Linux 3.6
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
5a0e3ad6 14#include <linux/gfp.h>
1da177e4
LT
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
c7909509 20#include <linux/dma-contiguous.h>
39af22a7 21#include <linux/highmem.h>
c7909509 22#include <linux/memblock.h>
99d1717d 23#include <linux/slab.h>
4ce63fcd 24#include <linux/iommu.h>
e9da6e99 25#include <linux/io.h>
4ce63fcd 26#include <linux/vmalloc.h>
158e8bfe 27#include <linux/sizes.h>
1da177e4 28
23759dc6 29#include <asm/memory.h>
43377453 30#include <asm/highmem.h>
1da177e4 31#include <asm/cacheflush.h>
1da177e4 32#include <asm/tlbflush.h>
99d1717d 33#include <asm/mach/arch.h>
4ce63fcd 34#include <asm/dma-iommu.h>
c7909509
MS
35#include <asm/mach/map.h>
36#include <asm/system_info.h>
37#include <asm/dma-contiguous.h>
37134cd5 38
022ae537
RK
39#include "mm.h"
40
15237e1f
MS
41/*
42 * The DMA API is built upon the notion of "buffer ownership". A buffer
43 * is either exclusively owned by the CPU (and therefore may be accessed
44 * by it) or exclusively owned by the DMA device. These helper functions
45 * represent the transitions between these two ownership states.
46 *
47 * Note, however, that on later ARMs, this notion does not work due to
48 * speculative prefetches. We model our approach on the assumption that
49 * the CPU does do speculative prefetches, which means we clean caches
50 * before transfers and delay cache invalidation until transfer completion.
51 *
15237e1f 52 */
51fde349 53static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 54 size_t, enum dma_data_direction);
51fde349 55static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
56 size_t, enum dma_data_direction);
57
2dc6a016
MS
58/**
59 * arm_dma_map_page - map a portion of a page for streaming DMA
60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61 * @page: page that buffer resides in
62 * @offset: offset into page for start of buffer
63 * @size: size of buffer to map
64 * @dir: DMA transfer direction
65 *
66 * Ensure that any data held in the cache is appropriately discarded
67 * or written back.
68 *
69 * The device owns this memory once this call has completed. The CPU
70 * can regain ownership by calling dma_unmap_page().
71 */
51fde349 72static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
73 unsigned long offset, size_t size, enum dma_data_direction dir,
74 struct dma_attrs *attrs)
75{
97ef952a 76 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
77 __dma_page_cpu_to_dev(page, offset, size, dir);
78 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
79}
80
81/**
82 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
83 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
84 * @handle: DMA address of buffer
85 * @size: size of buffer (same as passed to dma_map_page)
86 * @dir: DMA transfer direction (same as passed to dma_map_page)
87 *
88 * Unmap a page streaming mode DMA translation. The handle and size
89 * must match what was provided in the previous dma_map_page() call.
90 * All other usages are undefined.
91 *
92 * After this call, reads by the CPU to the buffer are guaranteed to see
93 * whatever the device wrote there.
94 */
51fde349 95static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
96 size_t size, enum dma_data_direction dir,
97 struct dma_attrs *attrs)
98{
97ef952a 99 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
100 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
101 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
102}
103
51fde349 104static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
105 dma_addr_t handle, size_t size, enum dma_data_direction dir)
106{
107 unsigned int offset = handle & (PAGE_SIZE - 1);
108 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
51fde349
MS
109 if (!arch_is_coherent())
110 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
111}
112
51fde349 113static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
114 dma_addr_t handle, size_t size, enum dma_data_direction dir)
115{
116 unsigned int offset = handle & (PAGE_SIZE - 1);
117 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
51fde349
MS
118 if (!arch_is_coherent())
119 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
120}
121
122static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
123
124struct dma_map_ops arm_dma_ops = {
f99d6034
MS
125 .alloc = arm_dma_alloc,
126 .free = arm_dma_free,
127 .mmap = arm_dma_mmap,
dc2832e1 128 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
129 .map_page = arm_dma_map_page,
130 .unmap_page = arm_dma_unmap_page,
131 .map_sg = arm_dma_map_sg,
132 .unmap_sg = arm_dma_unmap_sg,
133 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
134 .sync_single_for_device = arm_dma_sync_single_for_device,
135 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
136 .sync_sg_for_device = arm_dma_sync_sg_for_device,
137 .set_dma_mask = arm_dma_set_mask,
138};
139EXPORT_SYMBOL(arm_dma_ops);
140
ab6494f0
CM
141static u64 get_coherent_dma_mask(struct device *dev)
142{
022ae537 143 u64 mask = (u64)arm_dma_limit;
ab6494f0
CM
144
145 if (dev) {
146 mask = dev->coherent_dma_mask;
147
148 /*
149 * Sanity check the DMA mask - it must be non-zero, and
150 * must be able to be satisfied by a DMA allocation.
151 */
152 if (mask == 0) {
153 dev_warn(dev, "coherent DMA mask is unset\n");
154 return 0;
155 }
156
022ae537 157 if ((~mask) & (u64)arm_dma_limit) {
ab6494f0
CM
158 dev_warn(dev, "coherent DMA mask %#llx is smaller "
159 "than system GFP_DMA mask %#llx\n",
022ae537 160 mask, (u64)arm_dma_limit);
ab6494f0
CM
161 return 0;
162 }
163 }
1da177e4 164
ab6494f0
CM
165 return mask;
166}
167
c7909509
MS
168static void __dma_clear_buffer(struct page *page, size_t size)
169{
170 void *ptr;
171 /*
172 * Ensure that the allocated pages are zeroed, and that any data
173 * lurking in the kernel direct-mapped region is invalidated.
174 */
175 ptr = page_address(page);
4ce63fcd
MS
176 if (ptr) {
177 memset(ptr, 0, size);
178 dmac_flush_range(ptr, ptr + size);
179 outer_flush_range(__pa(ptr), __pa(ptr) + size);
180 }
c7909509
MS
181}
182
7a9a32a9
RK
183/*
184 * Allocate a DMA buffer for 'dev' of size 'size' using the
185 * specified gfp mask. Note that 'size' must be page aligned.
186 */
187static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
188{
189 unsigned long order = get_order(size);
190 struct page *page, *p, *e;
7a9a32a9
RK
191
192 page = alloc_pages(gfp, order);
193 if (!page)
194 return NULL;
195
196 /*
197 * Now split the huge page and free the excess pages
198 */
199 split_page(page, order);
200 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
201 __free_page(p);
202
c7909509 203 __dma_clear_buffer(page, size);
7a9a32a9
RK
204
205 return page;
206}
207
208/*
209 * Free a DMA buffer. 'size' must be page aligned.
210 */
211static void __dma_free_buffer(struct page *page, size_t size)
212{
213 struct page *e = page + (size >> PAGE_SHIFT);
214
215 while (page < e) {
216 __free_page(page);
217 page++;
218 }
219}
220
ab6494f0 221#ifdef CONFIG_MMU
e9da6e99
MS
222#ifdef CONFIG_HUGETLB_PAGE
223#error ARM Coherent DMA allocator does not (yet) support huge TLB
224#endif
a5e9d38b 225
e9da6e99
MS
226static void *__alloc_from_contiguous(struct device *dev, size_t size,
227 pgprot_t prot, struct page **ret_page);
99d1717d 228
e9da6e99
MS
229static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
230 pgprot_t prot, struct page **ret_page,
231 const void *caller);
99d1717d 232
e9da6e99
MS
233static void *
234__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
235 const void *caller)
99d1717d 236{
e9da6e99
MS
237 struct vm_struct *area;
238 unsigned long addr;
99d1717d 239
e9da6e99
MS
240 /*
241 * DMA allocation can be mapped to user space, so lets
242 * set VM_USERMAP flags too.
243 */
244 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
245 caller);
246 if (!area)
247 return NULL;
248 addr = (unsigned long)area->addr;
249 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
99d1717d 250
e9da6e99
MS
251 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
252 vunmap((void *)addr);
253 return NULL;
254 }
255 return (void *)addr;
99d1717d 256}
1da177e4 257
e9da6e99 258static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 259{
e9da6e99
MS
260 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
261 struct vm_struct *area = find_vm_area(cpu_addr);
262 if (!area || (area->flags & flags) != flags) {
263 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
264 return;
99d1717d 265 }
e9da6e99
MS
266 unmap_kernel_range((unsigned long)cpu_addr, size);
267 vunmap(cpu_addr);
88c58f3b 268}
88c58f3b 269
6e5267aa
MS
270#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
271
e9da6e99
MS
272struct dma_pool {
273 size_t size;
274 spinlock_t lock;
275 unsigned long *bitmap;
276 unsigned long nr_pages;
277 void *vaddr;
6b3fe472 278 struct page **pages;
c7909509
MS
279};
280
e9da6e99 281static struct dma_pool atomic_pool = {
6e5267aa 282 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
e9da6e99 283};
c7909509
MS
284
285static int __init early_coherent_pool(char *p)
286{
e9da6e99 287 atomic_pool.size = memparse(p, &p);
c7909509
MS
288 return 0;
289}
290early_param("coherent_pool", early_coherent_pool);
291
6e5267aa
MS
292void __init init_dma_coherent_pool_size(unsigned long size)
293{
294 /*
295 * Catch any attempt to set the pool size too late.
296 */
297 BUG_ON(atomic_pool.vaddr);
298
299 /*
300 * Set architecture specific coherent pool size only if
301 * it has not been changed by kernel command line parameter.
302 */
303 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
304 atomic_pool.size = size;
305}
306
c7909509
MS
307/*
308 * Initialise the coherent pool for atomic allocations.
309 */
e9da6e99 310static int __init atomic_pool_init(void)
c7909509 311{
e9da6e99 312 struct dma_pool *pool = &atomic_pool;
c7909509 313 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
e9da6e99
MS
314 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
315 unsigned long *bitmap;
c7909509 316 struct page *page;
6b3fe472 317 struct page **pages;
c7909509 318 void *ptr;
e9da6e99 319 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
c7909509 320
e9da6e99
MS
321 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
322 if (!bitmap)
323 goto no_bitmap;
c7909509 324
6b3fe472
HD
325 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
326 if (!pages)
327 goto no_pages;
328
e9da6e99
MS
329 if (IS_ENABLED(CONFIG_CMA))
330 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
331 else
332 ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
333 &page, NULL);
c7909509 334 if (ptr) {
6b3fe472
HD
335 int i;
336
337 for (i = 0; i < nr_pages; i++)
338 pages[i] = page + i;
339
e9da6e99
MS
340 spin_lock_init(&pool->lock);
341 pool->vaddr = ptr;
6b3fe472 342 pool->pages = pages;
e9da6e99
MS
343 pool->bitmap = bitmap;
344 pool->nr_pages = nr_pages;
345 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
346 (unsigned)pool->size / 1024);
c7909509
MS
347 return 0;
348 }
ec10665c
SK
349
350 kfree(pages);
6b3fe472 351no_pages:
e9da6e99
MS
352 kfree(bitmap);
353no_bitmap:
354 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
355 (unsigned)pool->size / 1024);
c7909509
MS
356 return -ENOMEM;
357}
358/*
359 * CMA is activated by core_initcall, so we must be called after it.
360 */
e9da6e99 361postcore_initcall(atomic_pool_init);
c7909509
MS
362
363struct dma_contig_early_reserve {
364 phys_addr_t base;
365 unsigned long size;
366};
367
368static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
369
370static int dma_mmu_remap_num __initdata;
371
372void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
373{
374 dma_mmu_remap[dma_mmu_remap_num].base = base;
375 dma_mmu_remap[dma_mmu_remap_num].size = size;
376 dma_mmu_remap_num++;
377}
378
379void __init dma_contiguous_remap(void)
380{
381 int i;
382 for (i = 0; i < dma_mmu_remap_num; i++) {
383 phys_addr_t start = dma_mmu_remap[i].base;
384 phys_addr_t end = start + dma_mmu_remap[i].size;
385 struct map_desc map;
386 unsigned long addr;
387
388 if (end > arm_lowmem_limit)
389 end = arm_lowmem_limit;
390 if (start >= end)
39f78e70 391 continue;
c7909509
MS
392
393 map.pfn = __phys_to_pfn(start);
394 map.virtual = __phys_to_virt(start);
395 map.length = end - start;
396 map.type = MT_MEMORY_DMA_READY;
397
398 /*
399 * Clear previous low-memory mapping
400 */
401 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 402 addr += PMD_SIZE)
c7909509
MS
403 pmd_clear(pmd_off_k(addr));
404
405 iotable_init(&map, 1);
406 }
407}
408
c7909509
MS
409static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
410 void *data)
411{
412 struct page *page = virt_to_page(addr);
413 pgprot_t prot = *(pgprot_t *)data;
414
415 set_pte_ext(pte, mk_pte(page, prot), 0);
416 return 0;
417}
418
419static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
420{
421 unsigned long start = (unsigned long) page_address(page);
422 unsigned end = start + size;
423
424 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
425 dsb();
426 flush_tlb_kernel_range(start, end);
427}
428
429static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
430 pgprot_t prot, struct page **ret_page,
431 const void *caller)
432{
433 struct page *page;
434 void *ptr;
435 page = __dma_alloc_buffer(dev, size, gfp);
436 if (!page)
437 return NULL;
438
439 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
440 if (!ptr) {
441 __dma_free_buffer(page, size);
442 return NULL;
443 }
444
445 *ret_page = page;
446 return ptr;
447}
448
e9da6e99 449static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 450{
e9da6e99
MS
451 struct dma_pool *pool = &atomic_pool;
452 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
453 unsigned int pageno;
454 unsigned long flags;
455 void *ptr = NULL;
e4ea6918 456 unsigned long align_mask;
c7909509 457
e9da6e99
MS
458 if (!pool->vaddr) {
459 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
460 return NULL;
461 }
462
463 /*
464 * Align the region allocation - allocations from pool are rather
465 * small, so align them to their order in pages, minimum is a page
466 * size. This helps reduce fragmentation of the DMA space.
467 */
e4ea6918 468 align_mask = (1 << get_order(size)) - 1;
e9da6e99
MS
469
470 spin_lock_irqsave(&pool->lock, flags);
471 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
e4ea6918 472 0, count, align_mask);
e9da6e99
MS
473 if (pageno < pool->nr_pages) {
474 bitmap_set(pool->bitmap, pageno, count);
475 ptr = pool->vaddr + PAGE_SIZE * pageno;
6b3fe472 476 *ret_page = pool->pages[pageno];
fb71285f
MS
477 } else {
478 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
479 "Please increase it with coherent_pool= kernel parameter!\n",
480 (unsigned)pool->size / 1024);
c7909509 481 }
e9da6e99
MS
482 spin_unlock_irqrestore(&pool->lock, flags);
483
484 return ptr;
c7909509
MS
485}
486
21d0a759
HD
487static bool __in_atomic_pool(void *start, size_t size)
488{
489 struct dma_pool *pool = &atomic_pool;
490 void *end = start + size;
491 void *pool_start = pool->vaddr;
492 void *pool_end = pool->vaddr + pool->size;
493
f3d87524 494 if (start < pool_start || start >= pool_end)
21d0a759
HD
495 return false;
496
497 if (end <= pool_end)
498 return true;
499
500 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
501 start, end - 1, pool_start, pool_end - 1);
502
503 return false;
504}
505
e9da6e99 506static int __free_from_pool(void *start, size_t size)
c7909509 507{
e9da6e99
MS
508 struct dma_pool *pool = &atomic_pool;
509 unsigned long pageno, count;
510 unsigned long flags;
c7909509 511
21d0a759 512 if (!__in_atomic_pool(start, size))
c7909509
MS
513 return 0;
514
e9da6e99
MS
515 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
516 count = size >> PAGE_SHIFT;
517
518 spin_lock_irqsave(&pool->lock, flags);
519 bitmap_clear(pool->bitmap, pageno, count);
520 spin_unlock_irqrestore(&pool->lock, flags);
521
c7909509
MS
522 return 1;
523}
524
525static void *__alloc_from_contiguous(struct device *dev, size_t size,
526 pgprot_t prot, struct page **ret_page)
527{
528 unsigned long order = get_order(size);
529 size_t count = size >> PAGE_SHIFT;
530 struct page *page;
531
532 page = dma_alloc_from_contiguous(dev, count, order);
533 if (!page)
534 return NULL;
535
536 __dma_clear_buffer(page, size);
537 __dma_remap(page, size, prot);
538
539 *ret_page = page;
540 return page_address(page);
541}
542
543static void __free_from_contiguous(struct device *dev, struct page *page,
544 size_t size)
545{
546 __dma_remap(page, size, pgprot_kernel);
547 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
548}
549
f99d6034
MS
550static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
551{
552 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
553 pgprot_writecombine(prot) :
554 pgprot_dmacoherent(prot);
555 return prot;
556}
557
c7909509
MS
558#define nommu() 0
559
ab6494f0 560#else /* !CONFIG_MMU */
695ae0af 561
c7909509
MS
562#define nommu() 1
563
f99d6034 564#define __get_dma_pgprot(attrs, prot) __pgprot(0)
c7909509 565#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
e9da6e99 566#define __alloc_from_pool(size, ret_page) NULL
c7909509
MS
567#define __alloc_from_contiguous(dev, size, prot, ret) NULL
568#define __free_from_pool(cpu_addr, size) 0
569#define __free_from_contiguous(dev, page, size) do { } while (0)
570#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
571
572#endif /* CONFIG_MMU */
573
c7909509
MS
574static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
575 struct page **ret_page)
ab6494f0 576{
c7909509
MS
577 struct page *page;
578 page = __dma_alloc_buffer(dev, size, gfp);
579 if (!page)
580 return NULL;
581
582 *ret_page = page;
583 return page_address(page);
584}
585
586
587
588static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
589 gfp_t gfp, pgprot_t prot, const void *caller)
590{
591 u64 mask = get_coherent_dma_mask(dev);
04da5694 592 struct page *page;
31ebf944 593 void *addr;
ab6494f0 594
c7909509
MS
595#ifdef CONFIG_DMA_API_DEBUG
596 u64 limit = (mask + 1) & ~mask;
597 if (limit && size >= limit) {
598 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
599 size, mask);
600 return NULL;
601 }
602#endif
603
604 if (!mask)
605 return NULL;
606
607 if (mask < 0xffffffffULL)
608 gfp |= GFP_DMA;
609
ea2e7057
SB
610 /*
611 * Following is a work-around (a.k.a. hack) to prevent pages
612 * with __GFP_COMP being passed to split_page() which cannot
613 * handle them. The real problem is that this flag probably
614 * should be 0 on ARM as it is not supported on this
615 * platform; see CONFIG_HUGETLBFS.
616 */
617 gfp &= ~(__GFP_COMP);
618
553ac788 619 *handle = DMA_ERROR_CODE;
04da5694 620 size = PAGE_ALIGN(size);
ab6494f0 621
c7909509
MS
622 if (arch_is_coherent() || nommu())
623 addr = __alloc_simple_buffer(dev, size, gfp, &page);
e9da6e99
MS
624 else if (gfp & GFP_ATOMIC)
625 addr = __alloc_from_pool(size, &page);
f1ae98da 626 else if (!IS_ENABLED(CONFIG_CMA))
c7909509 627 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
31ebf944 628 else
c7909509 629 addr = __alloc_from_contiguous(dev, size, prot, &page);
695ae0af 630
31ebf944 631 if (addr)
9eedd963 632 *handle = pfn_to_dma(dev, page_to_pfn(page));
695ae0af 633
31ebf944
RK
634 return addr;
635}
1da177e4
LT
636
637/*
638 * Allocate DMA-coherent memory space and return both the kernel remapped
639 * virtual and bus address for that space.
640 */
f99d6034
MS
641void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
642 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 643{
f99d6034 644 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1fe53268
DB
645 void *memory;
646
647 if (dma_alloc_from_coherent(dev, size, handle, &memory))
648 return memory;
649
f99d6034 650 return __dma_alloc(dev, size, handle, gfp, prot,
45cd5290 651 __builtin_return_address(0));
1da177e4 652}
1da177e4
LT
653
654/*
f99d6034 655 * Create userspace mapping for the DMA-coherent memory.
1da177e4 656 */
f99d6034
MS
657int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
658 void *cpu_addr, dma_addr_t dma_addr, size_t size,
659 struct dma_attrs *attrs)
1da177e4 660{
ab6494f0
CM
661 int ret = -ENXIO;
662#ifdef CONFIG_MMU
50262a4b
MS
663 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
664 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 665 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
666 unsigned long off = vma->vm_pgoff;
667
f99d6034
MS
668 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
669
47142f07
MS
670 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
671 return ret;
672
50262a4b
MS
673 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
674 ret = remap_pfn_range(vma, vma->vm_start,
675 pfn + off,
676 vma->vm_end - vma->vm_start,
677 vma->vm_page_prot);
678 }
ab6494f0 679#endif /* CONFIG_MMU */
1da177e4
LT
680
681 return ret;
682}
683
1da177e4 684/*
c7909509 685 * Free a buffer as defined by the above mapping.
1da177e4 686 */
f99d6034
MS
687void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
688 dma_addr_t handle, struct dma_attrs *attrs)
1da177e4 689{
c7909509 690 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
5edf71ae 691
1fe53268
DB
692 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
693 return;
694
3e82d012
RK
695 size = PAGE_ALIGN(size);
696
c7909509
MS
697 if (arch_is_coherent() || nommu()) {
698 __dma_free_buffer(page, size);
d9e0d149
AK
699 } else if (__free_from_pool(cpu_addr, size)) {
700 return;
f1ae98da 701 } else if (!IS_ENABLED(CONFIG_CMA)) {
695ae0af 702 __dma_free_remap(cpu_addr, size);
c7909509
MS
703 __dma_free_buffer(page, size);
704 } else {
c7909509
MS
705 /*
706 * Non-atomic allocations cannot be freed with IRQs disabled
707 */
708 WARN_ON(irqs_disabled());
709 __free_from_contiguous(dev, page, size);
710 }
1da177e4 711}
afd1a321 712
dc2832e1
MS
713int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
714 void *cpu_addr, dma_addr_t handle, size_t size,
715 struct dma_attrs *attrs)
716{
717 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
718 int ret;
719
720 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
721 if (unlikely(ret))
722 return ret;
723
724 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
725 return 0;
726}
727
4ea0d737 728static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
729 size_t size, enum dma_data_direction dir,
730 void (*op)(const void *, size_t, int))
43377453
NP
731{
732 /*
733 * A single sg entry may refer to multiple physically contiguous
734 * pages. But we still need to process highmem pages individually.
735 * If highmem is not configured then the bulk of this loop gets
736 * optimized out.
737 */
738 size_t left = size;
739 do {
740 size_t len = left;
93f1d629
RK
741 void *vaddr;
742
743 if (PageHighMem(page)) {
744 if (len + offset > PAGE_SIZE) {
745 if (offset >= PAGE_SIZE) {
746 page += offset / PAGE_SIZE;
747 offset %= PAGE_SIZE;
748 }
749 len = PAGE_SIZE - offset;
750 }
751 vaddr = kmap_high_get(page);
752 if (vaddr) {
753 vaddr += offset;
a9c9147e 754 op(vaddr, len, dir);
93f1d629 755 kunmap_high(page);
7e5a69e8 756 } else if (cache_is_vipt()) {
39af22a7
NP
757 /* unmapped pages might still be cached */
758 vaddr = kmap_atomic(page);
7e5a69e8 759 op(vaddr + offset, len, dir);
39af22a7 760 kunmap_atomic(vaddr);
43377453 761 }
93f1d629
RK
762 } else {
763 vaddr = page_address(page) + offset;
a9c9147e 764 op(vaddr, len, dir);
43377453 765 }
43377453
NP
766 offset = 0;
767 page++;
768 left -= len;
769 } while (left);
770}
4ea0d737 771
51fde349
MS
772/*
773 * Make an area consistent for devices.
774 * Note: Drivers should NOT use this function directly, as it will break
775 * platforms with CONFIG_DMABOUNCE.
776 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
777 */
778static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
779 size_t size, enum dma_data_direction dir)
780{
65af191a 781 unsigned long paddr;
65af191a 782
a9c9147e 783 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
784
785 paddr = page_to_phys(page) + off;
2ffe2da3
RK
786 if (dir == DMA_FROM_DEVICE) {
787 outer_inv_range(paddr, paddr + size);
788 } else {
789 outer_clean_range(paddr, paddr + size);
790 }
791 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 792}
4ea0d737 793
51fde349 794static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
795 size_t size, enum dma_data_direction dir)
796{
2ffe2da3
RK
797 unsigned long paddr = page_to_phys(page) + off;
798
799 /* FIXME: non-speculating: not required */
800 /* don't bother invalidating if DMA to device */
801 if (dir != DMA_TO_DEVICE)
802 outer_inv_range(paddr, paddr + size);
803
a9c9147e 804 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
c0177800
CM
805
806 /*
807 * Mark the D-cache clean for this page to avoid extra flushing.
808 */
809 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
810 set_bit(PG_dcache_clean, &page->flags);
4ea0d737 811}
43377453 812
afd1a321 813/**
2a550e73 814 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
815 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
816 * @sg: list of buffers
817 * @nents: number of buffers to map
818 * @dir: DMA transfer direction
819 *
820 * Map a set of buffers described by scatterlist in streaming mode for DMA.
821 * This is the scatter-gather version of the dma_map_single interface.
822 * Here the scatter gather list elements are each tagged with the
823 * appropriate dma address and length. They are obtained via
824 * sg_dma_{address,length}.
825 *
826 * Device ownership issues as mentioned for dma_map_single are the same
827 * here.
828 */
2dc6a016
MS
829int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
830 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 831{
2a550e73 832 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 833 struct scatterlist *s;
01135d92 834 int i, j;
afd1a321
RK
835
836 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
837#ifdef CONFIG_NEED_SG_DMA_LENGTH
838 s->dma_length = s->length;
839#endif
2a550e73
MS
840 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
841 s->length, dir, attrs);
01135d92
RK
842 if (dma_mapping_error(dev, s->dma_address))
843 goto bad_mapping;
afd1a321 844 }
afd1a321 845 return nents;
01135d92
RK
846
847 bad_mapping:
848 for_each_sg(sg, s, i, j)
2a550e73 849 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 850 return 0;
afd1a321 851}
afd1a321
RK
852
853/**
2a550e73 854 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
855 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
856 * @sg: list of buffers
0adfca6f 857 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
858 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
859 *
860 * Unmap a set of streaming mode DMA translations. Again, CPU access
861 * rules concerning calls here are the same as for dma_unmap_single().
862 */
2dc6a016
MS
863void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
864 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 865{
2a550e73 866 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 867 struct scatterlist *s;
01135d92 868
01135d92 869 int i;
24056f52 870
01135d92 871 for_each_sg(sg, s, nents, i)
2a550e73 872 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 873}
afd1a321
RK
874
875/**
2a550e73 876 * arm_dma_sync_sg_for_cpu
afd1a321
RK
877 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
878 * @sg: list of buffers
879 * @nents: number of buffers to map (returned from dma_map_sg)
880 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
881 */
2dc6a016 882void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
883 int nents, enum dma_data_direction dir)
884{
2a550e73 885 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
886 struct scatterlist *s;
887 int i;
888
2a550e73
MS
889 for_each_sg(sg, s, nents, i)
890 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
891 dir);
afd1a321 892}
afd1a321
RK
893
894/**
2a550e73 895 * arm_dma_sync_sg_for_device
afd1a321
RK
896 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
897 * @sg: list of buffers
898 * @nents: number of buffers to map (returned from dma_map_sg)
899 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
900 */
2dc6a016 901void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
902 int nents, enum dma_data_direction dir)
903{
2a550e73 904 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
905 struct scatterlist *s;
906 int i;
907
2a550e73
MS
908 for_each_sg(sg, s, nents, i)
909 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
910 dir);
afd1a321 911}
24056f52 912
022ae537
RK
913/*
914 * Return whether the given device DMA address mask can be supported
915 * properly. For example, if your device can only drive the low 24-bits
916 * during bus mastering, then you would pass 0x00ffffff as the mask
917 * to this function.
918 */
919int dma_supported(struct device *dev, u64 mask)
920{
921 if (mask < (u64)arm_dma_limit)
922 return 0;
923 return 1;
924}
925EXPORT_SYMBOL(dma_supported);
926
2dc6a016 927static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
928{
929 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
930 return -EIO;
931
022ae537 932 *dev->dma_mask = dma_mask;
022ae537
RK
933
934 return 0;
935}
022ae537 936
24056f52
RK
937#define PREALLOC_DMA_DEBUG_ENTRIES 4096
938
939static int __init dma_debug_do_init(void)
940{
941 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
942 return 0;
943}
944fs_initcall(dma_debug_do_init);
4ce63fcd
MS
945
946#ifdef CONFIG_ARM_DMA_USE_IOMMU
947
948/* IOMMU */
949
950static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
951 size_t size)
952{
953 unsigned int order = get_order(size);
954 unsigned int align = 0;
955 unsigned int count, start;
956 unsigned long flags;
957
958 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
959 (1 << mapping->order) - 1) >> mapping->order;
960
961 if (order > mapping->order)
962 align = (1 << (order - mapping->order)) - 1;
963
964 spin_lock_irqsave(&mapping->lock, flags);
965 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
966 count, align);
967 if (start > mapping->bits) {
968 spin_unlock_irqrestore(&mapping->lock, flags);
969 return DMA_ERROR_CODE;
970 }
971
972 bitmap_set(mapping->bitmap, start, count);
973 spin_unlock_irqrestore(&mapping->lock, flags);
974
975 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
976}
977
978static inline void __free_iova(struct dma_iommu_mapping *mapping,
979 dma_addr_t addr, size_t size)
980{
981 unsigned int start = (addr - mapping->base) >>
982 (mapping->order + PAGE_SHIFT);
983 unsigned int count = ((size >> PAGE_SHIFT) +
984 (1 << mapping->order) - 1) >> mapping->order;
985 unsigned long flags;
986
987 spin_lock_irqsave(&mapping->lock, flags);
988 bitmap_clear(mapping->bitmap, start, count);
989 spin_unlock_irqrestore(&mapping->lock, flags);
990}
991
992static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
993{
994 struct page **pages;
995 int count = size >> PAGE_SHIFT;
996 int array_size = count * sizeof(struct page *);
997 int i = 0;
998
999 if (array_size <= PAGE_SIZE)
1000 pages = kzalloc(array_size, gfp);
1001 else
1002 pages = vzalloc(array_size);
1003 if (!pages)
1004 return NULL;
1005
1006 while (count) {
593f4735 1007 int j, order = __fls(count);
4ce63fcd
MS
1008
1009 pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
1010 while (!pages[i] && order)
1011 pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
1012 if (!pages[i])
1013 goto error;
1014
1015 if (order)
1016 split_page(pages[i], order);
1017 j = 1 << order;
1018 while (--j)
1019 pages[i + j] = pages[i] + j;
1020
1021 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1022 i += 1 << order;
1023 count -= 1 << order;
1024 }
1025
1026 return pages;
1027error:
9fa8af91 1028 while (i--)
4ce63fcd
MS
1029 if (pages[i])
1030 __free_pages(pages[i], 0);
46c87852 1031 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1032 kfree(pages);
1033 else
1034 vfree(pages);
1035 return NULL;
1036}
1037
1038static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
1039{
1040 int count = size >> PAGE_SHIFT;
1041 int array_size = count * sizeof(struct page *);
1042 int i;
1043 for (i = 0; i < count; i++)
1044 if (pages[i])
1045 __free_pages(pages[i], 0);
46c87852 1046 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1047 kfree(pages);
1048 else
1049 vfree(pages);
1050 return 0;
1051}
1052
1053/*
1054 * Create a CPU mapping for a specified pages
1055 */
1056static void *
e9da6e99
MS
1057__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1058 const void *caller)
4ce63fcd 1059{
e9da6e99
MS
1060 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1061 struct vm_struct *area;
1062 unsigned long p;
4ce63fcd 1063
e9da6e99
MS
1064 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1065 caller);
1066 if (!area)
4ce63fcd 1067 return NULL;
4ce63fcd 1068
e9da6e99
MS
1069 area->pages = pages;
1070 area->nr_pages = nr_pages;
1071 p = (unsigned long)area->addr;
4ce63fcd 1072
e9da6e99
MS
1073 for (i = 0; i < nr_pages; i++) {
1074 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1075 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1076 goto err;
1077 p += PAGE_SIZE;
4ce63fcd 1078 }
e9da6e99
MS
1079 return area->addr;
1080err:
1081 unmap_kernel_range((unsigned long)area->addr, size);
1082 vunmap(area->addr);
4ce63fcd
MS
1083 return NULL;
1084}
1085
1086/*
1087 * Create a mapping in device IO address space for specified pages
1088 */
1089static dma_addr_t
1090__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1091{
1092 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1093 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1094 dma_addr_t dma_addr, iova;
1095 int i, ret = DMA_ERROR_CODE;
1096
1097 dma_addr = __alloc_iova(mapping, size);
1098 if (dma_addr == DMA_ERROR_CODE)
1099 return dma_addr;
1100
1101 iova = dma_addr;
1102 for (i = 0; i < count; ) {
1103 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1104 phys_addr_t phys = page_to_phys(pages[i]);
1105 unsigned int len, j;
1106
1107 for (j = i + 1; j < count; j++, next_pfn++)
1108 if (page_to_pfn(pages[j]) != next_pfn)
1109 break;
1110
1111 len = (j - i) << PAGE_SHIFT;
1112 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1113 if (ret < 0)
1114 goto fail;
1115 iova += len;
1116 i = j;
1117 }
1118 return dma_addr;
1119fail:
1120 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1121 __free_iova(mapping, dma_addr, size);
1122 return DMA_ERROR_CODE;
1123}
1124
1125static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1126{
1127 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1128
1129 /*
1130 * add optional in-page offset from iova to size and align
1131 * result to page size
1132 */
1133 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1134 iova &= PAGE_MASK;
1135
1136 iommu_unmap(mapping->domain, iova, size);
1137 __free_iova(mapping, iova, size);
1138 return 0;
1139}
1140
665bad7b
HD
1141static struct page **__atomic_get_pages(void *addr)
1142{
1143 struct dma_pool *pool = &atomic_pool;
1144 struct page **pages = pool->pages;
1145 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1146
1147 return pages + offs;
1148}
1149
955c757e 1150static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1151{
1152 struct vm_struct *area;
1153
665bad7b
HD
1154 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1155 return __atomic_get_pages(cpu_addr);
1156
955c757e
MS
1157 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1158 return cpu_addr;
1159
e9da6e99
MS
1160 area = find_vm_area(cpu_addr);
1161 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1162 return area->pages;
1163 return NULL;
1164}
1165
479ed93a
HD
1166static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1167 dma_addr_t *handle)
1168{
1169 struct page *page;
1170 void *addr;
1171
1172 addr = __alloc_from_pool(size, &page);
1173 if (!addr)
1174 return NULL;
1175
1176 *handle = __iommu_create_mapping(dev, &page, size);
1177 if (*handle == DMA_ERROR_CODE)
1178 goto err_mapping;
1179
1180 return addr;
1181
1182err_mapping:
1183 __free_from_pool(addr, size);
1184 return NULL;
1185}
1186
1187static void __iommu_free_atomic(struct device *dev, struct page **pages,
1188 dma_addr_t handle, size_t size)
1189{
1190 __iommu_remove_mapping(dev, handle, size);
1191 __free_from_pool(page_address(pages[0]), size);
1192}
1193
4ce63fcd
MS
1194static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1195 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1196{
1197 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1198 struct page **pages;
1199 void *addr = NULL;
1200
1201 *handle = DMA_ERROR_CODE;
1202 size = PAGE_ALIGN(size);
1203
479ed93a
HD
1204 if (gfp & GFP_ATOMIC)
1205 return __iommu_alloc_atomic(dev, size, handle);
1206
4ce63fcd
MS
1207 pages = __iommu_alloc_buffer(dev, size, gfp);
1208 if (!pages)
1209 return NULL;
1210
1211 *handle = __iommu_create_mapping(dev, pages, size);
1212 if (*handle == DMA_ERROR_CODE)
1213 goto err_buffer;
1214
955c757e
MS
1215 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1216 return pages;
1217
e9da6e99
MS
1218 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1219 __builtin_return_address(0));
4ce63fcd
MS
1220 if (!addr)
1221 goto err_mapping;
1222
1223 return addr;
1224
1225err_mapping:
1226 __iommu_remove_mapping(dev, *handle, size);
1227err_buffer:
1228 __iommu_free_buffer(dev, pages, size);
1229 return NULL;
1230}
1231
1232static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1233 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1234 struct dma_attrs *attrs)
1235{
e9da6e99
MS
1236 unsigned long uaddr = vma->vm_start;
1237 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1238 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1239
1240 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1241
e9da6e99
MS
1242 if (!pages)
1243 return -ENXIO;
4ce63fcd 1244
e9da6e99
MS
1245 do {
1246 int ret = vm_insert_page(vma, uaddr, *pages++);
1247 if (ret) {
1248 pr_err("Remapping memory failed: %d\n", ret);
1249 return ret;
1250 }
1251 uaddr += PAGE_SIZE;
1252 usize -= PAGE_SIZE;
1253 } while (usize > 0);
4ce63fcd 1254
4ce63fcd
MS
1255 return 0;
1256}
1257
1258/*
1259 * free a page as defined by the above mapping.
1260 * Must not be called with IRQs disabled.
1261 */
1262void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1263 dma_addr_t handle, struct dma_attrs *attrs)
1264{
955c757e 1265 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1266 size = PAGE_ALIGN(size);
1267
e9da6e99
MS
1268 if (!pages) {
1269 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1270 return;
4ce63fcd 1271 }
e9da6e99 1272
479ed93a
HD
1273 if (__in_atomic_pool(cpu_addr, size)) {
1274 __iommu_free_atomic(dev, pages, handle, size);
1275 return;
1276 }
1277
955c757e
MS
1278 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1279 unmap_kernel_range((unsigned long)cpu_addr, size);
1280 vunmap(cpu_addr);
1281 }
e9da6e99
MS
1282
1283 __iommu_remove_mapping(dev, handle, size);
1284 __iommu_free_buffer(dev, pages, size);
4ce63fcd
MS
1285}
1286
dc2832e1
MS
1287static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1288 void *cpu_addr, dma_addr_t dma_addr,
1289 size_t size, struct dma_attrs *attrs)
1290{
1291 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1292 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1293
1294 if (!pages)
1295 return -ENXIO;
1296
1297 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1298 GFP_KERNEL);
4ce63fcd
MS
1299}
1300
1301/*
1302 * Map a part of the scatter-gather list into contiguous io address space
1303 */
1304static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1305 size_t size, dma_addr_t *handle,
97ef952a 1306 enum dma_data_direction dir, struct dma_attrs *attrs)
4ce63fcd
MS
1307{
1308 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1309 dma_addr_t iova, iova_base;
1310 int ret = 0;
1311 unsigned int count;
1312 struct scatterlist *s;
1313
1314 size = PAGE_ALIGN(size);
1315 *handle = DMA_ERROR_CODE;
1316
1317 iova_base = iova = __alloc_iova(mapping, size);
1318 if (iova == DMA_ERROR_CODE)
1319 return -ENOMEM;
1320
1321 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1322 phys_addr_t phys = page_to_phys(sg_page(s));
1323 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1324
97ef952a
MS
1325 if (!arch_is_coherent() &&
1326 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1327 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1328
1329 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1330 if (ret < 0)
1331 goto fail;
1332 count += len >> PAGE_SHIFT;
1333 iova += len;
1334 }
1335 *handle = iova_base;
1336
1337 return 0;
1338fail:
1339 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1340 __free_iova(mapping, iova_base, size);
1341 return ret;
1342}
1343
1344/**
1345 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1346 * @dev: valid struct device pointer
1347 * @sg: list of buffers
1348 * @nents: number of buffers to map
1349 * @dir: DMA transfer direction
1350 *
1351 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1352 * The scatter gather list elements are merged together (if possible) and
1353 * tagged with the appropriate dma address and length. They are obtained via
1354 * sg_dma_{address,length}.
1355 */
1356int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1357 enum dma_data_direction dir, struct dma_attrs *attrs)
1358{
1359 struct scatterlist *s = sg, *dma = sg, *start = sg;
1360 int i, count = 0;
1361 unsigned int offset = s->offset;
1362 unsigned int size = s->offset + s->length;
1363 unsigned int max = dma_get_max_seg_size(dev);
1364
1365 for (i = 1; i < nents; i++) {
1366 s = sg_next(s);
1367
1368 s->dma_address = DMA_ERROR_CODE;
1369 s->dma_length = 0;
1370
1371 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1372 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
97ef952a 1373 dir, attrs) < 0)
4ce63fcd
MS
1374 goto bad_mapping;
1375
1376 dma->dma_address += offset;
1377 dma->dma_length = size - offset;
1378
1379 size = offset = s->offset;
1380 start = s;
1381 dma = sg_next(dma);
1382 count += 1;
1383 }
1384 size += s->length;
1385 }
97ef952a 1386 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs) < 0)
4ce63fcd
MS
1387 goto bad_mapping;
1388
1389 dma->dma_address += offset;
1390 dma->dma_length = size - offset;
1391
1392 return count+1;
1393
1394bad_mapping:
1395 for_each_sg(sg, s, count, i)
1396 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1397 return 0;
1398}
1399
1400/**
1401 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1402 * @dev: valid struct device pointer
1403 * @sg: list of buffers
1404 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1405 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1406 *
1407 * Unmap a set of streaming mode DMA translations. Again, CPU access
1408 * rules concerning calls here are the same as for dma_unmap_single().
1409 */
1410void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1411 enum dma_data_direction dir, struct dma_attrs *attrs)
1412{
1413 struct scatterlist *s;
1414 int i;
1415
1416 for_each_sg(sg, s, nents, i) {
1417 if (sg_dma_len(s))
1418 __iommu_remove_mapping(dev, sg_dma_address(s),
1419 sg_dma_len(s));
97ef952a
MS
1420 if (!arch_is_coherent() &&
1421 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1422 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1423 s->length, dir);
1424 }
1425}
1426
1427/**
1428 * arm_iommu_sync_sg_for_cpu
1429 * @dev: valid struct device pointer
1430 * @sg: list of buffers
1431 * @nents: number of buffers to map (returned from dma_map_sg)
1432 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1433 */
1434void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1435 int nents, enum dma_data_direction dir)
1436{
1437 struct scatterlist *s;
1438 int i;
1439
1440 for_each_sg(sg, s, nents, i)
1441 if (!arch_is_coherent())
1442 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1443
1444}
1445
1446/**
1447 * arm_iommu_sync_sg_for_device
1448 * @dev: valid struct device pointer
1449 * @sg: list of buffers
1450 * @nents: number of buffers to map (returned from dma_map_sg)
1451 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1452 */
1453void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1454 int nents, enum dma_data_direction dir)
1455{
1456 struct scatterlist *s;
1457 int i;
1458
1459 for_each_sg(sg, s, nents, i)
1460 if (!arch_is_coherent())
1461 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1462}
1463
1464
1465/**
1466 * arm_iommu_map_page
1467 * @dev: valid struct device pointer
1468 * @page: page that buffer resides in
1469 * @offset: offset into page for start of buffer
1470 * @size: size of buffer to map
1471 * @dir: DMA transfer direction
1472 *
1473 * IOMMU aware version of arm_dma_map_page()
1474 */
1475static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1476 unsigned long offset, size_t size, enum dma_data_direction dir,
1477 struct dma_attrs *attrs)
1478{
1479 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1480 dma_addr_t dma_addr;
1481 int ret, len = PAGE_ALIGN(size + offset);
1482
97ef952a 1483 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1484 __dma_page_cpu_to_dev(page, offset, size, dir);
1485
1486 dma_addr = __alloc_iova(mapping, len);
1487 if (dma_addr == DMA_ERROR_CODE)
1488 return dma_addr;
1489
1490 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1491 if (ret < 0)
1492 goto fail;
1493
1494 return dma_addr + offset;
1495fail:
1496 __free_iova(mapping, dma_addr, len);
1497 return DMA_ERROR_CODE;
1498}
1499
1500/**
1501 * arm_iommu_unmap_page
1502 * @dev: valid struct device pointer
1503 * @handle: DMA address of buffer
1504 * @size: size of buffer (same as passed to dma_map_page)
1505 * @dir: DMA transfer direction (same as passed to dma_map_page)
1506 *
1507 * IOMMU aware version of arm_dma_unmap_page()
1508 */
1509static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1510 size_t size, enum dma_data_direction dir,
1511 struct dma_attrs *attrs)
1512{
1513 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1514 dma_addr_t iova = handle & PAGE_MASK;
1515 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1516 int offset = handle & ~PAGE_MASK;
1517 int len = PAGE_ALIGN(size + offset);
1518
1519 if (!iova)
1520 return;
1521
97ef952a 1522 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1523 __dma_page_dev_to_cpu(page, offset, size, dir);
1524
1525 iommu_unmap(mapping->domain, iova, len);
1526 __free_iova(mapping, iova, len);
1527}
1528
1529static void arm_iommu_sync_single_for_cpu(struct device *dev,
1530 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1531{
1532 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1533 dma_addr_t iova = handle & PAGE_MASK;
1534 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1535 unsigned int offset = handle & ~PAGE_MASK;
1536
1537 if (!iova)
1538 return;
1539
1540 if (!arch_is_coherent())
1541 __dma_page_dev_to_cpu(page, offset, size, dir);
1542}
1543
1544static void arm_iommu_sync_single_for_device(struct device *dev,
1545 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1546{
1547 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1548 dma_addr_t iova = handle & PAGE_MASK;
1549 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1550 unsigned int offset = handle & ~PAGE_MASK;
1551
1552 if (!iova)
1553 return;
1554
1555 __dma_page_cpu_to_dev(page, offset, size, dir);
1556}
1557
1558struct dma_map_ops iommu_ops = {
1559 .alloc = arm_iommu_alloc_attrs,
1560 .free = arm_iommu_free_attrs,
1561 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1562 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1563
1564 .map_page = arm_iommu_map_page,
1565 .unmap_page = arm_iommu_unmap_page,
1566 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1567 .sync_single_for_device = arm_iommu_sync_single_for_device,
1568
1569 .map_sg = arm_iommu_map_sg,
1570 .unmap_sg = arm_iommu_unmap_sg,
1571 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1572 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1573};
1574
1575/**
1576 * arm_iommu_create_mapping
1577 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1578 * @base: start address of the valid IO address space
1579 * @size: size of the valid IO address space
1580 * @order: accuracy of the IO addresses allocations
1581 *
1582 * Creates a mapping structure which holds information about used/unused
1583 * IO address ranges, which is required to perform memory allocation and
1584 * mapping with IOMMU aware functions.
1585 *
1586 * The client device need to be attached to the mapping with
1587 * arm_iommu_attach_device function.
1588 */
1589struct dma_iommu_mapping *
1590arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1591 int order)
1592{
1593 unsigned int count = size >> (PAGE_SHIFT + order);
1594 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1595 struct dma_iommu_mapping *mapping;
1596 int err = -ENOMEM;
1597
1598 if (!count)
1599 return ERR_PTR(-EINVAL);
1600
1601 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1602 if (!mapping)
1603 goto err;
1604
1605 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1606 if (!mapping->bitmap)
1607 goto err2;
1608
1609 mapping->base = base;
1610 mapping->bits = BITS_PER_BYTE * bitmap_size;
1611 mapping->order = order;
1612 spin_lock_init(&mapping->lock);
1613
1614 mapping->domain = iommu_domain_alloc(bus);
1615 if (!mapping->domain)
1616 goto err3;
1617
1618 kref_init(&mapping->kref);
1619 return mapping;
1620err3:
1621 kfree(mapping->bitmap);
1622err2:
1623 kfree(mapping);
1624err:
1625 return ERR_PTR(err);
1626}
1627
1628static void release_iommu_mapping(struct kref *kref)
1629{
1630 struct dma_iommu_mapping *mapping =
1631 container_of(kref, struct dma_iommu_mapping, kref);
1632
1633 iommu_domain_free(mapping->domain);
1634 kfree(mapping->bitmap);
1635 kfree(mapping);
1636}
1637
1638void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1639{
1640 if (mapping)
1641 kref_put(&mapping->kref, release_iommu_mapping);
1642}
1643
1644/**
1645 * arm_iommu_attach_device
1646 * @dev: valid struct device pointer
1647 * @mapping: io address space mapping structure (returned from
1648 * arm_iommu_create_mapping)
1649 *
1650 * Attaches specified io address space mapping to the provided device,
1651 * this replaces the dma operations (dma_map_ops pointer) with the
1652 * IOMMU aware version. More than one client might be attached to
1653 * the same io address space mapping.
1654 */
1655int arm_iommu_attach_device(struct device *dev,
1656 struct dma_iommu_mapping *mapping)
1657{
1658 int err;
1659
1660 err = iommu_attach_device(mapping->domain, dev);
1661 if (err)
1662 return err;
1663
1664 kref_get(&mapping->kref);
1665 dev->archdata.mapping = mapping;
1666 set_dma_ops(dev, &iommu_ops);
1667
1668 pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
1669 return 0;
1670}
1671
1672#endif