ARM: 8037/1: mm: support big-endian page tables
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
11a5aa32 12#include <linux/bootmem.h>
1da177e4
LT
13#include <linux/module.h>
14#include <linux/mm.h>
5a0e3ad6 15#include <linux/gfp.h>
1da177e4
LT
16#include <linux/errno.h>
17#include <linux/list.h>
18#include <linux/init.h>
19#include <linux/device.h>
20#include <linux/dma-mapping.h>
c7909509 21#include <linux/dma-contiguous.h>
39af22a7 22#include <linux/highmem.h>
c7909509 23#include <linux/memblock.h>
99d1717d 24#include <linux/slab.h>
4ce63fcd 25#include <linux/iommu.h>
e9da6e99 26#include <linux/io.h>
4ce63fcd 27#include <linux/vmalloc.h>
158e8bfe 28#include <linux/sizes.h>
1da177e4 29
23759dc6 30#include <asm/memory.h>
43377453 31#include <asm/highmem.h>
1da177e4 32#include <asm/cacheflush.h>
1da177e4 33#include <asm/tlbflush.h>
99d1717d 34#include <asm/mach/arch.h>
4ce63fcd 35#include <asm/dma-iommu.h>
c7909509
MS
36#include <asm/mach/map.h>
37#include <asm/system_info.h>
38#include <asm/dma-contiguous.h>
37134cd5 39
022ae537
RK
40#include "mm.h"
41
15237e1f
MS
42/*
43 * The DMA API is built upon the notion of "buffer ownership". A buffer
44 * is either exclusively owned by the CPU (and therefore may be accessed
45 * by it) or exclusively owned by the DMA device. These helper functions
46 * represent the transitions between these two ownership states.
47 *
48 * Note, however, that on later ARMs, this notion does not work due to
49 * speculative prefetches. We model our approach on the assumption that
50 * the CPU does do speculative prefetches, which means we clean caches
51 * before transfers and delay cache invalidation until transfer completion.
52 *
15237e1f 53 */
51fde349 54static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 55 size_t, enum dma_data_direction);
51fde349 56static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
57 size_t, enum dma_data_direction);
58
2dc6a016
MS
59/**
60 * arm_dma_map_page - map a portion of a page for streaming DMA
61 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
62 * @page: page that buffer resides in
63 * @offset: offset into page for start of buffer
64 * @size: size of buffer to map
65 * @dir: DMA transfer direction
66 *
67 * Ensure that any data held in the cache is appropriately discarded
68 * or written back.
69 *
70 * The device owns this memory once this call has completed. The CPU
71 * can regain ownership by calling dma_unmap_page().
72 */
51fde349 73static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
74 unsigned long offset, size_t size, enum dma_data_direction dir,
75 struct dma_attrs *attrs)
76{
dd37e940 77 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
78 __dma_page_cpu_to_dev(page, offset, size, dir);
79 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
80}
81
dd37e940
RH
82static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
83 unsigned long offset, size_t size, enum dma_data_direction dir,
84 struct dma_attrs *attrs)
85{
86 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
87}
88
2dc6a016
MS
89/**
90 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
91 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
92 * @handle: DMA address of buffer
93 * @size: size of buffer (same as passed to dma_map_page)
94 * @dir: DMA transfer direction (same as passed to dma_map_page)
95 *
96 * Unmap a page streaming mode DMA translation. The handle and size
97 * must match what was provided in the previous dma_map_page() call.
98 * All other usages are undefined.
99 *
100 * After this call, reads by the CPU to the buffer are guaranteed to see
101 * whatever the device wrote there.
102 */
51fde349 103static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
104 size_t size, enum dma_data_direction dir,
105 struct dma_attrs *attrs)
106{
dd37e940 107 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
108 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
109 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
110}
111
51fde349 112static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
113 dma_addr_t handle, size_t size, enum dma_data_direction dir)
114{
115 unsigned int offset = handle & (PAGE_SIZE - 1);
116 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 117 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
118}
119
51fde349 120static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
121 dma_addr_t handle, size_t size, enum dma_data_direction dir)
122{
123 unsigned int offset = handle & (PAGE_SIZE - 1);
124 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 125 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
126}
127
2dc6a016 128struct dma_map_ops arm_dma_ops = {
f99d6034
MS
129 .alloc = arm_dma_alloc,
130 .free = arm_dma_free,
131 .mmap = arm_dma_mmap,
dc2832e1 132 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
133 .map_page = arm_dma_map_page,
134 .unmap_page = arm_dma_unmap_page,
135 .map_sg = arm_dma_map_sg,
136 .unmap_sg = arm_dma_unmap_sg,
137 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
138 .sync_single_for_device = arm_dma_sync_single_for_device,
139 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
140 .sync_sg_for_device = arm_dma_sync_sg_for_device,
141 .set_dma_mask = arm_dma_set_mask,
142};
143EXPORT_SYMBOL(arm_dma_ops);
144
dd37e940
RH
145static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
146 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
147static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
148 dma_addr_t handle, struct dma_attrs *attrs);
149
150struct dma_map_ops arm_coherent_dma_ops = {
151 .alloc = arm_coherent_dma_alloc,
152 .free = arm_coherent_dma_free,
153 .mmap = arm_dma_mmap,
154 .get_sgtable = arm_dma_get_sgtable,
155 .map_page = arm_coherent_dma_map_page,
156 .map_sg = arm_dma_map_sg,
157 .set_dma_mask = arm_dma_set_mask,
158};
159EXPORT_SYMBOL(arm_coherent_dma_ops);
160
9f28cde0
RK
161static int __dma_supported(struct device *dev, u64 mask, bool warn)
162{
163 unsigned long max_dma_pfn;
164
165 /*
166 * If the mask allows for more memory than we can address,
167 * and we actually have that much memory, then we must
168 * indicate that DMA to this device is not supported.
169 */
170 if (sizeof(mask) != sizeof(dma_addr_t) &&
171 mask > (dma_addr_t)~0 &&
172 dma_to_pfn(dev, ~0) < max_pfn) {
173 if (warn) {
174 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
175 mask);
176 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
177 }
178 return 0;
179 }
180
181 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
182
183 /*
184 * Translate the device's DMA mask to a PFN limit. This
185 * PFN number includes the page which we can DMA to.
186 */
187 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
188 if (warn)
189 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
190 mask,
191 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
192 max_dma_pfn + 1);
193 return 0;
194 }
195
196 return 1;
197}
198
ab6494f0
CM
199static u64 get_coherent_dma_mask(struct device *dev)
200{
4dcfa600 201 u64 mask = (u64)DMA_BIT_MASK(32);
ab6494f0
CM
202
203 if (dev) {
204 mask = dev->coherent_dma_mask;
205
206 /*
207 * Sanity check the DMA mask - it must be non-zero, and
208 * must be able to be satisfied by a DMA allocation.
209 */
210 if (mask == 0) {
211 dev_warn(dev, "coherent DMA mask is unset\n");
212 return 0;
213 }
214
9f28cde0 215 if (!__dma_supported(dev, mask, true))
ab6494f0 216 return 0;
ab6494f0 217 }
1da177e4 218
ab6494f0
CM
219 return mask;
220}
221
c7909509
MS
222static void __dma_clear_buffer(struct page *page, size_t size)
223{
c7909509
MS
224 /*
225 * Ensure that the allocated pages are zeroed, and that any data
226 * lurking in the kernel direct-mapped region is invalidated.
227 */
9848e48f
MS
228 if (PageHighMem(page)) {
229 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
230 phys_addr_t end = base + size;
231 while (size > 0) {
232 void *ptr = kmap_atomic(page);
233 memset(ptr, 0, PAGE_SIZE);
234 dmac_flush_range(ptr, ptr + PAGE_SIZE);
235 kunmap_atomic(ptr);
236 page++;
237 size -= PAGE_SIZE;
238 }
239 outer_flush_range(base, end);
240 } else {
241 void *ptr = page_address(page);
4ce63fcd
MS
242 memset(ptr, 0, size);
243 dmac_flush_range(ptr, ptr + size);
244 outer_flush_range(__pa(ptr), __pa(ptr) + size);
245 }
c7909509
MS
246}
247
7a9a32a9
RK
248/*
249 * Allocate a DMA buffer for 'dev' of size 'size' using the
250 * specified gfp mask. Note that 'size' must be page aligned.
251 */
252static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
253{
254 unsigned long order = get_order(size);
255 struct page *page, *p, *e;
7a9a32a9
RK
256
257 page = alloc_pages(gfp, order);
258 if (!page)
259 return NULL;
260
261 /*
262 * Now split the huge page and free the excess pages
263 */
264 split_page(page, order);
265 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
266 __free_page(p);
267
c7909509 268 __dma_clear_buffer(page, size);
7a9a32a9
RK
269
270 return page;
271}
272
273/*
274 * Free a DMA buffer. 'size' must be page aligned.
275 */
276static void __dma_free_buffer(struct page *page, size_t size)
277{
278 struct page *e = page + (size >> PAGE_SHIFT);
279
280 while (page < e) {
281 __free_page(page);
282 page++;
283 }
284}
285
ab6494f0 286#ifdef CONFIG_MMU
a5e9d38b 287
e9da6e99 288static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f
MS
289 pgprot_t prot, struct page **ret_page,
290 const void *caller);
99d1717d 291
e9da6e99
MS
292static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
293 pgprot_t prot, struct page **ret_page,
294 const void *caller);
99d1717d 295
e9da6e99
MS
296static void *
297__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
298 const void *caller)
99d1717d 299{
e9da6e99
MS
300 struct vm_struct *area;
301 unsigned long addr;
99d1717d 302
e9da6e99
MS
303 /*
304 * DMA allocation can be mapped to user space, so lets
305 * set VM_USERMAP flags too.
306 */
307 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 caller);
309 if (!area)
310 return NULL;
311 addr = (unsigned long)area->addr;
312 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
99d1717d 313
e9da6e99
MS
314 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
315 vunmap((void *)addr);
316 return NULL;
317 }
318 return (void *)addr;
99d1717d 319}
1da177e4 320
e9da6e99 321static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 322{
e9da6e99
MS
323 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
324 struct vm_struct *area = find_vm_area(cpu_addr);
325 if (!area || (area->flags & flags) != flags) {
326 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
327 return;
99d1717d 328 }
e9da6e99
MS
329 unmap_kernel_range((unsigned long)cpu_addr, size);
330 vunmap(cpu_addr);
88c58f3b 331}
88c58f3b 332
6e5267aa
MS
333#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
334
e9da6e99
MS
335struct dma_pool {
336 size_t size;
337 spinlock_t lock;
338 unsigned long *bitmap;
339 unsigned long nr_pages;
340 void *vaddr;
6b3fe472 341 struct page **pages;
c7909509
MS
342};
343
e9da6e99 344static struct dma_pool atomic_pool = {
6e5267aa 345 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
e9da6e99 346};
c7909509
MS
347
348static int __init early_coherent_pool(char *p)
349{
e9da6e99 350 atomic_pool.size = memparse(p, &p);
c7909509
MS
351 return 0;
352}
353early_param("coherent_pool", early_coherent_pool);
354
6e5267aa
MS
355void __init init_dma_coherent_pool_size(unsigned long size)
356{
357 /*
358 * Catch any attempt to set the pool size too late.
359 */
360 BUG_ON(atomic_pool.vaddr);
361
362 /*
363 * Set architecture specific coherent pool size only if
364 * it has not been changed by kernel command line parameter.
365 */
366 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
367 atomic_pool.size = size;
368}
369
c7909509
MS
370/*
371 * Initialise the coherent pool for atomic allocations.
372 */
e9da6e99 373static int __init atomic_pool_init(void)
c7909509 374{
e9da6e99 375 struct dma_pool *pool = &atomic_pool;
71b55663 376 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
9d1400cf 377 gfp_t gfp = GFP_KERNEL | GFP_DMA;
e9da6e99
MS
378 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
379 unsigned long *bitmap;
c7909509 380 struct page *page;
6b3fe472 381 struct page **pages;
c7909509 382 void *ptr;
e9da6e99 383 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
c7909509 384
e9da6e99
MS
385 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
386 if (!bitmap)
387 goto no_bitmap;
c7909509 388
6b3fe472
HD
389 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
390 if (!pages)
391 goto no_pages;
392
f825c736 393 if (IS_ENABLED(CONFIG_DMA_CMA))
9848e48f
MS
394 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
395 atomic_pool_init);
e9da6e99 396 else
9d1400cf
MS
397 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
398 atomic_pool_init);
c7909509 399 if (ptr) {
6b3fe472
HD
400 int i;
401
402 for (i = 0; i < nr_pages; i++)
403 pages[i] = page + i;
404
e9da6e99
MS
405 spin_lock_init(&pool->lock);
406 pool->vaddr = ptr;
6b3fe472 407 pool->pages = pages;
e9da6e99
MS
408 pool->bitmap = bitmap;
409 pool->nr_pages = nr_pages;
410 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
411 (unsigned)pool->size / 1024);
c7909509
MS
412 return 0;
413 }
ec10665c
SK
414
415 kfree(pages);
6b3fe472 416no_pages:
e9da6e99
MS
417 kfree(bitmap);
418no_bitmap:
419 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
420 (unsigned)pool->size / 1024);
c7909509
MS
421 return -ENOMEM;
422}
423/*
424 * CMA is activated by core_initcall, so we must be called after it.
425 */
e9da6e99 426postcore_initcall(atomic_pool_init);
c7909509
MS
427
428struct dma_contig_early_reserve {
429 phys_addr_t base;
430 unsigned long size;
431};
432
433static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
434
435static int dma_mmu_remap_num __initdata;
436
437void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
438{
439 dma_mmu_remap[dma_mmu_remap_num].base = base;
440 dma_mmu_remap[dma_mmu_remap_num].size = size;
441 dma_mmu_remap_num++;
442}
443
444void __init dma_contiguous_remap(void)
445{
446 int i;
447 for (i = 0; i < dma_mmu_remap_num; i++) {
448 phys_addr_t start = dma_mmu_remap[i].base;
449 phys_addr_t end = start + dma_mmu_remap[i].size;
450 struct map_desc map;
451 unsigned long addr;
452
453 if (end > arm_lowmem_limit)
454 end = arm_lowmem_limit;
455 if (start >= end)
39f78e70 456 continue;
c7909509
MS
457
458 map.pfn = __phys_to_pfn(start);
459 map.virtual = __phys_to_virt(start);
460 map.length = end - start;
461 map.type = MT_MEMORY_DMA_READY;
462
463 /*
464 * Clear previous low-memory mapping
465 */
466 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 467 addr += PMD_SIZE)
c7909509
MS
468 pmd_clear(pmd_off_k(addr));
469
470 iotable_init(&map, 1);
471 }
472}
473
c7909509
MS
474static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
475 void *data)
476{
477 struct page *page = virt_to_page(addr);
478 pgprot_t prot = *(pgprot_t *)data;
479
480 set_pte_ext(pte, mk_pte(page, prot), 0);
481 return 0;
482}
483
484static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
485{
486 unsigned long start = (unsigned long) page_address(page);
487 unsigned end = start + size;
488
489 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
c7909509
MS
490 flush_tlb_kernel_range(start, end);
491}
492
493static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
494 pgprot_t prot, struct page **ret_page,
495 const void *caller)
496{
497 struct page *page;
498 void *ptr;
499 page = __dma_alloc_buffer(dev, size, gfp);
500 if (!page)
501 return NULL;
502
503 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
504 if (!ptr) {
505 __dma_free_buffer(page, size);
506 return NULL;
507 }
508
509 *ret_page = page;
510 return ptr;
511}
512
e9da6e99 513static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 514{
e9da6e99
MS
515 struct dma_pool *pool = &atomic_pool;
516 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
517 unsigned int pageno;
518 unsigned long flags;
519 void *ptr = NULL;
e4ea6918 520 unsigned long align_mask;
c7909509 521
e9da6e99
MS
522 if (!pool->vaddr) {
523 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
524 return NULL;
525 }
526
527 /*
528 * Align the region allocation - allocations from pool are rather
529 * small, so align them to their order in pages, minimum is a page
530 * size. This helps reduce fragmentation of the DMA space.
531 */
e4ea6918 532 align_mask = (1 << get_order(size)) - 1;
e9da6e99
MS
533
534 spin_lock_irqsave(&pool->lock, flags);
535 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
e4ea6918 536 0, count, align_mask);
e9da6e99
MS
537 if (pageno < pool->nr_pages) {
538 bitmap_set(pool->bitmap, pageno, count);
539 ptr = pool->vaddr + PAGE_SIZE * pageno;
6b3fe472 540 *ret_page = pool->pages[pageno];
fb71285f
MS
541 } else {
542 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
543 "Please increase it with coherent_pool= kernel parameter!\n",
544 (unsigned)pool->size / 1024);
c7909509 545 }
e9da6e99
MS
546 spin_unlock_irqrestore(&pool->lock, flags);
547
548 return ptr;
c7909509
MS
549}
550
21d0a759
HD
551static bool __in_atomic_pool(void *start, size_t size)
552{
553 struct dma_pool *pool = &atomic_pool;
554 void *end = start + size;
555 void *pool_start = pool->vaddr;
556 void *pool_end = pool->vaddr + pool->size;
557
f3d87524 558 if (start < pool_start || start >= pool_end)
21d0a759
HD
559 return false;
560
561 if (end <= pool_end)
562 return true;
563
564 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
565 start, end - 1, pool_start, pool_end - 1);
566
567 return false;
568}
569
e9da6e99 570static int __free_from_pool(void *start, size_t size)
c7909509 571{
e9da6e99
MS
572 struct dma_pool *pool = &atomic_pool;
573 unsigned long pageno, count;
574 unsigned long flags;
c7909509 575
21d0a759 576 if (!__in_atomic_pool(start, size))
c7909509
MS
577 return 0;
578
e9da6e99
MS
579 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
580 count = size >> PAGE_SHIFT;
581
582 spin_lock_irqsave(&pool->lock, flags);
583 bitmap_clear(pool->bitmap, pageno, count);
584 spin_unlock_irqrestore(&pool->lock, flags);
585
c7909509
MS
586 return 1;
587}
588
589static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f
MS
590 pgprot_t prot, struct page **ret_page,
591 const void *caller)
c7909509
MS
592{
593 unsigned long order = get_order(size);
594 size_t count = size >> PAGE_SHIFT;
595 struct page *page;
9848e48f 596 void *ptr;
c7909509
MS
597
598 page = dma_alloc_from_contiguous(dev, count, order);
599 if (!page)
600 return NULL;
601
602 __dma_clear_buffer(page, size);
c7909509 603
9848e48f
MS
604 if (PageHighMem(page)) {
605 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
606 if (!ptr) {
607 dma_release_from_contiguous(dev, page, count);
608 return NULL;
609 }
610 } else {
611 __dma_remap(page, size, prot);
612 ptr = page_address(page);
613 }
c7909509 614 *ret_page = page;
9848e48f 615 return ptr;
c7909509
MS
616}
617
618static void __free_from_contiguous(struct device *dev, struct page *page,
9848e48f 619 void *cpu_addr, size_t size)
c7909509 620{
9848e48f
MS
621 if (PageHighMem(page))
622 __dma_free_remap(cpu_addr, size);
623 else
71b55663 624 __dma_remap(page, size, PAGE_KERNEL);
c7909509
MS
625 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
626}
627
f99d6034
MS
628static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
629{
630 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
631 pgprot_writecombine(prot) :
632 pgprot_dmacoherent(prot);
633 return prot;
634}
635
c7909509
MS
636#define nommu() 0
637
ab6494f0 638#else /* !CONFIG_MMU */
695ae0af 639
c7909509
MS
640#define nommu() 1
641
f99d6034 642#define __get_dma_pgprot(attrs, prot) __pgprot(0)
c7909509 643#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
e9da6e99 644#define __alloc_from_pool(size, ret_page) NULL
9848e48f 645#define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
c7909509 646#define __free_from_pool(cpu_addr, size) 0
9848e48f 647#define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
c7909509 648#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
649
650#endif /* CONFIG_MMU */
651
c7909509
MS
652static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
653 struct page **ret_page)
ab6494f0 654{
c7909509
MS
655 struct page *page;
656 page = __dma_alloc_buffer(dev, size, gfp);
657 if (!page)
658 return NULL;
659
660 *ret_page = page;
661 return page_address(page);
662}
663
664
665
666static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
dd37e940 667 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
c7909509
MS
668{
669 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 670 struct page *page = NULL;
31ebf944 671 void *addr;
ab6494f0 672
c7909509
MS
673#ifdef CONFIG_DMA_API_DEBUG
674 u64 limit = (mask + 1) & ~mask;
675 if (limit && size >= limit) {
676 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
677 size, mask);
678 return NULL;
679 }
680#endif
681
682 if (!mask)
683 return NULL;
684
685 if (mask < 0xffffffffULL)
686 gfp |= GFP_DMA;
687
ea2e7057
SB
688 /*
689 * Following is a work-around (a.k.a. hack) to prevent pages
690 * with __GFP_COMP being passed to split_page() which cannot
691 * handle them. The real problem is that this flag probably
692 * should be 0 on ARM as it is not supported on this
693 * platform; see CONFIG_HUGETLBFS.
694 */
695 gfp &= ~(__GFP_COMP);
696
553ac788 697 *handle = DMA_ERROR_CODE;
04da5694 698 size = PAGE_ALIGN(size);
ab6494f0 699
dd37e940 700 if (is_coherent || nommu())
c7909509 701 addr = __alloc_simple_buffer(dev, size, gfp, &page);
633dc92a 702 else if (!(gfp & __GFP_WAIT))
e9da6e99 703 addr = __alloc_from_pool(size, &page);
f825c736 704 else if (!IS_ENABLED(CONFIG_DMA_CMA))
c7909509 705 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
31ebf944 706 else
9848e48f 707 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
695ae0af 708
31ebf944 709 if (addr)
9eedd963 710 *handle = pfn_to_dma(dev, page_to_pfn(page));
695ae0af 711
31ebf944
RK
712 return addr;
713}
1da177e4
LT
714
715/*
716 * Allocate DMA-coherent memory space and return both the kernel remapped
717 * virtual and bus address for that space.
718 */
f99d6034
MS
719void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
720 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 721{
0ea1ec71 722 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1fe53268
DB
723 void *memory;
724
725 if (dma_alloc_from_coherent(dev, size, handle, &memory))
726 return memory;
727
dd37e940
RH
728 return __dma_alloc(dev, size, handle, gfp, prot, false,
729 __builtin_return_address(0));
730}
731
732static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
733 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
734{
0ea1ec71 735 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
dd37e940
RH
736 void *memory;
737
738 if (dma_alloc_from_coherent(dev, size, handle, &memory))
739 return memory;
740
741 return __dma_alloc(dev, size, handle, gfp, prot, true,
45cd5290 742 __builtin_return_address(0));
1da177e4 743}
1da177e4
LT
744
745/*
f99d6034 746 * Create userspace mapping for the DMA-coherent memory.
1da177e4 747 */
f99d6034
MS
748int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
749 void *cpu_addr, dma_addr_t dma_addr, size_t size,
750 struct dma_attrs *attrs)
1da177e4 751{
ab6494f0
CM
752 int ret = -ENXIO;
753#ifdef CONFIG_MMU
50262a4b
MS
754 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
755 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 756 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
757 unsigned long off = vma->vm_pgoff;
758
f99d6034
MS
759 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
760
47142f07
MS
761 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
762 return ret;
763
50262a4b
MS
764 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
765 ret = remap_pfn_range(vma, vma->vm_start,
766 pfn + off,
767 vma->vm_end - vma->vm_start,
768 vma->vm_page_prot);
769 }
ab6494f0 770#endif /* CONFIG_MMU */
1da177e4
LT
771
772 return ret;
773}
774
1da177e4 775/*
c7909509 776 * Free a buffer as defined by the above mapping.
1da177e4 777 */
dd37e940
RH
778static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
779 dma_addr_t handle, struct dma_attrs *attrs,
780 bool is_coherent)
1da177e4 781{
c7909509 782 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
5edf71ae 783
1fe53268
DB
784 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
785 return;
786
3e82d012
RK
787 size = PAGE_ALIGN(size);
788
dd37e940 789 if (is_coherent || nommu()) {
c7909509 790 __dma_free_buffer(page, size);
d9e0d149
AK
791 } else if (__free_from_pool(cpu_addr, size)) {
792 return;
f825c736 793 } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
695ae0af 794 __dma_free_remap(cpu_addr, size);
c7909509
MS
795 __dma_free_buffer(page, size);
796 } else {
c7909509
MS
797 /*
798 * Non-atomic allocations cannot be freed with IRQs disabled
799 */
800 WARN_ON(irqs_disabled());
9848e48f 801 __free_from_contiguous(dev, page, cpu_addr, size);
c7909509 802 }
1da177e4 803}
afd1a321 804
dd37e940
RH
805void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
806 dma_addr_t handle, struct dma_attrs *attrs)
807{
808 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
809}
810
811static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
812 dma_addr_t handle, struct dma_attrs *attrs)
813{
814 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
815}
816
dc2832e1
MS
817int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
818 void *cpu_addr, dma_addr_t handle, size_t size,
819 struct dma_attrs *attrs)
820{
821 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
822 int ret;
823
824 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
825 if (unlikely(ret))
826 return ret;
827
828 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
829 return 0;
830}
831
4ea0d737 832static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
833 size_t size, enum dma_data_direction dir,
834 void (*op)(const void *, size_t, int))
43377453 835{
15653371
RK
836 unsigned long pfn;
837 size_t left = size;
838
839 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
840 offset %= PAGE_SIZE;
841
43377453
NP
842 /*
843 * A single sg entry may refer to multiple physically contiguous
844 * pages. But we still need to process highmem pages individually.
845 * If highmem is not configured then the bulk of this loop gets
846 * optimized out.
847 */
43377453
NP
848 do {
849 size_t len = left;
93f1d629
RK
850 void *vaddr;
851
15653371
RK
852 page = pfn_to_page(pfn);
853
93f1d629 854 if (PageHighMem(page)) {
15653371 855 if (len + offset > PAGE_SIZE)
93f1d629 856 len = PAGE_SIZE - offset;
dd0f67f4
JK
857
858 if (cache_is_vipt_nonaliasing()) {
39af22a7 859 vaddr = kmap_atomic(page);
7e5a69e8 860 op(vaddr + offset, len, dir);
39af22a7 861 kunmap_atomic(vaddr);
dd0f67f4
JK
862 } else {
863 vaddr = kmap_high_get(page);
864 if (vaddr) {
865 op(vaddr + offset, len, dir);
866 kunmap_high(page);
867 }
43377453 868 }
93f1d629
RK
869 } else {
870 vaddr = page_address(page) + offset;
a9c9147e 871 op(vaddr, len, dir);
43377453 872 }
43377453 873 offset = 0;
15653371 874 pfn++;
43377453
NP
875 left -= len;
876 } while (left);
877}
4ea0d737 878
51fde349
MS
879/*
880 * Make an area consistent for devices.
881 * Note: Drivers should NOT use this function directly, as it will break
882 * platforms with CONFIG_DMABOUNCE.
883 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
884 */
885static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
886 size_t size, enum dma_data_direction dir)
887{
65af191a 888 unsigned long paddr;
65af191a 889
a9c9147e 890 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
891
892 paddr = page_to_phys(page) + off;
2ffe2da3
RK
893 if (dir == DMA_FROM_DEVICE) {
894 outer_inv_range(paddr, paddr + size);
895 } else {
896 outer_clean_range(paddr, paddr + size);
897 }
898 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 899}
4ea0d737 900
51fde349 901static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
902 size_t size, enum dma_data_direction dir)
903{
2ffe2da3
RK
904 unsigned long paddr = page_to_phys(page) + off;
905
906 /* FIXME: non-speculating: not required */
907 /* don't bother invalidating if DMA to device */
908 if (dir != DMA_TO_DEVICE)
909 outer_inv_range(paddr, paddr + size);
910
a9c9147e 911 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
c0177800
CM
912
913 /*
b2a234ed 914 * Mark the D-cache clean for these pages to avoid extra flushing.
c0177800 915 */
b2a234ed
ML
916 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
917 unsigned long pfn;
918 size_t left = size;
919
920 pfn = page_to_pfn(page) + off / PAGE_SIZE;
921 off %= PAGE_SIZE;
922 if (off) {
923 pfn++;
924 left -= PAGE_SIZE - off;
925 }
926 while (left >= PAGE_SIZE) {
927 page = pfn_to_page(pfn++);
928 set_bit(PG_dcache_clean, &page->flags);
929 left -= PAGE_SIZE;
930 }
931 }
4ea0d737 932}
43377453 933
afd1a321 934/**
2a550e73 935 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
936 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
937 * @sg: list of buffers
938 * @nents: number of buffers to map
939 * @dir: DMA transfer direction
940 *
941 * Map a set of buffers described by scatterlist in streaming mode for DMA.
942 * This is the scatter-gather version of the dma_map_single interface.
943 * Here the scatter gather list elements are each tagged with the
944 * appropriate dma address and length. They are obtained via
945 * sg_dma_{address,length}.
946 *
947 * Device ownership issues as mentioned for dma_map_single are the same
948 * here.
949 */
2dc6a016
MS
950int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
951 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 952{
2a550e73 953 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 954 struct scatterlist *s;
01135d92 955 int i, j;
afd1a321
RK
956
957 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
958#ifdef CONFIG_NEED_SG_DMA_LENGTH
959 s->dma_length = s->length;
960#endif
2a550e73
MS
961 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
962 s->length, dir, attrs);
01135d92
RK
963 if (dma_mapping_error(dev, s->dma_address))
964 goto bad_mapping;
afd1a321 965 }
afd1a321 966 return nents;
01135d92
RK
967
968 bad_mapping:
969 for_each_sg(sg, s, i, j)
2a550e73 970 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 971 return 0;
afd1a321 972}
afd1a321
RK
973
974/**
2a550e73 975 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
976 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
977 * @sg: list of buffers
0adfca6f 978 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
979 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
980 *
981 * Unmap a set of streaming mode DMA translations. Again, CPU access
982 * rules concerning calls here are the same as for dma_unmap_single().
983 */
2dc6a016
MS
984void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
985 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 986{
2a550e73 987 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 988 struct scatterlist *s;
01135d92 989
01135d92 990 int i;
24056f52 991
01135d92 992 for_each_sg(sg, s, nents, i)
2a550e73 993 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 994}
afd1a321
RK
995
996/**
2a550e73 997 * arm_dma_sync_sg_for_cpu
afd1a321
RK
998 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
999 * @sg: list of buffers
1000 * @nents: number of buffers to map (returned from dma_map_sg)
1001 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1002 */
2dc6a016 1003void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1004 int nents, enum dma_data_direction dir)
1005{
2a550e73 1006 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1007 struct scatterlist *s;
1008 int i;
1009
2a550e73
MS
1010 for_each_sg(sg, s, nents, i)
1011 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1012 dir);
afd1a321 1013}
afd1a321
RK
1014
1015/**
2a550e73 1016 * arm_dma_sync_sg_for_device
afd1a321
RK
1017 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1018 * @sg: list of buffers
1019 * @nents: number of buffers to map (returned from dma_map_sg)
1020 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1021 */
2dc6a016 1022void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1023 int nents, enum dma_data_direction dir)
1024{
2a550e73 1025 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1026 struct scatterlist *s;
1027 int i;
1028
2a550e73
MS
1029 for_each_sg(sg, s, nents, i)
1030 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1031 dir);
afd1a321 1032}
24056f52 1033
022ae537
RK
1034/*
1035 * Return whether the given device DMA address mask can be supported
1036 * properly. For example, if your device can only drive the low 24-bits
1037 * during bus mastering, then you would pass 0x00ffffff as the mask
1038 * to this function.
1039 */
1040int dma_supported(struct device *dev, u64 mask)
1041{
9f28cde0 1042 return __dma_supported(dev, mask, false);
022ae537
RK
1043}
1044EXPORT_SYMBOL(dma_supported);
1045
87b54e78 1046int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
1047{
1048 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1049 return -EIO;
1050
022ae537 1051 *dev->dma_mask = dma_mask;
022ae537
RK
1052
1053 return 0;
1054}
022ae537 1055
24056f52
RK
1056#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1057
1058static int __init dma_debug_do_init(void)
1059{
1060 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1061 return 0;
1062}
1063fs_initcall(dma_debug_do_init);
4ce63fcd
MS
1064
1065#ifdef CONFIG_ARM_DMA_USE_IOMMU
1066
1067/* IOMMU */
1068
4d852ef8
AH
1069static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1070
4ce63fcd
MS
1071static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1072 size_t size)
1073{
1074 unsigned int order = get_order(size);
1075 unsigned int align = 0;
1076 unsigned int count, start;
1077 unsigned long flags;
4d852ef8
AH
1078 dma_addr_t iova;
1079 int i;
4ce63fcd 1080
60460abf
SWK
1081 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1082 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1083
68efd7d2
MS
1084 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1085 align = (1 << order) - 1;
4ce63fcd
MS
1086
1087 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8
AH
1088 for (i = 0; i < mapping->nr_bitmaps; i++) {
1089 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1090 mapping->bits, 0, count, align);
1091
1092 if (start > mapping->bits)
1093 continue;
1094
1095 bitmap_set(mapping->bitmaps[i], start, count);
1096 break;
4ce63fcd
MS
1097 }
1098
4d852ef8
AH
1099 /*
1100 * No unused range found. Try to extend the existing mapping
1101 * and perform a second attempt to reserve an IO virtual
1102 * address range of size bytes.
1103 */
1104 if (i == mapping->nr_bitmaps) {
1105 if (extend_iommu_mapping(mapping)) {
1106 spin_unlock_irqrestore(&mapping->lock, flags);
1107 return DMA_ERROR_CODE;
1108 }
1109
1110 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1111 mapping->bits, 0, count, align);
1112
1113 if (start > mapping->bits) {
1114 spin_unlock_irqrestore(&mapping->lock, flags);
1115 return DMA_ERROR_CODE;
1116 }
1117
1118 bitmap_set(mapping->bitmaps[i], start, count);
1119 }
4ce63fcd
MS
1120 spin_unlock_irqrestore(&mapping->lock, flags);
1121
4d852ef8 1122 iova = mapping->base + (mapping->size * i);
68efd7d2 1123 iova += start << PAGE_SHIFT;
4d852ef8
AH
1124
1125 return iova;
4ce63fcd
MS
1126}
1127
1128static inline void __free_iova(struct dma_iommu_mapping *mapping,
1129 dma_addr_t addr, size_t size)
1130{
4d852ef8 1131 unsigned int start, count;
4ce63fcd 1132 unsigned long flags;
4d852ef8
AH
1133 dma_addr_t bitmap_base;
1134 u32 bitmap_index;
1135
1136 if (!size)
1137 return;
1138
1139 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping->size;
1140 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1141
1142 bitmap_base = mapping->base + mapping->size * bitmap_index;
1143
68efd7d2 1144 start = (addr - bitmap_base) >> PAGE_SHIFT;
4d852ef8
AH
1145
1146 if (addr + size > bitmap_base + mapping->size) {
1147 /*
1148 * The address range to be freed reaches into the iova
1149 * range of the next bitmap. This should not happen as
1150 * we don't allow this in __alloc_iova (at the
1151 * moment).
1152 */
1153 BUG();
1154 } else
68efd7d2 1155 count = size >> PAGE_SHIFT;
4ce63fcd
MS
1156
1157 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8 1158 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
4ce63fcd
MS
1159 spin_unlock_irqrestore(&mapping->lock, flags);
1160}
1161
549a17e4
MS
1162static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1163 gfp_t gfp, struct dma_attrs *attrs)
4ce63fcd
MS
1164{
1165 struct page **pages;
1166 int count = size >> PAGE_SHIFT;
1167 int array_size = count * sizeof(struct page *);
1168 int i = 0;
1169
1170 if (array_size <= PAGE_SIZE)
1171 pages = kzalloc(array_size, gfp);
1172 else
1173 pages = vzalloc(array_size);
1174 if (!pages)
1175 return NULL;
1176
549a17e4
MS
1177 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1178 {
1179 unsigned long order = get_order(size);
1180 struct page *page;
1181
1182 page = dma_alloc_from_contiguous(dev, count, order);
1183 if (!page)
1184 goto error;
1185
1186 __dma_clear_buffer(page, size);
1187
1188 for (i = 0; i < count; i++)
1189 pages[i] = page + i;
1190
1191 return pages;
1192 }
1193
f8669bef
MS
1194 /*
1195 * IOMMU can map any pages, so himem can also be used here
1196 */
1197 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1198
4ce63fcd 1199 while (count) {
593f4735 1200 int j, order = __fls(count);
4ce63fcd 1201
f8669bef 1202 pages[i] = alloc_pages(gfp, order);
4ce63fcd 1203 while (!pages[i] && order)
f8669bef 1204 pages[i] = alloc_pages(gfp, --order);
4ce63fcd
MS
1205 if (!pages[i])
1206 goto error;
1207
5a796eeb 1208 if (order) {
4ce63fcd 1209 split_page(pages[i], order);
5a796eeb
HD
1210 j = 1 << order;
1211 while (--j)
1212 pages[i + j] = pages[i] + j;
1213 }
4ce63fcd
MS
1214
1215 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1216 i += 1 << order;
1217 count -= 1 << order;
1218 }
1219
1220 return pages;
1221error:
9fa8af91 1222 while (i--)
4ce63fcd
MS
1223 if (pages[i])
1224 __free_pages(pages[i], 0);
46c87852 1225 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1226 kfree(pages);
1227 else
1228 vfree(pages);
1229 return NULL;
1230}
1231
549a17e4
MS
1232static int __iommu_free_buffer(struct device *dev, struct page **pages,
1233 size_t size, struct dma_attrs *attrs)
4ce63fcd
MS
1234{
1235 int count = size >> PAGE_SHIFT;
1236 int array_size = count * sizeof(struct page *);
1237 int i;
549a17e4
MS
1238
1239 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1240 dma_release_from_contiguous(dev, pages[0], count);
1241 } else {
1242 for (i = 0; i < count; i++)
1243 if (pages[i])
1244 __free_pages(pages[i], 0);
1245 }
1246
46c87852 1247 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1248 kfree(pages);
1249 else
1250 vfree(pages);
1251 return 0;
1252}
1253
1254/*
1255 * Create a CPU mapping for a specified pages
1256 */
1257static void *
e9da6e99
MS
1258__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1259 const void *caller)
4ce63fcd 1260{
e9da6e99
MS
1261 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1262 struct vm_struct *area;
1263 unsigned long p;
4ce63fcd 1264
e9da6e99
MS
1265 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1266 caller);
1267 if (!area)
4ce63fcd 1268 return NULL;
4ce63fcd 1269
e9da6e99
MS
1270 area->pages = pages;
1271 area->nr_pages = nr_pages;
1272 p = (unsigned long)area->addr;
4ce63fcd 1273
e9da6e99
MS
1274 for (i = 0; i < nr_pages; i++) {
1275 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1276 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1277 goto err;
1278 p += PAGE_SIZE;
4ce63fcd 1279 }
e9da6e99
MS
1280 return area->addr;
1281err:
1282 unmap_kernel_range((unsigned long)area->addr, size);
1283 vunmap(area->addr);
4ce63fcd
MS
1284 return NULL;
1285}
1286
1287/*
1288 * Create a mapping in device IO address space for specified pages
1289 */
1290static dma_addr_t
1291__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1292{
1293 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1294 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1295 dma_addr_t dma_addr, iova;
1296 int i, ret = DMA_ERROR_CODE;
1297
1298 dma_addr = __alloc_iova(mapping, size);
1299 if (dma_addr == DMA_ERROR_CODE)
1300 return dma_addr;
1301
1302 iova = dma_addr;
1303 for (i = 0; i < count; ) {
1304 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1305 phys_addr_t phys = page_to_phys(pages[i]);
1306 unsigned int len, j;
1307
1308 for (j = i + 1; j < count; j++, next_pfn++)
1309 if (page_to_pfn(pages[j]) != next_pfn)
1310 break;
1311
1312 len = (j - i) << PAGE_SHIFT;
c9b24996
AH
1313 ret = iommu_map(mapping->domain, iova, phys, len,
1314 IOMMU_READ|IOMMU_WRITE);
4ce63fcd
MS
1315 if (ret < 0)
1316 goto fail;
1317 iova += len;
1318 i = j;
1319 }
1320 return dma_addr;
1321fail:
1322 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1323 __free_iova(mapping, dma_addr, size);
1324 return DMA_ERROR_CODE;
1325}
1326
1327static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1328{
1329 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1330
1331 /*
1332 * add optional in-page offset from iova to size and align
1333 * result to page size
1334 */
1335 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1336 iova &= PAGE_MASK;
1337
1338 iommu_unmap(mapping->domain, iova, size);
1339 __free_iova(mapping, iova, size);
1340 return 0;
1341}
1342
665bad7b
HD
1343static struct page **__atomic_get_pages(void *addr)
1344{
1345 struct dma_pool *pool = &atomic_pool;
1346 struct page **pages = pool->pages;
1347 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1348
1349 return pages + offs;
1350}
1351
955c757e 1352static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1353{
1354 struct vm_struct *area;
1355
665bad7b
HD
1356 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1357 return __atomic_get_pages(cpu_addr);
1358
955c757e
MS
1359 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1360 return cpu_addr;
1361
e9da6e99
MS
1362 area = find_vm_area(cpu_addr);
1363 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1364 return area->pages;
1365 return NULL;
1366}
1367
479ed93a
HD
1368static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1369 dma_addr_t *handle)
1370{
1371 struct page *page;
1372 void *addr;
1373
1374 addr = __alloc_from_pool(size, &page);
1375 if (!addr)
1376 return NULL;
1377
1378 *handle = __iommu_create_mapping(dev, &page, size);
1379 if (*handle == DMA_ERROR_CODE)
1380 goto err_mapping;
1381
1382 return addr;
1383
1384err_mapping:
1385 __free_from_pool(addr, size);
1386 return NULL;
1387}
1388
d5898291 1389static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
479ed93a
HD
1390 dma_addr_t handle, size_t size)
1391{
1392 __iommu_remove_mapping(dev, handle, size);
d5898291 1393 __free_from_pool(cpu_addr, size);
479ed93a
HD
1394}
1395
4ce63fcd
MS
1396static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1397 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1398{
71b55663 1399 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
4ce63fcd
MS
1400 struct page **pages;
1401 void *addr = NULL;
1402
1403 *handle = DMA_ERROR_CODE;
1404 size = PAGE_ALIGN(size);
1405
10c8562f 1406 if (!(gfp & __GFP_WAIT))
479ed93a
HD
1407 return __iommu_alloc_atomic(dev, size, handle);
1408
5b91a98c
RZ
1409 /*
1410 * Following is a work-around (a.k.a. hack) to prevent pages
1411 * with __GFP_COMP being passed to split_page() which cannot
1412 * handle them. The real problem is that this flag probably
1413 * should be 0 on ARM as it is not supported on this
1414 * platform; see CONFIG_HUGETLBFS.
1415 */
1416 gfp &= ~(__GFP_COMP);
1417
549a17e4 1418 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
4ce63fcd
MS
1419 if (!pages)
1420 return NULL;
1421
1422 *handle = __iommu_create_mapping(dev, pages, size);
1423 if (*handle == DMA_ERROR_CODE)
1424 goto err_buffer;
1425
955c757e
MS
1426 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1427 return pages;
1428
e9da6e99
MS
1429 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1430 __builtin_return_address(0));
4ce63fcd
MS
1431 if (!addr)
1432 goto err_mapping;
1433
1434 return addr;
1435
1436err_mapping:
1437 __iommu_remove_mapping(dev, *handle, size);
1438err_buffer:
549a17e4 1439 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1440 return NULL;
1441}
1442
1443static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1444 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1445 struct dma_attrs *attrs)
1446{
e9da6e99
MS
1447 unsigned long uaddr = vma->vm_start;
1448 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1449 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1450
1451 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1452
e9da6e99
MS
1453 if (!pages)
1454 return -ENXIO;
4ce63fcd 1455
e9da6e99
MS
1456 do {
1457 int ret = vm_insert_page(vma, uaddr, *pages++);
1458 if (ret) {
1459 pr_err("Remapping memory failed: %d\n", ret);
1460 return ret;
1461 }
1462 uaddr += PAGE_SIZE;
1463 usize -= PAGE_SIZE;
1464 } while (usize > 0);
4ce63fcd 1465
4ce63fcd
MS
1466 return 0;
1467}
1468
1469/*
1470 * free a page as defined by the above mapping.
1471 * Must not be called with IRQs disabled.
1472 */
1473void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1474 dma_addr_t handle, struct dma_attrs *attrs)
1475{
836bfa0d 1476 struct page **pages;
4ce63fcd
MS
1477 size = PAGE_ALIGN(size);
1478
836bfa0d
YC
1479 if (__in_atomic_pool(cpu_addr, size)) {
1480 __iommu_free_atomic(dev, cpu_addr, handle, size);
e9da6e99 1481 return;
4ce63fcd 1482 }
e9da6e99 1483
836bfa0d
YC
1484 pages = __iommu_get_pages(cpu_addr, attrs);
1485 if (!pages) {
1486 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
479ed93a
HD
1487 return;
1488 }
1489
955c757e
MS
1490 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1491 unmap_kernel_range((unsigned long)cpu_addr, size);
1492 vunmap(cpu_addr);
1493 }
e9da6e99
MS
1494
1495 __iommu_remove_mapping(dev, handle, size);
549a17e4 1496 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1497}
1498
dc2832e1
MS
1499static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1500 void *cpu_addr, dma_addr_t dma_addr,
1501 size_t size, struct dma_attrs *attrs)
1502{
1503 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1504 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1505
1506 if (!pages)
1507 return -ENXIO;
1508
1509 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1510 GFP_KERNEL);
4ce63fcd
MS
1511}
1512
c9b24996
AH
1513static int __dma_direction_to_prot(enum dma_data_direction dir)
1514{
1515 int prot;
1516
1517 switch (dir) {
1518 case DMA_BIDIRECTIONAL:
1519 prot = IOMMU_READ | IOMMU_WRITE;
1520 break;
1521 case DMA_TO_DEVICE:
1522 prot = IOMMU_READ;
1523 break;
1524 case DMA_FROM_DEVICE:
1525 prot = IOMMU_WRITE;
1526 break;
1527 default:
1528 prot = 0;
1529 }
1530
1531 return prot;
1532}
1533
4ce63fcd
MS
1534/*
1535 * Map a part of the scatter-gather list into contiguous io address space
1536 */
1537static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1538 size_t size, dma_addr_t *handle,
0fa478df
RH
1539 enum dma_data_direction dir, struct dma_attrs *attrs,
1540 bool is_coherent)
4ce63fcd
MS
1541{
1542 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1543 dma_addr_t iova, iova_base;
1544 int ret = 0;
1545 unsigned int count;
1546 struct scatterlist *s;
c9b24996 1547 int prot;
4ce63fcd
MS
1548
1549 size = PAGE_ALIGN(size);
1550 *handle = DMA_ERROR_CODE;
1551
1552 iova_base = iova = __alloc_iova(mapping, size);
1553 if (iova == DMA_ERROR_CODE)
1554 return -ENOMEM;
1555
1556 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1557 phys_addr_t phys = page_to_phys(sg_page(s));
1558 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1559
0fa478df
RH
1560 if (!is_coherent &&
1561 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1562 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1563
c9b24996
AH
1564 prot = __dma_direction_to_prot(dir);
1565
1566 ret = iommu_map(mapping->domain, iova, phys, len, prot);
4ce63fcd
MS
1567 if (ret < 0)
1568 goto fail;
1569 count += len >> PAGE_SHIFT;
1570 iova += len;
1571 }
1572 *handle = iova_base;
1573
1574 return 0;
1575fail:
1576 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1577 __free_iova(mapping, iova_base, size);
1578 return ret;
1579}
1580
0fa478df
RH
1581static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1582 enum dma_data_direction dir, struct dma_attrs *attrs,
1583 bool is_coherent)
4ce63fcd
MS
1584{
1585 struct scatterlist *s = sg, *dma = sg, *start = sg;
1586 int i, count = 0;
1587 unsigned int offset = s->offset;
1588 unsigned int size = s->offset + s->length;
1589 unsigned int max = dma_get_max_seg_size(dev);
1590
1591 for (i = 1; i < nents; i++) {
1592 s = sg_next(s);
1593
1594 s->dma_address = DMA_ERROR_CODE;
1595 s->dma_length = 0;
1596
1597 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1598 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1599 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1600 goto bad_mapping;
1601
1602 dma->dma_address += offset;
1603 dma->dma_length = size - offset;
1604
1605 size = offset = s->offset;
1606 start = s;
1607 dma = sg_next(dma);
1608 count += 1;
1609 }
1610 size += s->length;
1611 }
0fa478df
RH
1612 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1613 is_coherent) < 0)
4ce63fcd
MS
1614 goto bad_mapping;
1615
1616 dma->dma_address += offset;
1617 dma->dma_length = size - offset;
1618
1619 return count+1;
1620
1621bad_mapping:
1622 for_each_sg(sg, s, count, i)
1623 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1624 return 0;
1625}
1626
1627/**
0fa478df 1628 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1629 * @dev: valid struct device pointer
1630 * @sg: list of buffers
0fa478df
RH
1631 * @nents: number of buffers to map
1632 * @dir: DMA transfer direction
4ce63fcd 1633 *
0fa478df
RH
1634 * Map a set of i/o coherent buffers described by scatterlist in streaming
1635 * mode for DMA. The scatter gather list elements are merged together (if
1636 * possible) and tagged with the appropriate dma address and length. They are
1637 * obtained via sg_dma_{address,length}.
4ce63fcd 1638 */
0fa478df
RH
1639int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1640 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1641{
1642 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1643}
1644
1645/**
1646 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1647 * @dev: valid struct device pointer
1648 * @sg: list of buffers
1649 * @nents: number of buffers to map
1650 * @dir: DMA transfer direction
1651 *
1652 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1653 * The scatter gather list elements are merged together (if possible) and
1654 * tagged with the appropriate dma address and length. They are obtained via
1655 * sg_dma_{address,length}.
1656 */
1657int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1658 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1659{
1660 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1661}
1662
1663static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1664 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1665 bool is_coherent)
4ce63fcd
MS
1666{
1667 struct scatterlist *s;
1668 int i;
1669
1670 for_each_sg(sg, s, nents, i) {
1671 if (sg_dma_len(s))
1672 __iommu_remove_mapping(dev, sg_dma_address(s),
1673 sg_dma_len(s));
0fa478df 1674 if (!is_coherent &&
97ef952a 1675 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1676 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1677 s->length, dir);
1678 }
1679}
1680
0fa478df
RH
1681/**
1682 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1683 * @dev: valid struct device pointer
1684 * @sg: list of buffers
1685 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1686 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1687 *
1688 * Unmap a set of streaming mode DMA translations. Again, CPU access
1689 * rules concerning calls here are the same as for dma_unmap_single().
1690 */
1691void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1692 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1693{
1694 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1695}
1696
1697/**
1698 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1699 * @dev: valid struct device pointer
1700 * @sg: list of buffers
1701 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1702 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1703 *
1704 * Unmap a set of streaming mode DMA translations. Again, CPU access
1705 * rules concerning calls here are the same as for dma_unmap_single().
1706 */
1707void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1708 enum dma_data_direction dir, struct dma_attrs *attrs)
1709{
1710 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1711}
1712
4ce63fcd
MS
1713/**
1714 * arm_iommu_sync_sg_for_cpu
1715 * @dev: valid struct device pointer
1716 * @sg: list of buffers
1717 * @nents: number of buffers to map (returned from dma_map_sg)
1718 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1719 */
1720void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1721 int nents, enum dma_data_direction dir)
1722{
1723 struct scatterlist *s;
1724 int i;
1725
1726 for_each_sg(sg, s, nents, i)
0fa478df 1727 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1728
1729}
1730
1731/**
1732 * arm_iommu_sync_sg_for_device
1733 * @dev: valid struct device pointer
1734 * @sg: list of buffers
1735 * @nents: number of buffers to map (returned from dma_map_sg)
1736 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1737 */
1738void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1739 int nents, enum dma_data_direction dir)
1740{
1741 struct scatterlist *s;
1742 int i;
1743
1744 for_each_sg(sg, s, nents, i)
0fa478df 1745 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1746}
1747
1748
1749/**
0fa478df 1750 * arm_coherent_iommu_map_page
4ce63fcd
MS
1751 * @dev: valid struct device pointer
1752 * @page: page that buffer resides in
1753 * @offset: offset into page for start of buffer
1754 * @size: size of buffer to map
1755 * @dir: DMA transfer direction
1756 *
0fa478df 1757 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1758 */
0fa478df 1759static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd
MS
1760 unsigned long offset, size_t size, enum dma_data_direction dir,
1761 struct dma_attrs *attrs)
1762{
1763 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1764 dma_addr_t dma_addr;
13987d68 1765 int ret, prot, len = PAGE_ALIGN(size + offset);
4ce63fcd 1766
4ce63fcd
MS
1767 dma_addr = __alloc_iova(mapping, len);
1768 if (dma_addr == DMA_ERROR_CODE)
1769 return dma_addr;
1770
c9b24996 1771 prot = __dma_direction_to_prot(dir);
13987d68
WD
1772
1773 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
4ce63fcd
MS
1774 if (ret < 0)
1775 goto fail;
1776
1777 return dma_addr + offset;
1778fail:
1779 __free_iova(mapping, dma_addr, len);
1780 return DMA_ERROR_CODE;
1781}
1782
0fa478df
RH
1783/**
1784 * arm_iommu_map_page
1785 * @dev: valid struct device pointer
1786 * @page: page that buffer resides in
1787 * @offset: offset into page for start of buffer
1788 * @size: size of buffer to map
1789 * @dir: DMA transfer direction
1790 *
1791 * IOMMU aware version of arm_dma_map_page()
1792 */
1793static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1794 unsigned long offset, size_t size, enum dma_data_direction dir,
1795 struct dma_attrs *attrs)
1796{
1797 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1798 __dma_page_cpu_to_dev(page, offset, size, dir);
1799
1800 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1801}
1802
1803/**
1804 * arm_coherent_iommu_unmap_page
1805 * @dev: valid struct device pointer
1806 * @handle: DMA address of buffer
1807 * @size: size of buffer (same as passed to dma_map_page)
1808 * @dir: DMA transfer direction (same as passed to dma_map_page)
1809 *
1810 * Coherent IOMMU aware version of arm_dma_unmap_page()
1811 */
1812static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1813 size_t size, enum dma_data_direction dir,
1814 struct dma_attrs *attrs)
1815{
1816 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1817 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1818 int offset = handle & ~PAGE_MASK;
1819 int len = PAGE_ALIGN(size + offset);
1820
1821 if (!iova)
1822 return;
1823
1824 iommu_unmap(mapping->domain, iova, len);
1825 __free_iova(mapping, iova, len);
1826}
1827
4ce63fcd
MS
1828/**
1829 * arm_iommu_unmap_page
1830 * @dev: valid struct device pointer
1831 * @handle: DMA address of buffer
1832 * @size: size of buffer (same as passed to dma_map_page)
1833 * @dir: DMA transfer direction (same as passed to dma_map_page)
1834 *
1835 * IOMMU aware version of arm_dma_unmap_page()
1836 */
1837static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1838 size_t size, enum dma_data_direction dir,
1839 struct dma_attrs *attrs)
1840{
1841 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1842 dma_addr_t iova = handle & PAGE_MASK;
1843 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1844 int offset = handle & ~PAGE_MASK;
1845 int len = PAGE_ALIGN(size + offset);
1846
1847 if (!iova)
1848 return;
1849
0fa478df 1850 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1851 __dma_page_dev_to_cpu(page, offset, size, dir);
1852
1853 iommu_unmap(mapping->domain, iova, len);
1854 __free_iova(mapping, iova, len);
1855}
1856
1857static void arm_iommu_sync_single_for_cpu(struct device *dev,
1858 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1859{
1860 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1861 dma_addr_t iova = handle & PAGE_MASK;
1862 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1863 unsigned int offset = handle & ~PAGE_MASK;
1864
1865 if (!iova)
1866 return;
1867
0fa478df 1868 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
1869}
1870
1871static void arm_iommu_sync_single_for_device(struct device *dev,
1872 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1873{
1874 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1875 dma_addr_t iova = handle & PAGE_MASK;
1876 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1877 unsigned int offset = handle & ~PAGE_MASK;
1878
1879 if (!iova)
1880 return;
1881
1882 __dma_page_cpu_to_dev(page, offset, size, dir);
1883}
1884
1885struct dma_map_ops iommu_ops = {
1886 .alloc = arm_iommu_alloc_attrs,
1887 .free = arm_iommu_free_attrs,
1888 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1889 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1890
1891 .map_page = arm_iommu_map_page,
1892 .unmap_page = arm_iommu_unmap_page,
1893 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1894 .sync_single_for_device = arm_iommu_sync_single_for_device,
1895
1896 .map_sg = arm_iommu_map_sg,
1897 .unmap_sg = arm_iommu_unmap_sg,
1898 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1899 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
d09e1333
HD
1900
1901 .set_dma_mask = arm_dma_set_mask,
4ce63fcd
MS
1902};
1903
0fa478df
RH
1904struct dma_map_ops iommu_coherent_ops = {
1905 .alloc = arm_iommu_alloc_attrs,
1906 .free = arm_iommu_free_attrs,
1907 .mmap = arm_iommu_mmap_attrs,
1908 .get_sgtable = arm_iommu_get_sgtable,
1909
1910 .map_page = arm_coherent_iommu_map_page,
1911 .unmap_page = arm_coherent_iommu_unmap_page,
1912
1913 .map_sg = arm_coherent_iommu_map_sg,
1914 .unmap_sg = arm_coherent_iommu_unmap_sg,
d09e1333
HD
1915
1916 .set_dma_mask = arm_dma_set_mask,
0fa478df
RH
1917};
1918
4ce63fcd
MS
1919/**
1920 * arm_iommu_create_mapping
1921 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1922 * @base: start address of the valid IO address space
68efd7d2 1923 * @size: maximum size of the valid IO address space
4ce63fcd
MS
1924 *
1925 * Creates a mapping structure which holds information about used/unused
1926 * IO address ranges, which is required to perform memory allocation and
1927 * mapping with IOMMU aware functions.
1928 *
1929 * The client device need to be attached to the mapping with
1930 * arm_iommu_attach_device function.
1931 */
1932struct dma_iommu_mapping *
68efd7d2 1933arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
4ce63fcd 1934{
68efd7d2
MS
1935 unsigned int bits = size >> PAGE_SHIFT;
1936 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
4ce63fcd 1937 struct dma_iommu_mapping *mapping;
68efd7d2 1938 int extensions = 1;
4ce63fcd
MS
1939 int err = -ENOMEM;
1940
68efd7d2 1941 if (!bitmap_size)
4ce63fcd
MS
1942 return ERR_PTR(-EINVAL);
1943
68efd7d2
MS
1944 if (bitmap_size > PAGE_SIZE) {
1945 extensions = bitmap_size / PAGE_SIZE;
1946 bitmap_size = PAGE_SIZE;
1947 }
1948
4ce63fcd
MS
1949 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1950 if (!mapping)
1951 goto err;
1952
68efd7d2
MS
1953 mapping->bitmap_size = bitmap_size;
1954 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
4d852ef8
AH
1955 GFP_KERNEL);
1956 if (!mapping->bitmaps)
4ce63fcd
MS
1957 goto err2;
1958
68efd7d2 1959 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
4d852ef8
AH
1960 if (!mapping->bitmaps[0])
1961 goto err3;
1962
1963 mapping->nr_bitmaps = 1;
1964 mapping->extensions = extensions;
4ce63fcd 1965 mapping->base = base;
68efd7d2
MS
1966 mapping->size = bitmap_size << PAGE_SHIFT;
1967 mapping->bits = BITS_PER_BYTE * bitmap_size;
4d852ef8 1968
4ce63fcd
MS
1969 spin_lock_init(&mapping->lock);
1970
1971 mapping->domain = iommu_domain_alloc(bus);
1972 if (!mapping->domain)
4d852ef8 1973 goto err4;
4ce63fcd
MS
1974
1975 kref_init(&mapping->kref);
1976 return mapping;
4d852ef8
AH
1977err4:
1978 kfree(mapping->bitmaps[0]);
4ce63fcd 1979err3:
4d852ef8 1980 kfree(mapping->bitmaps);
4ce63fcd
MS
1981err2:
1982 kfree(mapping);
1983err:
1984 return ERR_PTR(err);
1985}
18177d12 1986EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
1987
1988static void release_iommu_mapping(struct kref *kref)
1989{
4d852ef8 1990 int i;
4ce63fcd
MS
1991 struct dma_iommu_mapping *mapping =
1992 container_of(kref, struct dma_iommu_mapping, kref);
1993
1994 iommu_domain_free(mapping->domain);
4d852ef8
AH
1995 for (i = 0; i < mapping->nr_bitmaps; i++)
1996 kfree(mapping->bitmaps[i]);
1997 kfree(mapping->bitmaps);
4ce63fcd
MS
1998 kfree(mapping);
1999}
2000
4d852ef8
AH
2001static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2002{
2003 int next_bitmap;
2004
2005 if (mapping->nr_bitmaps > mapping->extensions)
2006 return -EINVAL;
2007
2008 next_bitmap = mapping->nr_bitmaps;
2009 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2010 GFP_ATOMIC);
2011 if (!mapping->bitmaps[next_bitmap])
2012 return -ENOMEM;
2013
2014 mapping->nr_bitmaps++;
2015
2016 return 0;
2017}
2018
4ce63fcd
MS
2019void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2020{
2021 if (mapping)
2022 kref_put(&mapping->kref, release_iommu_mapping);
2023}
18177d12 2024EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd
MS
2025
2026/**
2027 * arm_iommu_attach_device
2028 * @dev: valid struct device pointer
2029 * @mapping: io address space mapping structure (returned from
2030 * arm_iommu_create_mapping)
2031 *
2032 * Attaches specified io address space mapping to the provided device,
2033 * this replaces the dma operations (dma_map_ops pointer) with the
2034 * IOMMU aware version. More than one client might be attached to
2035 * the same io address space mapping.
2036 */
2037int arm_iommu_attach_device(struct device *dev,
2038 struct dma_iommu_mapping *mapping)
2039{
2040 int err;
2041
2042 err = iommu_attach_device(mapping->domain, dev);
2043 if (err)
2044 return err;
2045
2046 kref_get(&mapping->kref);
2047 dev->archdata.mapping = mapping;
2048 set_dma_ops(dev, &iommu_ops);
2049
75c59716 2050 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
4ce63fcd
MS
2051 return 0;
2052}
18177d12 2053EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 2054
6fe36758
HD
2055/**
2056 * arm_iommu_detach_device
2057 * @dev: valid struct device pointer
2058 *
2059 * Detaches the provided device from a previously attached map.
2060 * This voids the dma operations (dma_map_ops pointer)
2061 */
2062void arm_iommu_detach_device(struct device *dev)
2063{
2064 struct dma_iommu_mapping *mapping;
2065
2066 mapping = to_dma_iommu_mapping(dev);
2067 if (!mapping) {
2068 dev_warn(dev, "Not attached\n");
2069 return;
2070 }
2071
2072 iommu_detach_device(mapping->domain, dev);
2073 kref_put(&mapping->kref, release_iommu_mapping);
9e4b259d 2074 dev->archdata.mapping = NULL;
6fe36758
HD
2075 set_dma_ops(dev, NULL);
2076
2077 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2078}
18177d12 2079EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 2080
4ce63fcd 2081#endif