ARM: dma-mapping: atomic_pool with struct page **pages
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
5a0e3ad6 14#include <linux/gfp.h>
1da177e4
LT
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
c7909509 20#include <linux/dma-contiguous.h>
39af22a7 21#include <linux/highmem.h>
c7909509 22#include <linux/memblock.h>
99d1717d 23#include <linux/slab.h>
4ce63fcd 24#include <linux/iommu.h>
e9da6e99 25#include <linux/io.h>
4ce63fcd 26#include <linux/vmalloc.h>
158e8bfe 27#include <linux/sizes.h>
1da177e4 28
23759dc6 29#include <asm/memory.h>
43377453 30#include <asm/highmem.h>
1da177e4 31#include <asm/cacheflush.h>
1da177e4 32#include <asm/tlbflush.h>
99d1717d 33#include <asm/mach/arch.h>
4ce63fcd 34#include <asm/dma-iommu.h>
c7909509
MS
35#include <asm/mach/map.h>
36#include <asm/system_info.h>
37#include <asm/dma-contiguous.h>
37134cd5 38
022ae537
RK
39#include "mm.h"
40
15237e1f
MS
41/*
42 * The DMA API is built upon the notion of "buffer ownership". A buffer
43 * is either exclusively owned by the CPU (and therefore may be accessed
44 * by it) or exclusively owned by the DMA device. These helper functions
45 * represent the transitions between these two ownership states.
46 *
47 * Note, however, that on later ARMs, this notion does not work due to
48 * speculative prefetches. We model our approach on the assumption that
49 * the CPU does do speculative prefetches, which means we clean caches
50 * before transfers and delay cache invalidation until transfer completion.
51 *
15237e1f 52 */
51fde349 53static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 54 size_t, enum dma_data_direction);
51fde349 55static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
56 size_t, enum dma_data_direction);
57
2dc6a016
MS
58/**
59 * arm_dma_map_page - map a portion of a page for streaming DMA
60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61 * @page: page that buffer resides in
62 * @offset: offset into page for start of buffer
63 * @size: size of buffer to map
64 * @dir: DMA transfer direction
65 *
66 * Ensure that any data held in the cache is appropriately discarded
67 * or written back.
68 *
69 * The device owns this memory once this call has completed. The CPU
70 * can regain ownership by calling dma_unmap_page().
71 */
51fde349 72static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
73 unsigned long offset, size_t size, enum dma_data_direction dir,
74 struct dma_attrs *attrs)
75{
97ef952a 76 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
77 __dma_page_cpu_to_dev(page, offset, size, dir);
78 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
79}
80
81/**
82 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
83 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
84 * @handle: DMA address of buffer
85 * @size: size of buffer (same as passed to dma_map_page)
86 * @dir: DMA transfer direction (same as passed to dma_map_page)
87 *
88 * Unmap a page streaming mode DMA translation. The handle and size
89 * must match what was provided in the previous dma_map_page() call.
90 * All other usages are undefined.
91 *
92 * After this call, reads by the CPU to the buffer are guaranteed to see
93 * whatever the device wrote there.
94 */
51fde349 95static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
96 size_t size, enum dma_data_direction dir,
97 struct dma_attrs *attrs)
98{
97ef952a 99 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
100 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
101 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
102}
103
51fde349 104static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
105 dma_addr_t handle, size_t size, enum dma_data_direction dir)
106{
107 unsigned int offset = handle & (PAGE_SIZE - 1);
108 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
51fde349
MS
109 if (!arch_is_coherent())
110 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
111}
112
51fde349 113static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
114 dma_addr_t handle, size_t size, enum dma_data_direction dir)
115{
116 unsigned int offset = handle & (PAGE_SIZE - 1);
117 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
51fde349
MS
118 if (!arch_is_coherent())
119 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
120}
121
122static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
123
124struct dma_map_ops arm_dma_ops = {
f99d6034
MS
125 .alloc = arm_dma_alloc,
126 .free = arm_dma_free,
127 .mmap = arm_dma_mmap,
dc2832e1 128 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
129 .map_page = arm_dma_map_page,
130 .unmap_page = arm_dma_unmap_page,
131 .map_sg = arm_dma_map_sg,
132 .unmap_sg = arm_dma_unmap_sg,
133 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
134 .sync_single_for_device = arm_dma_sync_single_for_device,
135 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
136 .sync_sg_for_device = arm_dma_sync_sg_for_device,
137 .set_dma_mask = arm_dma_set_mask,
138};
139EXPORT_SYMBOL(arm_dma_ops);
140
ab6494f0
CM
141static u64 get_coherent_dma_mask(struct device *dev)
142{
022ae537 143 u64 mask = (u64)arm_dma_limit;
ab6494f0
CM
144
145 if (dev) {
146 mask = dev->coherent_dma_mask;
147
148 /*
149 * Sanity check the DMA mask - it must be non-zero, and
150 * must be able to be satisfied by a DMA allocation.
151 */
152 if (mask == 0) {
153 dev_warn(dev, "coherent DMA mask is unset\n");
154 return 0;
155 }
156
022ae537 157 if ((~mask) & (u64)arm_dma_limit) {
ab6494f0
CM
158 dev_warn(dev, "coherent DMA mask %#llx is smaller "
159 "than system GFP_DMA mask %#llx\n",
022ae537 160 mask, (u64)arm_dma_limit);
ab6494f0
CM
161 return 0;
162 }
163 }
1da177e4 164
ab6494f0
CM
165 return mask;
166}
167
c7909509
MS
168static void __dma_clear_buffer(struct page *page, size_t size)
169{
170 void *ptr;
171 /*
172 * Ensure that the allocated pages are zeroed, and that any data
173 * lurking in the kernel direct-mapped region is invalidated.
174 */
175 ptr = page_address(page);
4ce63fcd
MS
176 if (ptr) {
177 memset(ptr, 0, size);
178 dmac_flush_range(ptr, ptr + size);
179 outer_flush_range(__pa(ptr), __pa(ptr) + size);
180 }
c7909509
MS
181}
182
7a9a32a9
RK
183/*
184 * Allocate a DMA buffer for 'dev' of size 'size' using the
185 * specified gfp mask. Note that 'size' must be page aligned.
186 */
187static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
188{
189 unsigned long order = get_order(size);
190 struct page *page, *p, *e;
7a9a32a9
RK
191
192 page = alloc_pages(gfp, order);
193 if (!page)
194 return NULL;
195
196 /*
197 * Now split the huge page and free the excess pages
198 */
199 split_page(page, order);
200 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
201 __free_page(p);
202
c7909509 203 __dma_clear_buffer(page, size);
7a9a32a9
RK
204
205 return page;
206}
207
208/*
209 * Free a DMA buffer. 'size' must be page aligned.
210 */
211static void __dma_free_buffer(struct page *page, size_t size)
212{
213 struct page *e = page + (size >> PAGE_SHIFT);
214
215 while (page < e) {
216 __free_page(page);
217 page++;
218 }
219}
220
ab6494f0 221#ifdef CONFIG_MMU
e9da6e99
MS
222#ifdef CONFIG_HUGETLB_PAGE
223#error ARM Coherent DMA allocator does not (yet) support huge TLB
224#endif
a5e9d38b 225
e9da6e99
MS
226static void *__alloc_from_contiguous(struct device *dev, size_t size,
227 pgprot_t prot, struct page **ret_page);
99d1717d 228
e9da6e99
MS
229static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
230 pgprot_t prot, struct page **ret_page,
231 const void *caller);
99d1717d 232
e9da6e99
MS
233static void *
234__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
235 const void *caller)
99d1717d 236{
e9da6e99
MS
237 struct vm_struct *area;
238 unsigned long addr;
99d1717d 239
e9da6e99
MS
240 /*
241 * DMA allocation can be mapped to user space, so lets
242 * set VM_USERMAP flags too.
243 */
244 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
245 caller);
246 if (!area)
247 return NULL;
248 addr = (unsigned long)area->addr;
249 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
99d1717d 250
e9da6e99
MS
251 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
252 vunmap((void *)addr);
253 return NULL;
254 }
255 return (void *)addr;
99d1717d 256}
1da177e4 257
e9da6e99 258static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 259{
e9da6e99
MS
260 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
261 struct vm_struct *area = find_vm_area(cpu_addr);
262 if (!area || (area->flags & flags) != flags) {
263 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
264 return;
99d1717d 265 }
e9da6e99
MS
266 unmap_kernel_range((unsigned long)cpu_addr, size);
267 vunmap(cpu_addr);
88c58f3b 268}
88c58f3b 269
6e5267aa
MS
270#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
271
e9da6e99
MS
272struct dma_pool {
273 size_t size;
274 spinlock_t lock;
275 unsigned long *bitmap;
276 unsigned long nr_pages;
277 void *vaddr;
6b3fe472 278 struct page **pages;
c7909509
MS
279};
280
e9da6e99 281static struct dma_pool atomic_pool = {
6e5267aa 282 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
e9da6e99 283};
c7909509
MS
284
285static int __init early_coherent_pool(char *p)
286{
e9da6e99 287 atomic_pool.size = memparse(p, &p);
c7909509
MS
288 return 0;
289}
290early_param("coherent_pool", early_coherent_pool);
291
6e5267aa
MS
292void __init init_dma_coherent_pool_size(unsigned long size)
293{
294 /*
295 * Catch any attempt to set the pool size too late.
296 */
297 BUG_ON(atomic_pool.vaddr);
298
299 /*
300 * Set architecture specific coherent pool size only if
301 * it has not been changed by kernel command line parameter.
302 */
303 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
304 atomic_pool.size = size;
305}
306
c7909509
MS
307/*
308 * Initialise the coherent pool for atomic allocations.
309 */
e9da6e99 310static int __init atomic_pool_init(void)
c7909509 311{
e9da6e99 312 struct dma_pool *pool = &atomic_pool;
c7909509 313 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
e9da6e99
MS
314 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
315 unsigned long *bitmap;
c7909509 316 struct page *page;
6b3fe472 317 struct page **pages;
c7909509 318 void *ptr;
e9da6e99 319 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
c7909509 320
e9da6e99
MS
321 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
322 if (!bitmap)
323 goto no_bitmap;
c7909509 324
6b3fe472
HD
325 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
326 if (!pages)
327 goto no_pages;
328
e9da6e99
MS
329 if (IS_ENABLED(CONFIG_CMA))
330 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
331 else
332 ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
333 &page, NULL);
c7909509 334 if (ptr) {
6b3fe472
HD
335 int i;
336
337 for (i = 0; i < nr_pages; i++)
338 pages[i] = page + i;
339
e9da6e99
MS
340 spin_lock_init(&pool->lock);
341 pool->vaddr = ptr;
6b3fe472 342 pool->pages = pages;
e9da6e99
MS
343 pool->bitmap = bitmap;
344 pool->nr_pages = nr_pages;
345 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
346 (unsigned)pool->size / 1024);
c7909509
MS
347 return 0;
348 }
6b3fe472 349no_pages:
e9da6e99
MS
350 kfree(bitmap);
351no_bitmap:
352 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
353 (unsigned)pool->size / 1024);
c7909509
MS
354 return -ENOMEM;
355}
356/*
357 * CMA is activated by core_initcall, so we must be called after it.
358 */
e9da6e99 359postcore_initcall(atomic_pool_init);
c7909509
MS
360
361struct dma_contig_early_reserve {
362 phys_addr_t base;
363 unsigned long size;
364};
365
366static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
367
368static int dma_mmu_remap_num __initdata;
369
370void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
371{
372 dma_mmu_remap[dma_mmu_remap_num].base = base;
373 dma_mmu_remap[dma_mmu_remap_num].size = size;
374 dma_mmu_remap_num++;
375}
376
377void __init dma_contiguous_remap(void)
378{
379 int i;
380 for (i = 0; i < dma_mmu_remap_num; i++) {
381 phys_addr_t start = dma_mmu_remap[i].base;
382 phys_addr_t end = start + dma_mmu_remap[i].size;
383 struct map_desc map;
384 unsigned long addr;
385
386 if (end > arm_lowmem_limit)
387 end = arm_lowmem_limit;
388 if (start >= end)
39f78e70 389 continue;
c7909509
MS
390
391 map.pfn = __phys_to_pfn(start);
392 map.virtual = __phys_to_virt(start);
393 map.length = end - start;
394 map.type = MT_MEMORY_DMA_READY;
395
396 /*
397 * Clear previous low-memory mapping
398 */
399 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 400 addr += PMD_SIZE)
c7909509
MS
401 pmd_clear(pmd_off_k(addr));
402
403 iotable_init(&map, 1);
404 }
405}
406
c7909509
MS
407static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
408 void *data)
409{
410 struct page *page = virt_to_page(addr);
411 pgprot_t prot = *(pgprot_t *)data;
412
413 set_pte_ext(pte, mk_pte(page, prot), 0);
414 return 0;
415}
416
417static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
418{
419 unsigned long start = (unsigned long) page_address(page);
420 unsigned end = start + size;
421
422 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
423 dsb();
424 flush_tlb_kernel_range(start, end);
425}
426
427static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
428 pgprot_t prot, struct page **ret_page,
429 const void *caller)
430{
431 struct page *page;
432 void *ptr;
433 page = __dma_alloc_buffer(dev, size, gfp);
434 if (!page)
435 return NULL;
436
437 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
438 if (!ptr) {
439 __dma_free_buffer(page, size);
440 return NULL;
441 }
442
443 *ret_page = page;
444 return ptr;
445}
446
e9da6e99 447static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 448{
e9da6e99
MS
449 struct dma_pool *pool = &atomic_pool;
450 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
451 unsigned int pageno;
452 unsigned long flags;
453 void *ptr = NULL;
e4ea6918 454 unsigned long align_mask;
c7909509 455
e9da6e99
MS
456 if (!pool->vaddr) {
457 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
458 return NULL;
459 }
460
461 /*
462 * Align the region allocation - allocations from pool are rather
463 * small, so align them to their order in pages, minimum is a page
464 * size. This helps reduce fragmentation of the DMA space.
465 */
e4ea6918 466 align_mask = (1 << get_order(size)) - 1;
e9da6e99
MS
467
468 spin_lock_irqsave(&pool->lock, flags);
469 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
e4ea6918 470 0, count, align_mask);
e9da6e99
MS
471 if (pageno < pool->nr_pages) {
472 bitmap_set(pool->bitmap, pageno, count);
473 ptr = pool->vaddr + PAGE_SIZE * pageno;
6b3fe472 474 *ret_page = pool->pages[pageno];
fb71285f
MS
475 } else {
476 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
477 "Please increase it with coherent_pool= kernel parameter!\n",
478 (unsigned)pool->size / 1024);
c7909509 479 }
e9da6e99
MS
480 spin_unlock_irqrestore(&pool->lock, flags);
481
482 return ptr;
c7909509
MS
483}
484
e9da6e99 485static int __free_from_pool(void *start, size_t size)
c7909509 486{
e9da6e99
MS
487 struct dma_pool *pool = &atomic_pool;
488 unsigned long pageno, count;
489 unsigned long flags;
c7909509 490
e9da6e99 491 if (start < pool->vaddr || start > pool->vaddr + pool->size)
c7909509
MS
492 return 0;
493
e9da6e99
MS
494 if (start + size > pool->vaddr + pool->size) {
495 WARN(1, "freeing wrong coherent size from pool\n");
496 return 0;
c7909509
MS
497 }
498
e9da6e99
MS
499 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
500 count = size >> PAGE_SHIFT;
501
502 spin_lock_irqsave(&pool->lock, flags);
503 bitmap_clear(pool->bitmap, pageno, count);
504 spin_unlock_irqrestore(&pool->lock, flags);
505
c7909509
MS
506 return 1;
507}
508
509static void *__alloc_from_contiguous(struct device *dev, size_t size,
510 pgprot_t prot, struct page **ret_page)
511{
512 unsigned long order = get_order(size);
513 size_t count = size >> PAGE_SHIFT;
514 struct page *page;
515
516 page = dma_alloc_from_contiguous(dev, count, order);
517 if (!page)
518 return NULL;
519
520 __dma_clear_buffer(page, size);
521 __dma_remap(page, size, prot);
522
523 *ret_page = page;
524 return page_address(page);
525}
526
527static void __free_from_contiguous(struct device *dev, struct page *page,
528 size_t size)
529{
530 __dma_remap(page, size, pgprot_kernel);
531 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
532}
533
f99d6034
MS
534static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
535{
536 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
537 pgprot_writecombine(prot) :
538 pgprot_dmacoherent(prot);
539 return prot;
540}
541
c7909509
MS
542#define nommu() 0
543
ab6494f0 544#else /* !CONFIG_MMU */
695ae0af 545
c7909509
MS
546#define nommu() 1
547
f99d6034 548#define __get_dma_pgprot(attrs, prot) __pgprot(0)
c7909509 549#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
e9da6e99 550#define __alloc_from_pool(size, ret_page) NULL
c7909509
MS
551#define __alloc_from_contiguous(dev, size, prot, ret) NULL
552#define __free_from_pool(cpu_addr, size) 0
553#define __free_from_contiguous(dev, page, size) do { } while (0)
554#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
555
556#endif /* CONFIG_MMU */
557
c7909509
MS
558static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
559 struct page **ret_page)
ab6494f0 560{
c7909509
MS
561 struct page *page;
562 page = __dma_alloc_buffer(dev, size, gfp);
563 if (!page)
564 return NULL;
565
566 *ret_page = page;
567 return page_address(page);
568}
569
570
571
572static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
573 gfp_t gfp, pgprot_t prot, const void *caller)
574{
575 u64 mask = get_coherent_dma_mask(dev);
04da5694 576 struct page *page;
31ebf944 577 void *addr;
ab6494f0 578
c7909509
MS
579#ifdef CONFIG_DMA_API_DEBUG
580 u64 limit = (mask + 1) & ~mask;
581 if (limit && size >= limit) {
582 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
583 size, mask);
584 return NULL;
585 }
586#endif
587
588 if (!mask)
589 return NULL;
590
591 if (mask < 0xffffffffULL)
592 gfp |= GFP_DMA;
593
ea2e7057
SB
594 /*
595 * Following is a work-around (a.k.a. hack) to prevent pages
596 * with __GFP_COMP being passed to split_page() which cannot
597 * handle them. The real problem is that this flag probably
598 * should be 0 on ARM as it is not supported on this
599 * platform; see CONFIG_HUGETLBFS.
600 */
601 gfp &= ~(__GFP_COMP);
602
553ac788 603 *handle = DMA_ERROR_CODE;
04da5694 604 size = PAGE_ALIGN(size);
ab6494f0 605
c7909509
MS
606 if (arch_is_coherent() || nommu())
607 addr = __alloc_simple_buffer(dev, size, gfp, &page);
e9da6e99
MS
608 else if (gfp & GFP_ATOMIC)
609 addr = __alloc_from_pool(size, &page);
f1ae98da 610 else if (!IS_ENABLED(CONFIG_CMA))
c7909509 611 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
31ebf944 612 else
c7909509 613 addr = __alloc_from_contiguous(dev, size, prot, &page);
695ae0af 614
31ebf944 615 if (addr)
9eedd963 616 *handle = pfn_to_dma(dev, page_to_pfn(page));
695ae0af 617
31ebf944
RK
618 return addr;
619}
1da177e4
LT
620
621/*
622 * Allocate DMA-coherent memory space and return both the kernel remapped
623 * virtual and bus address for that space.
624 */
f99d6034
MS
625void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
626 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 627{
f99d6034 628 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1fe53268
DB
629 void *memory;
630
631 if (dma_alloc_from_coherent(dev, size, handle, &memory))
632 return memory;
633
f99d6034 634 return __dma_alloc(dev, size, handle, gfp, prot,
45cd5290 635 __builtin_return_address(0));
1da177e4 636}
1da177e4
LT
637
638/*
f99d6034 639 * Create userspace mapping for the DMA-coherent memory.
1da177e4 640 */
f99d6034
MS
641int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
642 void *cpu_addr, dma_addr_t dma_addr, size_t size,
643 struct dma_attrs *attrs)
1da177e4 644{
ab6494f0
CM
645 int ret = -ENXIO;
646#ifdef CONFIG_MMU
50262a4b
MS
647 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
648 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 649 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
650 unsigned long off = vma->vm_pgoff;
651
f99d6034
MS
652 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
653
47142f07
MS
654 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
655 return ret;
656
50262a4b
MS
657 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
658 ret = remap_pfn_range(vma, vma->vm_start,
659 pfn + off,
660 vma->vm_end - vma->vm_start,
661 vma->vm_page_prot);
662 }
ab6494f0 663#endif /* CONFIG_MMU */
1da177e4
LT
664
665 return ret;
666}
667
1da177e4 668/*
c7909509 669 * Free a buffer as defined by the above mapping.
1da177e4 670 */
f99d6034
MS
671void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
672 dma_addr_t handle, struct dma_attrs *attrs)
1da177e4 673{
c7909509 674 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
5edf71ae 675
1fe53268
DB
676 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
677 return;
678
3e82d012
RK
679 size = PAGE_ALIGN(size);
680
c7909509
MS
681 if (arch_is_coherent() || nommu()) {
682 __dma_free_buffer(page, size);
d9e0d149
AK
683 } else if (__free_from_pool(cpu_addr, size)) {
684 return;
f1ae98da 685 } else if (!IS_ENABLED(CONFIG_CMA)) {
695ae0af 686 __dma_free_remap(cpu_addr, size);
c7909509
MS
687 __dma_free_buffer(page, size);
688 } else {
c7909509
MS
689 /*
690 * Non-atomic allocations cannot be freed with IRQs disabled
691 */
692 WARN_ON(irqs_disabled());
693 __free_from_contiguous(dev, page, size);
694 }
1da177e4 695}
afd1a321 696
dc2832e1
MS
697int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
698 void *cpu_addr, dma_addr_t handle, size_t size,
699 struct dma_attrs *attrs)
700{
701 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
702 int ret;
703
704 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
705 if (unlikely(ret))
706 return ret;
707
708 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
709 return 0;
710}
711
4ea0d737 712static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
713 size_t size, enum dma_data_direction dir,
714 void (*op)(const void *, size_t, int))
43377453
NP
715{
716 /*
717 * A single sg entry may refer to multiple physically contiguous
718 * pages. But we still need to process highmem pages individually.
719 * If highmem is not configured then the bulk of this loop gets
720 * optimized out.
721 */
722 size_t left = size;
723 do {
724 size_t len = left;
93f1d629
RK
725 void *vaddr;
726
727 if (PageHighMem(page)) {
728 if (len + offset > PAGE_SIZE) {
729 if (offset >= PAGE_SIZE) {
730 page += offset / PAGE_SIZE;
731 offset %= PAGE_SIZE;
732 }
733 len = PAGE_SIZE - offset;
734 }
735 vaddr = kmap_high_get(page);
736 if (vaddr) {
737 vaddr += offset;
a9c9147e 738 op(vaddr, len, dir);
93f1d629 739 kunmap_high(page);
7e5a69e8 740 } else if (cache_is_vipt()) {
39af22a7
NP
741 /* unmapped pages might still be cached */
742 vaddr = kmap_atomic(page);
7e5a69e8 743 op(vaddr + offset, len, dir);
39af22a7 744 kunmap_atomic(vaddr);
43377453 745 }
93f1d629
RK
746 } else {
747 vaddr = page_address(page) + offset;
a9c9147e 748 op(vaddr, len, dir);
43377453 749 }
43377453
NP
750 offset = 0;
751 page++;
752 left -= len;
753 } while (left);
754}
4ea0d737 755
51fde349
MS
756/*
757 * Make an area consistent for devices.
758 * Note: Drivers should NOT use this function directly, as it will break
759 * platforms with CONFIG_DMABOUNCE.
760 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
761 */
762static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
763 size_t size, enum dma_data_direction dir)
764{
65af191a 765 unsigned long paddr;
65af191a 766
a9c9147e 767 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
768
769 paddr = page_to_phys(page) + off;
2ffe2da3
RK
770 if (dir == DMA_FROM_DEVICE) {
771 outer_inv_range(paddr, paddr + size);
772 } else {
773 outer_clean_range(paddr, paddr + size);
774 }
775 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 776}
4ea0d737 777
51fde349 778static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
779 size_t size, enum dma_data_direction dir)
780{
2ffe2da3
RK
781 unsigned long paddr = page_to_phys(page) + off;
782
783 /* FIXME: non-speculating: not required */
784 /* don't bother invalidating if DMA to device */
785 if (dir != DMA_TO_DEVICE)
786 outer_inv_range(paddr, paddr + size);
787
a9c9147e 788 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
c0177800
CM
789
790 /*
791 * Mark the D-cache clean for this page to avoid extra flushing.
792 */
793 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
794 set_bit(PG_dcache_clean, &page->flags);
4ea0d737 795}
43377453 796
afd1a321 797/**
2a550e73 798 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
799 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
800 * @sg: list of buffers
801 * @nents: number of buffers to map
802 * @dir: DMA transfer direction
803 *
804 * Map a set of buffers described by scatterlist in streaming mode for DMA.
805 * This is the scatter-gather version of the dma_map_single interface.
806 * Here the scatter gather list elements are each tagged with the
807 * appropriate dma address and length. They are obtained via
808 * sg_dma_{address,length}.
809 *
810 * Device ownership issues as mentioned for dma_map_single are the same
811 * here.
812 */
2dc6a016
MS
813int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
814 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 815{
2a550e73 816 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 817 struct scatterlist *s;
01135d92 818 int i, j;
afd1a321
RK
819
820 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
821#ifdef CONFIG_NEED_SG_DMA_LENGTH
822 s->dma_length = s->length;
823#endif
2a550e73
MS
824 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
825 s->length, dir, attrs);
01135d92
RK
826 if (dma_mapping_error(dev, s->dma_address))
827 goto bad_mapping;
afd1a321 828 }
afd1a321 829 return nents;
01135d92
RK
830
831 bad_mapping:
832 for_each_sg(sg, s, i, j)
2a550e73 833 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 834 return 0;
afd1a321 835}
afd1a321
RK
836
837/**
2a550e73 838 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
839 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
840 * @sg: list of buffers
0adfca6f 841 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
842 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
843 *
844 * Unmap a set of streaming mode DMA translations. Again, CPU access
845 * rules concerning calls here are the same as for dma_unmap_single().
846 */
2dc6a016
MS
847void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
848 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 849{
2a550e73 850 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 851 struct scatterlist *s;
01135d92 852
01135d92 853 int i;
24056f52 854
01135d92 855 for_each_sg(sg, s, nents, i)
2a550e73 856 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 857}
afd1a321
RK
858
859/**
2a550e73 860 * arm_dma_sync_sg_for_cpu
afd1a321
RK
861 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
862 * @sg: list of buffers
863 * @nents: number of buffers to map (returned from dma_map_sg)
864 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
865 */
2dc6a016 866void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
867 int nents, enum dma_data_direction dir)
868{
2a550e73 869 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
870 struct scatterlist *s;
871 int i;
872
2a550e73
MS
873 for_each_sg(sg, s, nents, i)
874 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
875 dir);
afd1a321 876}
afd1a321
RK
877
878/**
2a550e73 879 * arm_dma_sync_sg_for_device
afd1a321
RK
880 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
881 * @sg: list of buffers
882 * @nents: number of buffers to map (returned from dma_map_sg)
883 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
884 */
2dc6a016 885void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
886 int nents, enum dma_data_direction dir)
887{
2a550e73 888 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
889 struct scatterlist *s;
890 int i;
891
2a550e73
MS
892 for_each_sg(sg, s, nents, i)
893 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
894 dir);
afd1a321 895}
24056f52 896
022ae537
RK
897/*
898 * Return whether the given device DMA address mask can be supported
899 * properly. For example, if your device can only drive the low 24-bits
900 * during bus mastering, then you would pass 0x00ffffff as the mask
901 * to this function.
902 */
903int dma_supported(struct device *dev, u64 mask)
904{
905 if (mask < (u64)arm_dma_limit)
906 return 0;
907 return 1;
908}
909EXPORT_SYMBOL(dma_supported);
910
2dc6a016 911static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
912{
913 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
914 return -EIO;
915
022ae537 916 *dev->dma_mask = dma_mask;
022ae537
RK
917
918 return 0;
919}
022ae537 920
24056f52
RK
921#define PREALLOC_DMA_DEBUG_ENTRIES 4096
922
923static int __init dma_debug_do_init(void)
924{
925 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
926 return 0;
927}
928fs_initcall(dma_debug_do_init);
4ce63fcd
MS
929
930#ifdef CONFIG_ARM_DMA_USE_IOMMU
931
932/* IOMMU */
933
934static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
935 size_t size)
936{
937 unsigned int order = get_order(size);
938 unsigned int align = 0;
939 unsigned int count, start;
940 unsigned long flags;
941
942 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
943 (1 << mapping->order) - 1) >> mapping->order;
944
945 if (order > mapping->order)
946 align = (1 << (order - mapping->order)) - 1;
947
948 spin_lock_irqsave(&mapping->lock, flags);
949 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
950 count, align);
951 if (start > mapping->bits) {
952 spin_unlock_irqrestore(&mapping->lock, flags);
953 return DMA_ERROR_CODE;
954 }
955
956 bitmap_set(mapping->bitmap, start, count);
957 spin_unlock_irqrestore(&mapping->lock, flags);
958
959 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
960}
961
962static inline void __free_iova(struct dma_iommu_mapping *mapping,
963 dma_addr_t addr, size_t size)
964{
965 unsigned int start = (addr - mapping->base) >>
966 (mapping->order + PAGE_SHIFT);
967 unsigned int count = ((size >> PAGE_SHIFT) +
968 (1 << mapping->order) - 1) >> mapping->order;
969 unsigned long flags;
970
971 spin_lock_irqsave(&mapping->lock, flags);
972 bitmap_clear(mapping->bitmap, start, count);
973 spin_unlock_irqrestore(&mapping->lock, flags);
974}
975
976static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
977{
978 struct page **pages;
979 int count = size >> PAGE_SHIFT;
980 int array_size = count * sizeof(struct page *);
981 int i = 0;
982
983 if (array_size <= PAGE_SIZE)
984 pages = kzalloc(array_size, gfp);
985 else
986 pages = vzalloc(array_size);
987 if (!pages)
988 return NULL;
989
990 while (count) {
593f4735 991 int j, order = __fls(count);
4ce63fcd
MS
992
993 pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
994 while (!pages[i] && order)
995 pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
996 if (!pages[i])
997 goto error;
998
999 if (order)
1000 split_page(pages[i], order);
1001 j = 1 << order;
1002 while (--j)
1003 pages[i + j] = pages[i] + j;
1004
1005 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1006 i += 1 << order;
1007 count -= 1 << order;
1008 }
1009
1010 return pages;
1011error:
9fa8af91 1012 while (i--)
4ce63fcd
MS
1013 if (pages[i])
1014 __free_pages(pages[i], 0);
46c87852 1015 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1016 kfree(pages);
1017 else
1018 vfree(pages);
1019 return NULL;
1020}
1021
1022static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
1023{
1024 int count = size >> PAGE_SHIFT;
1025 int array_size = count * sizeof(struct page *);
1026 int i;
1027 for (i = 0; i < count; i++)
1028 if (pages[i])
1029 __free_pages(pages[i], 0);
46c87852 1030 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1031 kfree(pages);
1032 else
1033 vfree(pages);
1034 return 0;
1035}
1036
1037/*
1038 * Create a CPU mapping for a specified pages
1039 */
1040static void *
e9da6e99
MS
1041__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1042 const void *caller)
4ce63fcd 1043{
e9da6e99
MS
1044 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1045 struct vm_struct *area;
1046 unsigned long p;
4ce63fcd 1047
e9da6e99
MS
1048 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1049 caller);
1050 if (!area)
4ce63fcd 1051 return NULL;
4ce63fcd 1052
e9da6e99
MS
1053 area->pages = pages;
1054 area->nr_pages = nr_pages;
1055 p = (unsigned long)area->addr;
4ce63fcd 1056
e9da6e99
MS
1057 for (i = 0; i < nr_pages; i++) {
1058 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1059 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1060 goto err;
1061 p += PAGE_SIZE;
4ce63fcd 1062 }
e9da6e99
MS
1063 return area->addr;
1064err:
1065 unmap_kernel_range((unsigned long)area->addr, size);
1066 vunmap(area->addr);
4ce63fcd
MS
1067 return NULL;
1068}
1069
1070/*
1071 * Create a mapping in device IO address space for specified pages
1072 */
1073static dma_addr_t
1074__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1075{
1076 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1077 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1078 dma_addr_t dma_addr, iova;
1079 int i, ret = DMA_ERROR_CODE;
1080
1081 dma_addr = __alloc_iova(mapping, size);
1082 if (dma_addr == DMA_ERROR_CODE)
1083 return dma_addr;
1084
1085 iova = dma_addr;
1086 for (i = 0; i < count; ) {
1087 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1088 phys_addr_t phys = page_to_phys(pages[i]);
1089 unsigned int len, j;
1090
1091 for (j = i + 1; j < count; j++, next_pfn++)
1092 if (page_to_pfn(pages[j]) != next_pfn)
1093 break;
1094
1095 len = (j - i) << PAGE_SHIFT;
1096 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1097 if (ret < 0)
1098 goto fail;
1099 iova += len;
1100 i = j;
1101 }
1102 return dma_addr;
1103fail:
1104 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1105 __free_iova(mapping, dma_addr, size);
1106 return DMA_ERROR_CODE;
1107}
1108
1109static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1110{
1111 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1112
1113 /*
1114 * add optional in-page offset from iova to size and align
1115 * result to page size
1116 */
1117 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1118 iova &= PAGE_MASK;
1119
1120 iommu_unmap(mapping->domain, iova, size);
1121 __free_iova(mapping, iova, size);
1122 return 0;
1123}
1124
955c757e 1125static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1126{
1127 struct vm_struct *area;
1128
955c757e
MS
1129 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1130 return cpu_addr;
1131
e9da6e99
MS
1132 area = find_vm_area(cpu_addr);
1133 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1134 return area->pages;
1135 return NULL;
1136}
1137
4ce63fcd
MS
1138static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1139 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1140{
1141 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1142 struct page **pages;
1143 void *addr = NULL;
1144
1145 *handle = DMA_ERROR_CODE;
1146 size = PAGE_ALIGN(size);
1147
1148 pages = __iommu_alloc_buffer(dev, size, gfp);
1149 if (!pages)
1150 return NULL;
1151
1152 *handle = __iommu_create_mapping(dev, pages, size);
1153 if (*handle == DMA_ERROR_CODE)
1154 goto err_buffer;
1155
955c757e
MS
1156 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1157 return pages;
1158
e9da6e99
MS
1159 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1160 __builtin_return_address(0));
4ce63fcd
MS
1161 if (!addr)
1162 goto err_mapping;
1163
1164 return addr;
1165
1166err_mapping:
1167 __iommu_remove_mapping(dev, *handle, size);
1168err_buffer:
1169 __iommu_free_buffer(dev, pages, size);
1170 return NULL;
1171}
1172
1173static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1174 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1175 struct dma_attrs *attrs)
1176{
e9da6e99
MS
1177 unsigned long uaddr = vma->vm_start;
1178 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1179 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1180
1181 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1182
e9da6e99
MS
1183 if (!pages)
1184 return -ENXIO;
4ce63fcd 1185
e9da6e99
MS
1186 do {
1187 int ret = vm_insert_page(vma, uaddr, *pages++);
1188 if (ret) {
1189 pr_err("Remapping memory failed: %d\n", ret);
1190 return ret;
1191 }
1192 uaddr += PAGE_SIZE;
1193 usize -= PAGE_SIZE;
1194 } while (usize > 0);
4ce63fcd 1195
4ce63fcd
MS
1196 return 0;
1197}
1198
1199/*
1200 * free a page as defined by the above mapping.
1201 * Must not be called with IRQs disabled.
1202 */
1203void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1204 dma_addr_t handle, struct dma_attrs *attrs)
1205{
955c757e 1206 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1207 size = PAGE_ALIGN(size);
1208
e9da6e99
MS
1209 if (!pages) {
1210 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1211 return;
4ce63fcd 1212 }
e9da6e99 1213
955c757e
MS
1214 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1215 unmap_kernel_range((unsigned long)cpu_addr, size);
1216 vunmap(cpu_addr);
1217 }
e9da6e99
MS
1218
1219 __iommu_remove_mapping(dev, handle, size);
1220 __iommu_free_buffer(dev, pages, size);
4ce63fcd
MS
1221}
1222
dc2832e1
MS
1223static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1224 void *cpu_addr, dma_addr_t dma_addr,
1225 size_t size, struct dma_attrs *attrs)
1226{
1227 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1228 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1229
1230 if (!pages)
1231 return -ENXIO;
1232
1233 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1234 GFP_KERNEL);
4ce63fcd
MS
1235}
1236
1237/*
1238 * Map a part of the scatter-gather list into contiguous io address space
1239 */
1240static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1241 size_t size, dma_addr_t *handle,
97ef952a 1242 enum dma_data_direction dir, struct dma_attrs *attrs)
4ce63fcd
MS
1243{
1244 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1245 dma_addr_t iova, iova_base;
1246 int ret = 0;
1247 unsigned int count;
1248 struct scatterlist *s;
1249
1250 size = PAGE_ALIGN(size);
1251 *handle = DMA_ERROR_CODE;
1252
1253 iova_base = iova = __alloc_iova(mapping, size);
1254 if (iova == DMA_ERROR_CODE)
1255 return -ENOMEM;
1256
1257 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1258 phys_addr_t phys = page_to_phys(sg_page(s));
1259 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1260
97ef952a
MS
1261 if (!arch_is_coherent() &&
1262 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1263 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1264
1265 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1266 if (ret < 0)
1267 goto fail;
1268 count += len >> PAGE_SHIFT;
1269 iova += len;
1270 }
1271 *handle = iova_base;
1272
1273 return 0;
1274fail:
1275 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1276 __free_iova(mapping, iova_base, size);
1277 return ret;
1278}
1279
1280/**
1281 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1282 * @dev: valid struct device pointer
1283 * @sg: list of buffers
1284 * @nents: number of buffers to map
1285 * @dir: DMA transfer direction
1286 *
1287 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1288 * The scatter gather list elements are merged together (if possible) and
1289 * tagged with the appropriate dma address and length. They are obtained via
1290 * sg_dma_{address,length}.
1291 */
1292int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1293 enum dma_data_direction dir, struct dma_attrs *attrs)
1294{
1295 struct scatterlist *s = sg, *dma = sg, *start = sg;
1296 int i, count = 0;
1297 unsigned int offset = s->offset;
1298 unsigned int size = s->offset + s->length;
1299 unsigned int max = dma_get_max_seg_size(dev);
1300
1301 for (i = 1; i < nents; i++) {
1302 s = sg_next(s);
1303
1304 s->dma_address = DMA_ERROR_CODE;
1305 s->dma_length = 0;
1306
1307 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1308 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
97ef952a 1309 dir, attrs) < 0)
4ce63fcd
MS
1310 goto bad_mapping;
1311
1312 dma->dma_address += offset;
1313 dma->dma_length = size - offset;
1314
1315 size = offset = s->offset;
1316 start = s;
1317 dma = sg_next(dma);
1318 count += 1;
1319 }
1320 size += s->length;
1321 }
97ef952a 1322 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs) < 0)
4ce63fcd
MS
1323 goto bad_mapping;
1324
1325 dma->dma_address += offset;
1326 dma->dma_length = size - offset;
1327
1328 return count+1;
1329
1330bad_mapping:
1331 for_each_sg(sg, s, count, i)
1332 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1333 return 0;
1334}
1335
1336/**
1337 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1338 * @dev: valid struct device pointer
1339 * @sg: list of buffers
1340 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1341 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1342 *
1343 * Unmap a set of streaming mode DMA translations. Again, CPU access
1344 * rules concerning calls here are the same as for dma_unmap_single().
1345 */
1346void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1347 enum dma_data_direction dir, struct dma_attrs *attrs)
1348{
1349 struct scatterlist *s;
1350 int i;
1351
1352 for_each_sg(sg, s, nents, i) {
1353 if (sg_dma_len(s))
1354 __iommu_remove_mapping(dev, sg_dma_address(s),
1355 sg_dma_len(s));
97ef952a
MS
1356 if (!arch_is_coherent() &&
1357 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1358 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1359 s->length, dir);
1360 }
1361}
1362
1363/**
1364 * arm_iommu_sync_sg_for_cpu
1365 * @dev: valid struct device pointer
1366 * @sg: list of buffers
1367 * @nents: number of buffers to map (returned from dma_map_sg)
1368 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1369 */
1370void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1371 int nents, enum dma_data_direction dir)
1372{
1373 struct scatterlist *s;
1374 int i;
1375
1376 for_each_sg(sg, s, nents, i)
1377 if (!arch_is_coherent())
1378 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1379
1380}
1381
1382/**
1383 * arm_iommu_sync_sg_for_device
1384 * @dev: valid struct device pointer
1385 * @sg: list of buffers
1386 * @nents: number of buffers to map (returned from dma_map_sg)
1387 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1388 */
1389void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1390 int nents, enum dma_data_direction dir)
1391{
1392 struct scatterlist *s;
1393 int i;
1394
1395 for_each_sg(sg, s, nents, i)
1396 if (!arch_is_coherent())
1397 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1398}
1399
1400
1401/**
1402 * arm_iommu_map_page
1403 * @dev: valid struct device pointer
1404 * @page: page that buffer resides in
1405 * @offset: offset into page for start of buffer
1406 * @size: size of buffer to map
1407 * @dir: DMA transfer direction
1408 *
1409 * IOMMU aware version of arm_dma_map_page()
1410 */
1411static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1412 unsigned long offset, size_t size, enum dma_data_direction dir,
1413 struct dma_attrs *attrs)
1414{
1415 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1416 dma_addr_t dma_addr;
1417 int ret, len = PAGE_ALIGN(size + offset);
1418
97ef952a 1419 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1420 __dma_page_cpu_to_dev(page, offset, size, dir);
1421
1422 dma_addr = __alloc_iova(mapping, len);
1423 if (dma_addr == DMA_ERROR_CODE)
1424 return dma_addr;
1425
1426 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1427 if (ret < 0)
1428 goto fail;
1429
1430 return dma_addr + offset;
1431fail:
1432 __free_iova(mapping, dma_addr, len);
1433 return DMA_ERROR_CODE;
1434}
1435
1436/**
1437 * arm_iommu_unmap_page
1438 * @dev: valid struct device pointer
1439 * @handle: DMA address of buffer
1440 * @size: size of buffer (same as passed to dma_map_page)
1441 * @dir: DMA transfer direction (same as passed to dma_map_page)
1442 *
1443 * IOMMU aware version of arm_dma_unmap_page()
1444 */
1445static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1446 size_t size, enum dma_data_direction dir,
1447 struct dma_attrs *attrs)
1448{
1449 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1450 dma_addr_t iova = handle & PAGE_MASK;
1451 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1452 int offset = handle & ~PAGE_MASK;
1453 int len = PAGE_ALIGN(size + offset);
1454
1455 if (!iova)
1456 return;
1457
97ef952a 1458 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1459 __dma_page_dev_to_cpu(page, offset, size, dir);
1460
1461 iommu_unmap(mapping->domain, iova, len);
1462 __free_iova(mapping, iova, len);
1463}
1464
1465static void arm_iommu_sync_single_for_cpu(struct device *dev,
1466 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1467{
1468 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1469 dma_addr_t iova = handle & PAGE_MASK;
1470 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1471 unsigned int offset = handle & ~PAGE_MASK;
1472
1473 if (!iova)
1474 return;
1475
1476 if (!arch_is_coherent())
1477 __dma_page_dev_to_cpu(page, offset, size, dir);
1478}
1479
1480static void arm_iommu_sync_single_for_device(struct device *dev,
1481 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1482{
1483 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1484 dma_addr_t iova = handle & PAGE_MASK;
1485 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1486 unsigned int offset = handle & ~PAGE_MASK;
1487
1488 if (!iova)
1489 return;
1490
1491 __dma_page_cpu_to_dev(page, offset, size, dir);
1492}
1493
1494struct dma_map_ops iommu_ops = {
1495 .alloc = arm_iommu_alloc_attrs,
1496 .free = arm_iommu_free_attrs,
1497 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1498 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1499
1500 .map_page = arm_iommu_map_page,
1501 .unmap_page = arm_iommu_unmap_page,
1502 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1503 .sync_single_for_device = arm_iommu_sync_single_for_device,
1504
1505 .map_sg = arm_iommu_map_sg,
1506 .unmap_sg = arm_iommu_unmap_sg,
1507 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1508 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1509};
1510
1511/**
1512 * arm_iommu_create_mapping
1513 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1514 * @base: start address of the valid IO address space
1515 * @size: size of the valid IO address space
1516 * @order: accuracy of the IO addresses allocations
1517 *
1518 * Creates a mapping structure which holds information about used/unused
1519 * IO address ranges, which is required to perform memory allocation and
1520 * mapping with IOMMU aware functions.
1521 *
1522 * The client device need to be attached to the mapping with
1523 * arm_iommu_attach_device function.
1524 */
1525struct dma_iommu_mapping *
1526arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1527 int order)
1528{
1529 unsigned int count = size >> (PAGE_SHIFT + order);
1530 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1531 struct dma_iommu_mapping *mapping;
1532 int err = -ENOMEM;
1533
1534 if (!count)
1535 return ERR_PTR(-EINVAL);
1536
1537 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1538 if (!mapping)
1539 goto err;
1540
1541 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1542 if (!mapping->bitmap)
1543 goto err2;
1544
1545 mapping->base = base;
1546 mapping->bits = BITS_PER_BYTE * bitmap_size;
1547 mapping->order = order;
1548 spin_lock_init(&mapping->lock);
1549
1550 mapping->domain = iommu_domain_alloc(bus);
1551 if (!mapping->domain)
1552 goto err3;
1553
1554 kref_init(&mapping->kref);
1555 return mapping;
1556err3:
1557 kfree(mapping->bitmap);
1558err2:
1559 kfree(mapping);
1560err:
1561 return ERR_PTR(err);
1562}
1563
1564static void release_iommu_mapping(struct kref *kref)
1565{
1566 struct dma_iommu_mapping *mapping =
1567 container_of(kref, struct dma_iommu_mapping, kref);
1568
1569 iommu_domain_free(mapping->domain);
1570 kfree(mapping->bitmap);
1571 kfree(mapping);
1572}
1573
1574void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1575{
1576 if (mapping)
1577 kref_put(&mapping->kref, release_iommu_mapping);
1578}
1579
1580/**
1581 * arm_iommu_attach_device
1582 * @dev: valid struct device pointer
1583 * @mapping: io address space mapping structure (returned from
1584 * arm_iommu_create_mapping)
1585 *
1586 * Attaches specified io address space mapping to the provided device,
1587 * this replaces the dma operations (dma_map_ops pointer) with the
1588 * IOMMU aware version. More than one client might be attached to
1589 * the same io address space mapping.
1590 */
1591int arm_iommu_attach_device(struct device *dev,
1592 struct dma_iommu_mapping *mapping)
1593{
1594 int err;
1595
1596 err = iommu_attach_device(mapping->domain, dev);
1597 if (err)
1598 return err;
1599
1600 kref_get(&mapping->kref);
1601 dev->archdata.mapping = mapping;
1602 set_dma_ops(dev, &iommu_ops);
1603
1604 pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
1605 return 0;
1606}
1607
1608#endif