ARM: dma-mapping: simplify dma_cache_maint_page
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
14#include <linux/slab.h>
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
20
23759dc6 21#include <asm/memory.h>
43377453 22#include <asm/highmem.h>
1da177e4 23#include <asm/cacheflush.h>
1da177e4 24#include <asm/tlbflush.h>
37134cd5
KH
25#include <asm/sizes.h>
26
27/* Sanity check size */
28#if (CONSISTENT_DMA_SIZE % SZ_2M)
29#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
30#endif
1da177e4 31
1da177e4 32#define CONSISTENT_END (0xffe00000)
37134cd5
KH
33#define CONSISTENT_BASE (CONSISTENT_END - CONSISTENT_DMA_SIZE)
34
1da177e4 35#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
37134cd5
KH
36#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
37#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
38
ab6494f0
CM
39static u64 get_coherent_dma_mask(struct device *dev)
40{
41 u64 mask = ISA_DMA_THRESHOLD;
42
43 if (dev) {
44 mask = dev->coherent_dma_mask;
45
46 /*
47 * Sanity check the DMA mask - it must be non-zero, and
48 * must be able to be satisfied by a DMA allocation.
49 */
50 if (mask == 0) {
51 dev_warn(dev, "coherent DMA mask is unset\n");
52 return 0;
53 }
54
55 if ((~mask) & ISA_DMA_THRESHOLD) {
56 dev_warn(dev, "coherent DMA mask %#llx is smaller "
57 "than system GFP_DMA mask %#llx\n",
58 mask, (unsigned long long)ISA_DMA_THRESHOLD);
59 return 0;
60 }
61 }
1da177e4 62
ab6494f0
CM
63 return mask;
64}
65
7a9a32a9
RK
66/*
67 * Allocate a DMA buffer for 'dev' of size 'size' using the
68 * specified gfp mask. Note that 'size' must be page aligned.
69 */
70static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
71{
72 unsigned long order = get_order(size);
73 struct page *page, *p, *e;
74 void *ptr;
75 u64 mask = get_coherent_dma_mask(dev);
76
77#ifdef CONFIG_DMA_API_DEBUG
78 u64 limit = (mask + 1) & ~mask;
79 if (limit && size >= limit) {
80 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
81 size, mask);
82 return NULL;
83 }
84#endif
85
86 if (!mask)
87 return NULL;
88
89 if (mask < 0xffffffffULL)
90 gfp |= GFP_DMA;
91
92 page = alloc_pages(gfp, order);
93 if (!page)
94 return NULL;
95
96 /*
97 * Now split the huge page and free the excess pages
98 */
99 split_page(page, order);
100 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
101 __free_page(p);
102
103 /*
104 * Ensure that the allocated pages are zeroed, and that any data
105 * lurking in the kernel direct-mapped region is invalidated.
106 */
107 ptr = page_address(page);
108 memset(ptr, 0, size);
109 dmac_flush_range(ptr, ptr + size);
110 outer_flush_range(__pa(ptr), __pa(ptr) + size);
111
112 return page;
113}
114
115/*
116 * Free a DMA buffer. 'size' must be page aligned.
117 */
118static void __dma_free_buffer(struct page *page, size_t size)
119{
120 struct page *e = page + (size >> PAGE_SHIFT);
121
122 while (page < e) {
123 __free_page(page);
124 page++;
125 }
126}
127
ab6494f0 128#ifdef CONFIG_MMU
1da177e4 129/*
37134cd5 130 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
1da177e4 131 */
37134cd5 132static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
1da177e4 133
13ccf3ad 134#include "vmregion.h"
1da177e4 135
13ccf3ad
RK
136static struct arm_vmregion_head consistent_head = {
137 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
1da177e4
LT
138 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
139 .vm_start = CONSISTENT_BASE,
140 .vm_end = CONSISTENT_END,
141};
142
1da177e4
LT
143#ifdef CONFIG_HUGETLB_PAGE
144#error ARM Coherent DMA allocator does not (yet) support huge TLB
145#endif
146
88c58f3b
RK
147/*
148 * Initialise the consistent memory allocation.
149 */
150static int __init consistent_init(void)
151{
152 int ret = 0;
153 pgd_t *pgd;
154 pmd_t *pmd;
155 pte_t *pte;
156 int i = 0;
157 u32 base = CONSISTENT_BASE;
158
159 do {
160 pgd = pgd_offset(&init_mm, base);
161 pmd = pmd_alloc(&init_mm, pgd, base);
162 if (!pmd) {
163 printk(KERN_ERR "%s: no pmd tables\n", __func__);
164 ret = -ENOMEM;
165 break;
166 }
167 WARN_ON(!pmd_none(*pmd));
168
169 pte = pte_alloc_kernel(pmd, base);
170 if (!pte) {
171 printk(KERN_ERR "%s: no pte tables\n", __func__);
172 ret = -ENOMEM;
173 break;
174 }
175
176 consistent_pte[i++] = pte;
177 base += (1 << PGDIR_SHIFT);
178 } while (base < CONSISTENT_END);
179
180 return ret;
181}
182
183core_initcall(consistent_init);
184
1da177e4 185static void *
31ebf944 186__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
1da177e4 187{
13ccf3ad 188 struct arm_vmregion *c;
1da177e4 189
ebd7a845
RK
190 if (!consistent_pte[0]) {
191 printk(KERN_ERR "%s: not initialised\n", __func__);
192 dump_stack();
ebd7a845
RK
193 return NULL;
194 }
195
1da177e4
LT
196 /*
197 * Allocate a virtual address in the consistent mapping region.
198 */
13ccf3ad 199 c = arm_vmregion_alloc(&consistent_head, size,
1da177e4
LT
200 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
201 if (c) {
37134cd5 202 pte_t *pte;
37134cd5
KH
203 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
204 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
1da177e4 205
37134cd5 206 pte = consistent_pte[idx] + off;
1da177e4
LT
207 c->vm_pages = page;
208
1da177e4
LT
209 do {
210 BUG_ON(!pte_none(*pte));
211
ad1ae2fe 212 set_pte_ext(pte, mk_pte(page, prot), 0);
1da177e4
LT
213 page++;
214 pte++;
37134cd5
KH
215 off++;
216 if (off >= PTRS_PER_PTE) {
217 off = 0;
218 pte = consistent_pte[++idx];
219 }
1da177e4
LT
220 } while (size -= PAGE_SIZE);
221
1da177e4
LT
222 return (void *)c->vm_start;
223 }
1da177e4
LT
224 return NULL;
225}
695ae0af
RK
226
227static void __dma_free_remap(void *cpu_addr, size_t size)
228{
229 struct arm_vmregion *c;
230 unsigned long addr;
231 pte_t *ptep;
232 int idx;
233 u32 off;
234
235 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
236 if (!c) {
237 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
238 __func__, cpu_addr);
239 dump_stack();
240 return;
241 }
242
243 if ((c->vm_end - c->vm_start) != size) {
244 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
245 __func__, c->vm_end - c->vm_start, size);
246 dump_stack();
247 size = c->vm_end - c->vm_start;
248 }
249
250 idx = CONSISTENT_PTE_INDEX(c->vm_start);
251 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
252 ptep = consistent_pte[idx] + off;
253 addr = c->vm_start;
254 do {
255 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
695ae0af
RK
256
257 ptep++;
258 addr += PAGE_SIZE;
259 off++;
260 if (off >= PTRS_PER_PTE) {
261 off = 0;
262 ptep = consistent_pte[++idx];
263 }
264
acaac256
RK
265 if (pte_none(pte) || !pte_present(pte))
266 printk(KERN_CRIT "%s: bad page in kernel page table\n",
267 __func__);
695ae0af
RK
268 } while (size -= PAGE_SIZE);
269
270 flush_tlb_kernel_range(c->vm_start, c->vm_end);
271
272 arm_vmregion_free(&consistent_head, c);
273}
274
ab6494f0 275#else /* !CONFIG_MMU */
695ae0af 276
31ebf944
RK
277#define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
278#define __dma_free_remap(addr, size) do { } while (0)
279
280#endif /* CONFIG_MMU */
281
ab6494f0
CM
282static void *
283__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
284 pgprot_t prot)
285{
04da5694 286 struct page *page;
31ebf944 287 void *addr;
ab6494f0 288
04da5694
RK
289 *handle = ~0;
290 size = PAGE_ALIGN(size);
ab6494f0 291
04da5694
RK
292 page = __dma_alloc_buffer(dev, size, gfp);
293 if (!page)
294 return NULL;
ab6494f0 295
31ebf944
RK
296 if (!arch_is_coherent())
297 addr = __dma_alloc_remap(page, size, gfp, prot);
298 else
299 addr = page_address(page);
695ae0af 300
31ebf944
RK
301 if (addr)
302 *handle = page_to_dma(dev, page);
695ae0af 303
31ebf944
RK
304 return addr;
305}
1da177e4
LT
306
307/*
308 * Allocate DMA-coherent memory space and return both the kernel remapped
309 * virtual and bus address for that space.
310 */
311void *
f9e3214a 312dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4 313{
1fe53268
DB
314 void *memory;
315
316 if (dma_alloc_from_coherent(dev, size, handle, &memory))
317 return memory;
318
1da177e4 319 return __dma_alloc(dev, size, handle, gfp,
26a26d32 320 pgprot_dmacoherent(pgprot_kernel));
1da177e4
LT
321}
322EXPORT_SYMBOL(dma_alloc_coherent);
323
324/*
325 * Allocate a writecombining region, in much the same way as
326 * dma_alloc_coherent above.
327 */
328void *
f9e3214a 329dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4
LT
330{
331 return __dma_alloc(dev, size, handle, gfp,
332 pgprot_writecombine(pgprot_kernel));
333}
334EXPORT_SYMBOL(dma_alloc_writecombine);
335
336static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
337 void *cpu_addr, dma_addr_t dma_addr, size_t size)
338{
ab6494f0
CM
339 int ret = -ENXIO;
340#ifdef CONFIG_MMU
13ccf3ad
RK
341 unsigned long user_size, kern_size;
342 struct arm_vmregion *c;
1da177e4
LT
343
344 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
345
13ccf3ad 346 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1da177e4
LT
347 if (c) {
348 unsigned long off = vma->vm_pgoff;
349
350 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
351
352 if (off < kern_size &&
353 user_size <= (kern_size - off)) {
1da177e4
LT
354 ret = remap_pfn_range(vma, vma->vm_start,
355 page_to_pfn(c->vm_pages) + off,
356 user_size << PAGE_SHIFT,
357 vma->vm_page_prot);
358 }
359 }
ab6494f0 360#endif /* CONFIG_MMU */
1da177e4
LT
361
362 return ret;
363}
364
365int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
366 void *cpu_addr, dma_addr_t dma_addr, size_t size)
367{
26a26d32 368 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
1da177e4
LT
369 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
370}
371EXPORT_SYMBOL(dma_mmap_coherent);
372
373int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
374 void *cpu_addr, dma_addr_t dma_addr, size_t size)
375{
376 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
377 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
378}
379EXPORT_SYMBOL(dma_mmap_writecombine);
380
381/*
382 * free a page as defined by the above mapping.
5edf71ae 383 * Must not be called with IRQs disabled.
1da177e4
LT
384 */
385void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
386{
5edf71ae
RK
387 WARN_ON(irqs_disabled());
388
1fe53268
DB
389 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
390 return;
391
3e82d012
RK
392 size = PAGE_ALIGN(size);
393
695ae0af
RK
394 if (!arch_is_coherent())
395 __dma_free_remap(cpu_addr, size);
7a9a32a9
RK
396
397 __dma_free_buffer(dma_to_page(dev, handle), size);
1da177e4
LT
398}
399EXPORT_SYMBOL(dma_free_coherent);
400
1da177e4
LT
401/*
402 * Make an area consistent for devices.
105ef9a0
DW
403 * Note: Drivers should NOT use this function directly, as it will break
404 * platforms with CONFIG_DMABOUNCE.
405 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1da177e4 406 */
4ea0d737 407static void dma_cache_maint(const void *start, size_t size, int direction)
1da177e4 408{
1522ac3e
RK
409 void (*inner_op)(const void *, const void *);
410 void (*outer_op)(unsigned long, unsigned long);
1da177e4 411
1522ac3e 412 BUG_ON(!virt_addr_valid(start) || !virt_addr_valid(start + size - 1));
953233dc 413
1da177e4
LT
414 switch (direction) {
415 case DMA_FROM_DEVICE: /* invalidate only */
1522ac3e
RK
416 inner_op = dmac_inv_range;
417 outer_op = outer_inv_range;
1da177e4
LT
418 break;
419 case DMA_TO_DEVICE: /* writeback only */
1522ac3e
RK
420 inner_op = dmac_clean_range;
421 outer_op = outer_clean_range;
1da177e4
LT
422 break;
423 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
1522ac3e
RK
424 inner_op = dmac_flush_range;
425 outer_op = outer_flush_range;
1da177e4
LT
426 break;
427 default:
428 BUG();
429 }
1522ac3e
RK
430
431 inner_op(start, start + size);
432 outer_op(__pa(start), __pa(start) + size);
1da177e4 433}
4ea0d737
RK
434
435void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
436 enum dma_data_direction dir)
437{
438 dma_cache_maint(kaddr, size, dir);
439}
440EXPORT_SYMBOL(___dma_single_cpu_to_dev);
441
442void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
443 enum dma_data_direction dir)
444{
445 /* nothing to do */
446}
447EXPORT_SYMBOL(___dma_single_dev_to_cpu);
afd1a321 448
4ea0d737 449static void dma_cache_maint_page(struct page *page, unsigned long offset,
65af191a 450 size_t size, void (*op)(const void *, const void *))
43377453
NP
451{
452 /*
453 * A single sg entry may refer to multiple physically contiguous
454 * pages. But we still need to process highmem pages individually.
455 * If highmem is not configured then the bulk of this loop gets
456 * optimized out.
457 */
458 size_t left = size;
459 do {
460 size_t len = left;
93f1d629
RK
461 void *vaddr;
462
463 if (PageHighMem(page)) {
464 if (len + offset > PAGE_SIZE) {
465 if (offset >= PAGE_SIZE) {
466 page += offset / PAGE_SIZE;
467 offset %= PAGE_SIZE;
468 }
469 len = PAGE_SIZE - offset;
470 }
471 vaddr = kmap_high_get(page);
472 if (vaddr) {
473 vaddr += offset;
474 op(vaddr, vaddr + len);
475 kunmap_high(page);
43377453 476 }
93f1d629
RK
477 } else {
478 vaddr = page_address(page) + offset;
479 op(vaddr, vaddr + len);
43377453 480 }
43377453
NP
481 offset = 0;
482 page++;
483 left -= len;
484 } while (left);
485}
4ea0d737
RK
486
487void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
488 size_t size, enum dma_data_direction dir)
489{
65af191a
RK
490 unsigned long paddr;
491 void (*inner_op)(const void *, const void *);
492 void (*outer_op)(unsigned long, unsigned long);
493
494 switch (direction) {
495 case DMA_FROM_DEVICE: /* invalidate only */
496 inner_op = dmac_inv_range;
497 outer_op = outer_inv_range;
498 break;
499 case DMA_TO_DEVICE: /* writeback only */
500 inner_op = dmac_clean_range;
501 outer_op = outer_clean_range;
502 break;
503 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
504 inner_op = dmac_flush_range;
505 outer_op = outer_flush_range;
506 break;
507 default:
508 BUG();
509 }
510
511 dma_cache_maint_page(page, off, size, inner_op);
512
513 paddr = page_to_phys(page) + off;
514 outer_op(paddr, paddr + size);
4ea0d737
RK
515}
516EXPORT_SYMBOL(___dma_page_cpu_to_dev);
517
518void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
519 size_t size, enum dma_data_direction dir)
520{
521 /* nothing to do */
522}
523EXPORT_SYMBOL(___dma_page_dev_to_cpu);
43377453 524
afd1a321
RK
525/**
526 * dma_map_sg - map a set of SG buffers for streaming mode DMA
527 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
528 * @sg: list of buffers
529 * @nents: number of buffers to map
530 * @dir: DMA transfer direction
531 *
532 * Map a set of buffers described by scatterlist in streaming mode for DMA.
533 * This is the scatter-gather version of the dma_map_single interface.
534 * Here the scatter gather list elements are each tagged with the
535 * appropriate dma address and length. They are obtained via
536 * sg_dma_{address,length}.
537 *
538 * Device ownership issues as mentioned for dma_map_single are the same
539 * here.
540 */
541int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
542 enum dma_data_direction dir)
543{
544 struct scatterlist *s;
01135d92 545 int i, j;
afd1a321
RK
546
547 for_each_sg(sg, s, nents, i) {
01135d92
RK
548 s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
549 s->length, dir);
550 if (dma_mapping_error(dev, s->dma_address))
551 goto bad_mapping;
afd1a321 552 }
afd1a321 553 return nents;
01135d92
RK
554
555 bad_mapping:
556 for_each_sg(sg, s, i, j)
557 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
558 return 0;
afd1a321
RK
559}
560EXPORT_SYMBOL(dma_map_sg);
561
562/**
563 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
564 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
565 * @sg: list of buffers
566 * @nents: number of buffers to unmap (returned from dma_map_sg)
567 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
568 *
569 * Unmap a set of streaming mode DMA translations. Again, CPU access
570 * rules concerning calls here are the same as for dma_unmap_single().
571 */
572void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
573 enum dma_data_direction dir)
574{
01135d92
RK
575 struct scatterlist *s;
576 int i;
577
578 for_each_sg(sg, s, nents, i)
579 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
afd1a321
RK
580}
581EXPORT_SYMBOL(dma_unmap_sg);
582
583/**
584 * dma_sync_sg_for_cpu
585 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
586 * @sg: list of buffers
587 * @nents: number of buffers to map (returned from dma_map_sg)
588 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
589 */
590void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
591 int nents, enum dma_data_direction dir)
592{
593 struct scatterlist *s;
594 int i;
595
596 for_each_sg(sg, s, nents, i) {
18eabe23
RK
597 if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
598 sg_dma_len(s), dir))
599 continue;
600
601 __dma_page_dev_to_cpu(sg_page(s), s->offset,
602 s->length, dir);
afd1a321
RK
603 }
604}
605EXPORT_SYMBOL(dma_sync_sg_for_cpu);
606
607/**
608 * dma_sync_sg_for_device
609 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
610 * @sg: list of buffers
611 * @nents: number of buffers to map (returned from dma_map_sg)
612 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
613 */
614void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
615 int nents, enum dma_data_direction dir)
616{
617 struct scatterlist *s;
618 int i;
619
620 for_each_sg(sg, s, nents, i) {
2638b4db
RK
621 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
622 sg_dma_len(s), dir))
623 continue;
624
18eabe23
RK
625 __dma_page_cpu_to_dev(sg_page(s), s->offset,
626 s->length, dir);
afd1a321
RK
627 }
628}
629EXPORT_SYMBOL(dma_sync_sg_for_device);