
886/*
887 * Return whether the given device DMA address mask can be supported
888 * properly. For example, if your device can only drive the low 24-bits
889 * during bus mastering, then you would pass 0x00ffffff as the mask
890 * to this function.
891 */
892int dma_supported(struct device *dev, u64 mask)
893{
894 if (mask < (u64)arm_dma_limit)
895 return 0;
896 return 1;
897}
898EXPORT_SYMBOL(dma_supported);
899
2dc6a016 900static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
901{
902 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
903 return -EIO;
904
022ae537 905 *dev->dma_mask = dma_mask;
022ae537
RK
906
907 return 0;
908}
022ae537 909
24056f52
RK
910#define PREALLOC_DMA_DEBUG_ENTRIES 4096
911
912static int __init dma_debug_do_init(void)
913{
914 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
915 return 0;
916}
917fs_initcall(dma_debug_do_init);
4ce63fcd
MS
918
919#ifdef CONFIG_ARM_DMA_USE_IOMMU
920
921/* IOMMU */
922
923static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
924 size_t size)
925{
926 unsigned int order = get_order(size);
927 unsigned int align = 0;
928 unsigned int count, start;
929 unsigned long flags;
930
931 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
932 (1 << mapping->order) - 1) >> mapping->order;
933
934 if (order > mapping->order)
935 align = (1 << (order - mapping->order)) - 1;
936
937 spin_lock_irqsave(&mapping->lock, flags);
938 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
939 count, align);
940 if (start > mapping->bits) {
941 spin_unlock_irqrestore(&mapping->lock, flags);
942 return DMA_ERROR_CODE;
943 }
944
945 bitmap_set(mapping->bitmap, start, count);
946 spin_unlock_irqrestore(&mapping->lock, flags);
947
948 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
949}
950
951static inline void __free_iova(struct dma_iommu_mapping *mapping,
952 dma_addr_t addr, size_t size)
953{
954 unsigned int start = (addr - mapping->base) >>
955 (mapping->order + PAGE_SHIFT);
956 unsigned int count = ((size >> PAGE_SHIFT) +
957 (1 << mapping->order) - 1) >> mapping->order;
958 unsigned long flags;
959
960 spin_lock_irqsave(&mapping->lock, flags);
961 bitmap_clear(mapping->bitmap, start, count);
962 spin_unlock_irqrestore(&mapping->lock, flags);
963}
964
965static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
966{
967 struct page **pages;
968 int count = size >> PAGE_SHIFT;
969 int array_size = count * sizeof(struct page *);
970 int i = 0;
971
972 if (array_size <= PAGE_SIZE)
973 pages = kzalloc(array_size, gfp);
974 else
975 pages = vzalloc(array_size);
976 if (!pages)
977 return NULL;
978
979 while (count) {
593f4735 980 int j, order = __fls(count);
4ce63fcd
MS
981
982 pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
983 while (!pages[i] && order)
984 pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
985 if (!pages[i])
986 goto error;
987
988 if (order)
989 split_page(pages[i], order);
990 j = 1 << order;
991 while (--j)
992 pages[i + j] = pages[i] + j;
993
994 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
995 i += 1 << order;
996 count -= 1 << order;
997 }
998
999 return pages;
1000error:
9fa8af91 1001 while (i--)
4ce63fcd
MS
1002 if (pages[i])
1003 __free_pages(pages[i], 0);
46c87852 1004 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1005 kfree(pages);
1006 else
1007 vfree(pages);
1008 return NULL;
1009}
1010
1011static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
1012{
1013 int count = size >> PAGE_SHIFT;
1014 int array_size = count * sizeof(struct page *);
1015 int i;
1016 for (i = 0; i < count; i++)
1017 if (pages[i])
1018 __free_pages(pages[i], 0);
46c87852 1019 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1020 kfree(pages);
1021 else
1022 vfree(pages);
1023 return 0;
1024}
1025
1026/*
1027 * Create a CPU mapping for a specified pages
1028 */
1029static void *
e9da6e99
MS
1030__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1031 const void *caller)
4ce63fcd 1032{
e9da6e99
MS
1033 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1034 struct vm_struct *area;
1035 unsigned long p;
4ce63fcd 1036
e9da6e99
MS
1037 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1038 caller);
1039 if (!area)
4ce63fcd 1040 return NULL;
4ce63fcd 1041
e9da6e99
MS
1042 area->pages = pages;
1043 area->nr_pages = nr_pages;
1044 p = (unsigned long)area->addr;
4ce63fcd 1045
e9da6e99
MS
1046 for (i = 0; i < nr_pages; i++) {
1047 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1048 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1049 goto err;
1050 p += PAGE_SIZE;
4ce63fcd 1051 }
e9da6e99
MS
1052 return area->addr;
1053err:
1054 unmap_kernel_range((unsigned long)area->addr, size);
1055 vunmap(area->addr);
4ce63fcd
MS
1056 return NULL;
1057}
1058
1059/*
1060 * Create a mapping in device IO address space for specified pages
1061 */
1062static dma_addr_t
1063__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1064{
1065 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1066 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1067 dma_addr_t dma_addr, iova;
1068 int i, ret = DMA_ERROR_CODE;
1069
1070 dma_addr = __alloc_iova(mapping, size);
1071 if (dma_addr == DMA_ERROR_CODE)
1072 return dma_addr;
1073
1074 iova = dma_addr;
1075 for (i = 0; i < count; ) {
1076 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1077 phys_addr_t phys = page_to_phys(pages[i]);
1078 unsigned int len, j;
1079
1080 for (j = i + 1; j < count; j++, next_pfn++)
1081 if (page_to_pfn(pages[j]) != next_pfn)
1082 break;
1083
1084 len = (j - i) << PAGE_SHIFT;
1085 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1086 if (ret < 0)
1087 goto fail;
1088 iova += len;
1089 i = j;
1090 }
1091 return dma_addr;
1092fail:
1093 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1094 __free_iova(mapping, dma_addr, size);
1095 return DMA_ERROR_CODE;
1096}
1097
1098static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1099{
1100 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1101
1102 /*
1103 * add optional in-page offset from iova to size and align
1104 * result to page size
1105 */
1106 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1107 iova &= PAGE_MASK;
1108
1109 iommu_unmap(mapping->domain, iova, size);
1110 __free_iova(mapping, iova, size);
1111 return 0;
1112}
1113
955c757e 1114static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1115{
1116 struct vm_struct *area;
1117
955c757e
MS
1118 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1119 return cpu_addr;
1120
e9da6e99
MS
1121 area = find_vm_area(cpu_addr);
1122 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1123 return area->pages;
1124 return NULL;
1125}
1126
4ce63fcd
MS
1127static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1128 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1129{
1130 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1131 struct page **pages;
1132 void *addr = NULL;
1133
1134 *handle = DMA_ERROR_CODE;
1135 size = PAGE_ALIGN(size);
1136
1137 pages = __iommu_alloc_buffer(dev, size, gfp);
1138 if (!pages)
1139 return NULL;
1140
1141 *handle = __iommu_create_mapping(dev, pages, size);
1142 if (*handle == DMA_ERROR_CODE)
1143 goto err_buffer;
1144
955c757e
MS
1145 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1146 return pages;
1147
e9da6e99
MS
1148 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1149 __builtin_return_address(0));
4ce63fcd
MS
1150 if (!addr)
1151 goto err_mapping;
1152
1153 return addr;
1154
1155err_mapping:
1156 __iommu_remove_mapping(dev, *handle, size);
1157err_buffer:
1158 __iommu_free_buffer(dev, pages, size);
1159 return NULL;
1160}
1161
1162static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1163 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1164 struct dma_attrs *attrs)
1165{
e9da6e99
MS
1166 unsigned long uaddr = vma->vm_start;
1167 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1168 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1169
1170 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1171
e9da6e99
MS
1172 if (!pages)
1173 return -ENXIO;
4ce63fcd 1174
e9da6e99
MS
1175 do {
1176 int ret = vm_insert_page(vma, uaddr, *pages++);
1177 if (ret) {
1178 pr_err("Remapping memory failed: %d\n", ret);
1179 return ret;
1180 }
1181 uaddr += PAGE_SIZE;
1182 usize -= PAGE_SIZE;
1183 } while (usize > 0);
4ce63fcd 1184
4ce63fcd
MS
1185 return 0;
1186}
1187
1188/*
1189 * free a page as defined by the above mapping.
1190 * Must not be called with IRQs disabled.
1191 */
1192void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1193 dma_addr_t handle, struct dma_attrs *attrs)
1194{
955c757e 1195 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1196 size = PAGE_ALIGN(size);
1197
e9da6e99
MS
1198 if (!pages) {
1199 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1200 return;
4ce63fcd 1201 }
e9da6e99 1202
955c757e
MS
1203 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1204 unmap_kernel_range((unsigned long)cpu_addr, size);
1205 vunmap(cpu_addr);
1206 }
e9da6e99
MS
1207
1208 __iommu_remove_mapping(dev, handle, size);
1209 __iommu_free_buffer(dev, pages, size);
4ce63fcd
MS
1210}
1211
dc2832e1
MS
1212static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1213 void *cpu_addr, dma_addr_t dma_addr,
1214 size_t size, struct dma_attrs *attrs)
1215{
1216 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1217 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1218
1219 if (!pages)
1220 return -ENXIO;
1221
1222 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1223 GFP_KERNEL);
4ce63fcd
MS
1224}
1225
1226/*
1227 * Map a part of the scatter-gather list into contiguous io address space
1228 */
1229static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1230 size_t size, dma_addr_t *handle,
97ef952a 1231 enum dma_data_direction dir, struct dma_attrs *attrs)
4ce63fcd
MS
1232{
1233 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1234 dma_addr_t iova, iova_base;
1235 int ret = 0;
1236 unsigned int count;
1237 struct scatterlist *s;
1238
1239 size = PAGE_ALIGN(size);
1240 *handle = DMA_ERROR_CODE;
1241
1242 iova_base = iova = __alloc_iova(mapping, size);
1243 if (iova == DMA_ERROR_CODE)
1244 return -ENOMEM;
1245
1246 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1247 phys_addr_t phys = page_to_phys(sg_page(s));
1248 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1249
97ef952a
MS
1250 if (!arch_is_coherent() &&
1251 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1252 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1253
1254 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1255 if (ret < 0)
1256 goto fail;
1257 count += len >> PAGE_SHIFT;
1258 iova += len;
1259 }
1260 *handle = iova_base;
1261
1262 return 0;
1263fail:
1264 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1265 __free_iova(mapping, iova_base, size);
1266 return ret;
1267}
1268
1269/**
1270 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1271 * @dev: valid struct device pointer
1272 * @sg: list of buffers
1273 * @nents: number of buffers to map
1274 * @dir: DMA transfer direction
1275 *
1276 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1277 * The scatter gather list elements are merged together (if possible) and
1278 * tagged with the appropriate dma address and length. They are obtained via
1279 * sg_dma_{address,length}.
1280 */
1281int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1282 enum dma_data_direction dir, struct dma_attrs *attrs)
1283{
1284 struct scatterlist *s = sg, *dma = sg, *start = sg;
1285 int i, count = 0;
1286 unsigned int offset = s->offset;
1287 unsigned int size = s->offset + s->length;
1288 unsigned int max = dma_get_max_seg_size(dev);
1289
1290 for (i = 1; i < nents; i++) {
1291 s = sg_next(s);
1292
1293 s->dma_address = DMA_ERROR_CODE;
1294 s->dma_length = 0;
1295
1296 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1297 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
97ef952a 1298 dir, attrs) < 0)
4ce63fcd
MS
1299 goto bad_mapping;
1300
1301 dma->dma_address += offset;
1302 dma->dma_length = size - offset;
1303
1304 size = offset = s->offset;
1305 start = s;
1306 dma = sg_next(dma);
1307 count += 1;
1308 }
1309 size += s->length;
1310 }
97ef952a 1311 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs) < 0)
4ce63fcd
MS
1312 goto bad_mapping;
1313
1314 dma->dma_address += offset;
1315 dma->dma_length = size - offset;
1316
1317 return count+1;
1318
1319bad_mapping:
1320 for_each_sg(sg, s, count, i)
1321 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1322 return 0;
1323}
1324
1325/**
1326 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1327 * @dev: valid struct device pointer
1328 * @sg: list of buffers
1329 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1330 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1331 *
1332 * Unmap a set of streaming mode DMA translations. Again, CPU access
1333 * rules concerning calls here are the same as for dma_unmap_single().
1334 */
1335void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1336 enum dma_data_direction dir, struct dma_attrs *attrs)
1337{
1338 struct scatterlist *s;
1339 int i;
1340
1341 for_each_sg(sg, s, nents, i) {
1342 if (sg_dma_len(s))
1343 __iommu_remove_mapping(dev, sg_dma_address(s),
1344 sg_dma_len(s));
97ef952a
MS
1345 if (!arch_is_coherent() &&
1346 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1347 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1348 s->length, dir);
1349 }
1350}
1351
1352/**
1353 * arm_iommu_sync_sg_for_cpu
1354 * @dev: valid struct device pointer
1355 * @sg: list of buffers
1356 * @nents: number of buffers to map (returned from dma_map_sg)
1357 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1358 */
1359void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1360 int nents, enum dma_data_direction dir)
1361{
1362 struct scatterlist *s;
1363 int i;
1364
1365 for_each_sg(sg, s, nents, i)
1366 if (!arch_is_coherent())
1367 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1368
1369}
1370
1371/**
1372 * arm_iommu_sync_sg_for_device
1373 * @dev: valid struct device pointer
1374 * @sg: list of buffers
1375 * @nents: number of buffers to map (returned from dma_map_sg)
1376 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1377 */
1378void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1379 int nents, enum dma_data_direction dir)
1380{
1381 struct scatterlist *s;
1382 int i;
1383
1384 for_each_sg(sg, s, nents, i)
1385 if (!arch_is_coherent())
1386 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1387}
1388
1389
1390/**
1391 * arm_iommu_map_page
1392 * @dev: valid struct device pointer
1393 * @page: page that buffer resides in
1394 * @offset: offset into page for start of buffer
1395 * @size: size of buffer to map
1396 * @dir: DMA transfer direction
1397 *
1398 * IOMMU aware version of arm_dma_map_page()
1399 */
1400static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1401 unsigned long offset, size_t size, enum dma_data_direction dir,
1402 struct dma_attrs *attrs)
1403{
1404 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1405 dma_addr_t dma_addr;
1406 int ret, len = PAGE_ALIGN(size + offset);
1407
97ef952a 1408 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1409 __dma_page_cpu_to_dev(page, offset, size, dir);
1410
1411 dma_addr = __alloc_iova(mapping, len);
1412 if (dma_addr == DMA_ERROR_CODE)
1413 return dma_addr;
1414
1415 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1416 if (ret < 0)
1417 goto fail;
1418
1419 return dma_addr + offset;
1420fail:
1421 __free_iova(mapping, dma_addr, len);
1422 return DMA_ERROR_CODE;
1423}
1424
1425/**
1426 * arm_iommu_unmap_page
1427 * @dev: valid struct device pointer
1428 * @handle: DMA address of buffer
1429 * @size: size of buffer (same as passed to dma_map_page)
1430 * @dir: DMA transfer direction (same as passed to dma_map_page)
1431 *
1432 * IOMMU aware version of arm_dma_unmap_page()
1433 */
1434static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1435 size_t size, enum dma_data_direction dir,
1436 struct dma_attrs *attrs)
1437{
1438 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1439 dma_addr_t iova = handle & PAGE_MASK;
1440 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1441 int offset = handle & ~PAGE_MASK;
1442 int len = PAGE_ALIGN(size + offset);
1443
1444 if (!iova)
1445 return;
1446
97ef952a 1447 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1448 __dma_page_dev_to_cpu(page, offset, size, dir);
1449
1450 iommu_unmap(mapping->domain, iova, len);
1451 __free_iova(mapping, iova, len);
1452}
1453
1454static void arm_iommu_sync_single_for_cpu(struct device *dev,
1455 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1456{
1457 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1458 dma_addr_t iova = handle & PAGE_MASK;
1459 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1460 unsigned int offset = handle & ~PAGE_MASK;
1461
1462 if (!iova)
1463 return;
1464
1465 if (!arch_is_coherent())
1466 __dma_page_dev_to_cpu(page, offset, size, dir);
1467}
1468
1469static void arm_iommu_sync_single_for_device(struct device *dev,
1470 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1471{
1472 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1473 dma_addr_t iova = handle & PAGE_MASK;
1474 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1475 unsigned int offset = handle & ~PAGE_MASK;
1476
1477 if (!iova)
1478 return;
1479
1480 __dma_page_cpu_to_dev(page, offset, size, dir);
1481}
1482
1483struct dma_map_ops iommu_ops = {
1484 .alloc = arm_iommu_alloc_attrs,
1485 .free = arm_iommu_free_attrs,
1486 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1487 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1488
1489 .map_page = arm_iommu_map_page,
1490 .unmap_page = arm_iommu_unmap_page,
1491 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1492 .sync_single_for_device = arm_iommu_sync_single_for_device,
1493
1494 .map_sg = arm_iommu_map_sg,
1495 .unmap_sg = arm_iommu_unmap_sg,
1496 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1497 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1498};
1499
1500/**
1501 * arm_iommu_create_mapping
1502 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1503 * @base: start address of the valid IO address space
1504 * @size: size of the valid IO address space
1505 * @order: accuracy of the IO addresses allocations
1506 *
1507 * Creates a mapping structure which holds information about used/unused
1508 * IO address ranges, which is required to perform memory allocation and
1509 * mapping with IOMMU aware functions.
1510 *
1511 * The client device need to be attached to the mapping with
1512 * arm_iommu_attach_device function.
1513 */
1514struct dma_iommu_mapping *
1515arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1516 int order)
1517{
1518 unsigned int count = size >> (PAGE_SHIFT + order);
1519 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1520 struct dma_iommu_mapping *mapping;
1521 int err = -ENOMEM;
1522
1523 if (!count)
1524 return ERR_PTR(-EINVAL);
1525
1526 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1527 if (!mapping)
1528 goto err;
1529
1530 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1531 if (!mapping->bitmap)
1532 goto err2;
1533
1534 mapping->base = base;
1535 mapping->bits = BITS_PER_BYTE * bitmap_size;
1536 mapping->order = order;
1537 spin_lock_init(&mapping->lock);
1538
1539 mapping->domain = iommu_domain_alloc(bus);
1540 if (!mapping->domain)
1541 goto err3;
1542
1543 kref_init(&mapping->kref);
1544 return mapping;
1545err3:
1546 kfree(mapping->bitmap);
1547err2:
1548 kfree(mapping);
1549err:
1550 return ERR_PTR(err);
1551}
1552
1553static void release_iommu_mapping(struct kref *kref)
1554{
1555 struct dma_iommu_mapping *mapping =
1556 container_of(kref, struct dma_iommu_mapping, kref);
1557
1558 iommu_domain_free(mapping->domain);
1559 kfree(mapping->bitmap);
1560 kfree(mapping);
1561}
1562
1563void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1564{
1565 if (mapping)
1566 kref_put(&mapping->kref, release_iommu_mapping);
1567}
1568
1569/**
1570 * arm_iommu_attach_device
1571 * @dev: valid struct device pointer
1572 * @mapping: io address space mapping structure (returned from
1573 * arm_iommu_create_mapping)
1574 *
1575 * Attaches specified io address space mapping to the provided device,
1576 * this replaces the dma operations (dma_map_ops pointer) with the
1577 * IOMMU aware version. More than one client might be attached to
1578 * the same io address space mapping.
1579 */
1580int arm_iommu_attach_device(struct device *dev,
1581 struct dma_iommu_mapping *mapping)
1582{
1583 int err;
1584
1585 err = iommu_attach_device(mapping->domain, dev);
1586 if (err)
1587 return err;
1588
1589 kref_get(&mapping->kref);
1590 dev->archdata.mapping = mapping;
1591 set_dma_ops(dev, &iommu_ops);
1592
1593 pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
1594 return 0;
1595}
1596
1597#endif