ARM: dma-mapping: factor dma_free_coherent() common code
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
14#include <linux/slab.h>
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
20
23759dc6 21#include <asm/memory.h>
43377453 22#include <asm/highmem.h>
1da177e4 23#include <asm/cacheflush.h>
1da177e4 24#include <asm/tlbflush.h>
37134cd5
KH
25#include <asm/sizes.h>
26
27/* Sanity check size */
28#if (CONSISTENT_DMA_SIZE % SZ_2M)
29#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
30#endif
1da177e4 31
1da177e4 32#define CONSISTENT_END (0xffe00000)
37134cd5
KH
33#define CONSISTENT_BASE (CONSISTENT_END - CONSISTENT_DMA_SIZE)
34
1da177e4 35#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
37134cd5
KH
36#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
37#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
38
ab6494f0
CM
39static u64 get_coherent_dma_mask(struct device *dev)
40{
41 u64 mask = ISA_DMA_THRESHOLD;
42
43 if (dev) {
44 mask = dev->coherent_dma_mask;
45
46 /*
47 * Sanity check the DMA mask - it must be non-zero, and
48 * must be able to be satisfied by a DMA allocation.
49 */
50 if (mask == 0) {
51 dev_warn(dev, "coherent DMA mask is unset\n");
52 return 0;
53 }
54
55 if ((~mask) & ISA_DMA_THRESHOLD) {
56 dev_warn(dev, "coherent DMA mask %#llx is smaller "
57 "than system GFP_DMA mask %#llx\n",
58 mask, (unsigned long long)ISA_DMA_THRESHOLD);
59 return 0;
60 }
61 }
1da177e4 62
ab6494f0
CM
63 return mask;
64}
65
7a9a32a9
RK
66/*
67 * Allocate a DMA buffer for 'dev' of size 'size' using the
68 * specified gfp mask. Note that 'size' must be page aligned.
69 */
70static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
71{
72 unsigned long order = get_order(size);
73 struct page *page, *p, *e;
74 void *ptr;
75 u64 mask = get_coherent_dma_mask(dev);
76
77#ifdef CONFIG_DMA_API_DEBUG
78 u64 limit = (mask + 1) & ~mask;
79 if (limit && size >= limit) {
80 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
81 size, mask);
82 return NULL;
83 }
84#endif
85
86 if (!mask)
87 return NULL;
88
89 if (mask < 0xffffffffULL)
90 gfp |= GFP_DMA;
91
92 page = alloc_pages(gfp, order);
93 if (!page)
94 return NULL;
95
96 /*
97 * Now split the huge page and free the excess pages
98 */
99 split_page(page, order);
100 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
101 __free_page(p);
102
103 /*
104 * Ensure that the allocated pages are zeroed, and that any data
105 * lurking in the kernel direct-mapped region is invalidated.
106 */
107 ptr = page_address(page);
108 memset(ptr, 0, size);
109 dmac_flush_range(ptr, ptr + size);
110 outer_flush_range(__pa(ptr), __pa(ptr) + size);
111
112 return page;
113}
114
115/*
116 * Free a DMA buffer. 'size' must be page aligned.
117 */
118static void __dma_free_buffer(struct page *page, size_t size)
119{
120 struct page *e = page + (size >> PAGE_SHIFT);
121
122 while (page < e) {
123 __free_page(page);
124 page++;
125 }
126}
127
ab6494f0 128#ifdef CONFIG_MMU
1da177e4 129/*
37134cd5 130 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
1da177e4 131 */
37134cd5 132static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
1da177e4 133
13ccf3ad 134#include "vmregion.h"
1da177e4 135
13ccf3ad
RK
136static struct arm_vmregion_head consistent_head = {
137 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
1da177e4
LT
138 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
139 .vm_start = CONSISTENT_BASE,
140 .vm_end = CONSISTENT_END,
141};
142
1da177e4
LT
143#ifdef CONFIG_HUGETLB_PAGE
144#error ARM Coherent DMA allocator does not (yet) support huge TLB
145#endif
146
147static void *
f9e3214a 148__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
1da177e4
LT
149 pgprot_t prot)
150{
151 struct page *page;
13ccf3ad 152 struct arm_vmregion *c;
1da177e4 153
37134cd5 154 if (!consistent_pte[0]) {
1da177e4
LT
155 printk(KERN_ERR "%s: not initialised\n", __func__);
156 dump_stack();
157 return NULL;
158 }
159
1da177e4 160 size = PAGE_ALIGN(size);
1da177e4 161
7a9a32a9 162 page = __dma_alloc_buffer(dev, size, gfp);
1da177e4
LT
163 if (!page)
164 goto no_page;
165
1da177e4
LT
166 /*
167 * Allocate a virtual address in the consistent mapping region.
168 */
13ccf3ad 169 c = arm_vmregion_alloc(&consistent_head, size,
1da177e4
LT
170 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
171 if (c) {
37134cd5 172 pte_t *pte;
37134cd5
KH
173 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
174 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
1da177e4 175
37134cd5 176 pte = consistent_pte[idx] + off;
1da177e4
LT
177 c->vm_pages = page;
178
179 /*
180 * Set the "dma handle"
181 */
182 *handle = page_to_dma(dev, page);
183
184 do {
185 BUG_ON(!pte_none(*pte));
186
1da177e4
LT
187 /*
188 * x86 does not mark the pages reserved...
189 */
190 SetPageReserved(page);
ad1ae2fe 191 set_pte_ext(pte, mk_pte(page, prot), 0);
1da177e4
LT
192 page++;
193 pte++;
37134cd5
KH
194 off++;
195 if (off >= PTRS_PER_PTE) {
196 off = 0;
197 pte = consistent_pte[++idx];
198 }
1da177e4
LT
199 } while (size -= PAGE_SIZE);
200
1da177e4
LT
201 return (void *)c->vm_start;
202 }
203
204 if (page)
7a9a32a9 205 __dma_free_buffer(page, size);
1da177e4
LT
206 no_page:
207 *handle = ~0;
208 return NULL;
209}
695ae0af
RK
210
211static void __dma_free_remap(void *cpu_addr, size_t size)
212{
213 struct arm_vmregion *c;
214 unsigned long addr;
215 pte_t *ptep;
216 int idx;
217 u32 off;
218
219 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
220 if (!c) {
221 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
222 __func__, cpu_addr);
223 dump_stack();
224 return;
225 }
226
227 if ((c->vm_end - c->vm_start) != size) {
228 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
229 __func__, c->vm_end - c->vm_start, size);
230 dump_stack();
231 size = c->vm_end - c->vm_start;
232 }
233
234 idx = CONSISTENT_PTE_INDEX(c->vm_start);
235 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
236 ptep = consistent_pte[idx] + off;
237 addr = c->vm_start;
238 do {
239 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
240 unsigned long pfn;
241
242 ptep++;
243 addr += PAGE_SIZE;
244 off++;
245 if (off >= PTRS_PER_PTE) {
246 off = 0;
247 ptep = consistent_pte[++idx];
248 }
249
250 if (!pte_none(pte) && pte_present(pte)) {
251 pfn = pte_pfn(pte);
252
253 if (pfn_valid(pfn)) {
254 struct page *page = pfn_to_page(pfn);
255
256 /*
257 * x86 does not mark the pages reserved...
258 */
259 ClearPageReserved(page);
260 continue;
261 }
262 }
263 printk(KERN_CRIT "%s: bad page in kernel page table\n",
264 __func__);
265 } while (size -= PAGE_SIZE);
266
267 flush_tlb_kernel_range(c->vm_start, c->vm_end);
268
269 arm_vmregion_free(&consistent_head, c);
270}
271
ab6494f0 272#else /* !CONFIG_MMU */
695ae0af 273
ab6494f0
CM
274static void *
275__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
276 pgprot_t prot)
277{
04da5694 278 struct page *page;
ab6494f0 279
04da5694
RK
280 *handle = ~0;
281 size = PAGE_ALIGN(size);
ab6494f0 282
04da5694
RK
283 page = __dma_alloc_buffer(dev, size, gfp);
284 if (!page)
285 return NULL;
ab6494f0 286
04da5694
RK
287 *handle = page_to_dma(dev, page);
288 return page_address(page);
ab6494f0 289}
695ae0af
RK
290
291#define __dma_free_remap(addr, size) do { } while (0)
292
ab6494f0 293#endif /* CONFIG_MMU */
1da177e4
LT
294
295/*
296 * Allocate DMA-coherent memory space and return both the kernel remapped
297 * virtual and bus address for that space.
298 */
299void *
f9e3214a 300dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4 301{
1fe53268
DB
302 void *memory;
303
304 if (dma_alloc_from_coherent(dev, size, handle, &memory))
305 return memory;
306
23759dc6 307 if (arch_is_coherent()) {
3e82d012 308 struct page *page;
23759dc6 309
3e82d012
RK
310 page = __dma_alloc_buffer(dev, PAGE_ALIGN(size), gfp);
311 if (!page) {
312 *handle = ~0;
23759dc6 313 return NULL;
3e82d012 314 }
23759dc6 315
3e82d012
RK
316 *handle = page_to_dma(dev, page);
317 return page_address(page);
23759dc6
LB
318 }
319
1da177e4
LT
320 return __dma_alloc(dev, size, handle, gfp,
321 pgprot_noncached(pgprot_kernel));
322}
323EXPORT_SYMBOL(dma_alloc_coherent);
324
325/*
326 * Allocate a writecombining region, in much the same way as
327 * dma_alloc_coherent above.
328 */
329void *
f9e3214a 330dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4
LT
331{
332 return __dma_alloc(dev, size, handle, gfp,
333 pgprot_writecombine(pgprot_kernel));
334}
335EXPORT_SYMBOL(dma_alloc_writecombine);
336
337static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
338 void *cpu_addr, dma_addr_t dma_addr, size_t size)
339{
ab6494f0
CM
340 int ret = -ENXIO;
341#ifdef CONFIG_MMU
13ccf3ad
RK
342 unsigned long user_size, kern_size;
343 struct arm_vmregion *c;
1da177e4
LT
344
345 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
346
13ccf3ad 347 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1da177e4
LT
348 if (c) {
349 unsigned long off = vma->vm_pgoff;
350
351 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
352
353 if (off < kern_size &&
354 user_size <= (kern_size - off)) {
1da177e4
LT
355 ret = remap_pfn_range(vma, vma->vm_start,
356 page_to_pfn(c->vm_pages) + off,
357 user_size << PAGE_SHIFT,
358 vma->vm_page_prot);
359 }
360 }
ab6494f0 361#endif /* CONFIG_MMU */
1da177e4
LT
362
363 return ret;
364}
365
366int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
367 void *cpu_addr, dma_addr_t dma_addr, size_t size)
368{
369 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
370 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
371}
372EXPORT_SYMBOL(dma_mmap_coherent);
373
374int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
375 void *cpu_addr, dma_addr_t dma_addr, size_t size)
376{
377 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
378 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
379}
380EXPORT_SYMBOL(dma_mmap_writecombine);
381
382/*
383 * free a page as defined by the above mapping.
5edf71ae 384 * Must not be called with IRQs disabled.
1da177e4
LT
385 */
386void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
387{
5edf71ae
RK
388 WARN_ON(irqs_disabled());
389
1fe53268
DB
390 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
391 return;
392
3e82d012
RK
393 size = PAGE_ALIGN(size);
394
695ae0af
RK
395 if (!arch_is_coherent())
396 __dma_free_remap(cpu_addr, size);
7a9a32a9
RK
397
398 __dma_free_buffer(dma_to_page(dev, handle), size);
1da177e4
LT
399}
400EXPORT_SYMBOL(dma_free_coherent);
401
402/*
403 * Initialise the consistent memory allocation.
404 */
405static int __init consistent_init(void)
406{
ab6494f0
CM
407 int ret = 0;
408#ifdef CONFIG_MMU
1da177e4
LT
409 pgd_t *pgd;
410 pmd_t *pmd;
411 pte_t *pte;
ab6494f0 412 int i = 0;
37134cd5 413 u32 base = CONSISTENT_BASE;
1da177e4 414
1da177e4 415 do {
37134cd5
KH
416 pgd = pgd_offset(&init_mm, base);
417 pmd = pmd_alloc(&init_mm, pgd, base);
1da177e4
LT
418 if (!pmd) {
419 printk(KERN_ERR "%s: no pmd tables\n", __func__);
420 ret = -ENOMEM;
421 break;
422 }
423 WARN_ON(!pmd_none(*pmd));
424
37134cd5 425 pte = pte_alloc_kernel(pmd, base);
1da177e4
LT
426 if (!pte) {
427 printk(KERN_ERR "%s: no pte tables\n", __func__);
428 ret = -ENOMEM;
429 break;
430 }
431
37134cd5
KH
432 consistent_pte[i++] = pte;
433 base += (1 << PGDIR_SHIFT);
434 } while (base < CONSISTENT_END);
ab6494f0 435#endif /* !CONFIG_MMU */
1da177e4 436
1da177e4
LT
437 return ret;
438}
439
440core_initcall(consistent_init);
441
442/*
443 * Make an area consistent for devices.
105ef9a0
DW
444 * Note: Drivers should NOT use this function directly, as it will break
445 * platforms with CONFIG_DMABOUNCE.
446 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1da177e4 447 */
84aa462e 448void dma_cache_maint(const void *start, size_t size, int direction)
1da177e4 449{
1522ac3e
RK
450 void (*inner_op)(const void *, const void *);
451 void (*outer_op)(unsigned long, unsigned long);
1da177e4 452
1522ac3e 453 BUG_ON(!virt_addr_valid(start) || !virt_addr_valid(start + size - 1));
953233dc 454
1da177e4
LT
455 switch (direction) {
456 case DMA_FROM_DEVICE: /* invalidate only */
1522ac3e
RK
457 inner_op = dmac_inv_range;
458 outer_op = outer_inv_range;
1da177e4
LT
459 break;
460 case DMA_TO_DEVICE: /* writeback only */
1522ac3e
RK
461 inner_op = dmac_clean_range;
462 outer_op = outer_clean_range;
1da177e4
LT
463 break;
464 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
1522ac3e
RK
465 inner_op = dmac_flush_range;
466 outer_op = outer_flush_range;
1da177e4
LT
467 break;
468 default:
469 BUG();
470 }
1522ac3e
RK
471
472 inner_op(start, start + size);
473 outer_op(__pa(start), __pa(start) + size);
1da177e4 474}
84aa462e 475EXPORT_SYMBOL(dma_cache_maint);
afd1a321 476
43377453
NP
477static void dma_cache_maint_contiguous(struct page *page, unsigned long offset,
478 size_t size, int direction)
479{
480 void *vaddr;
481 unsigned long paddr;
482 void (*inner_op)(const void *, const void *);
483 void (*outer_op)(unsigned long, unsigned long);
484
485 switch (direction) {
486 case DMA_FROM_DEVICE: /* invalidate only */
487 inner_op = dmac_inv_range;
488 outer_op = outer_inv_range;
489 break;
490 case DMA_TO_DEVICE: /* writeback only */
491 inner_op = dmac_clean_range;
492 outer_op = outer_clean_range;
493 break;
494 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
495 inner_op = dmac_flush_range;
496 outer_op = outer_flush_range;
497 break;
498 default:
499 BUG();
500 }
501
502 if (!PageHighMem(page)) {
503 vaddr = page_address(page) + offset;
504 inner_op(vaddr, vaddr + size);
505 } else {
506 vaddr = kmap_high_get(page);
507 if (vaddr) {
508 vaddr += offset;
509 inner_op(vaddr, vaddr + size);
510 kunmap_high(page);
511 }
512 }
513
514 paddr = page_to_phys(page) + offset;
515 outer_op(paddr, paddr + size);
516}
517
518void dma_cache_maint_page(struct page *page, unsigned long offset,
519 size_t size, int dir)
520{
521 /*
522 * A single sg entry may refer to multiple physically contiguous
523 * pages. But we still need to process highmem pages individually.
524 * If highmem is not configured then the bulk of this loop gets
525 * optimized out.
526 */
527 size_t left = size;
528 do {
529 size_t len = left;
530 if (PageHighMem(page) && len + offset > PAGE_SIZE) {
531 if (offset >= PAGE_SIZE) {
532 page += offset / PAGE_SIZE;
533 offset %= PAGE_SIZE;
534 }
535 len = PAGE_SIZE - offset;
536 }
537 dma_cache_maint_contiguous(page, offset, len, dir);
538 offset = 0;
539 page++;
540 left -= len;
541 } while (left);
542}
543EXPORT_SYMBOL(dma_cache_maint_page);
544
afd1a321
RK
545/**
546 * dma_map_sg - map a set of SG buffers for streaming mode DMA
547 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
548 * @sg: list of buffers
549 * @nents: number of buffers to map
550 * @dir: DMA transfer direction
551 *
552 * Map a set of buffers described by scatterlist in streaming mode for DMA.
553 * This is the scatter-gather version of the dma_map_single interface.
554 * Here the scatter gather list elements are each tagged with the
555 * appropriate dma address and length. They are obtained via
556 * sg_dma_{address,length}.
557 *
558 * Device ownership issues as mentioned for dma_map_single are the same
559 * here.
560 */
561int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
562 enum dma_data_direction dir)
563{
564 struct scatterlist *s;
01135d92 565 int i, j;
afd1a321
RK
566
567 for_each_sg(sg, s, nents, i) {
01135d92
RK
568 s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
569 s->length, dir);
570 if (dma_mapping_error(dev, s->dma_address))
571 goto bad_mapping;
afd1a321 572 }
afd1a321 573 return nents;
01135d92
RK
574
575 bad_mapping:
576 for_each_sg(sg, s, i, j)
577 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
578 return 0;
afd1a321
RK
579}
580EXPORT_SYMBOL(dma_map_sg);
581
582/**
583 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
584 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
585 * @sg: list of buffers
586 * @nents: number of buffers to unmap (returned from dma_map_sg)
587 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
588 *
589 * Unmap a set of streaming mode DMA translations. Again, CPU access
590 * rules concerning calls here are the same as for dma_unmap_single().
591 */
592void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
593 enum dma_data_direction dir)
594{
01135d92
RK
595 struct scatterlist *s;
596 int i;
597
598 for_each_sg(sg, s, nents, i)
599 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
afd1a321
RK
600}
601EXPORT_SYMBOL(dma_unmap_sg);
602
603/**
604 * dma_sync_sg_for_cpu
605 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
606 * @sg: list of buffers
607 * @nents: number of buffers to map (returned from dma_map_sg)
608 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
609 */
610void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
611 int nents, enum dma_data_direction dir)
612{
613 struct scatterlist *s;
614 int i;
615
616 for_each_sg(sg, s, nents, i) {
309dbbab
RK
617 dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
618 sg_dma_len(s), dir);
afd1a321
RK
619 }
620}
621EXPORT_SYMBOL(dma_sync_sg_for_cpu);
622
623/**
624 * dma_sync_sg_for_device
625 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
626 * @sg: list of buffers
627 * @nents: number of buffers to map (returned from dma_map_sg)
628 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
629 */
630void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
631 int nents, enum dma_data_direction dir)
632{
633 struct scatterlist *s;
634 int i;
635
636 for_each_sg(sg, s, nents, i) {
2638b4db
RK
637 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
638 sg_dma_len(s), dir))
639 continue;
640
afd1a321 641 if (!arch_is_coherent())
43377453
NP
642 dma_cache_maint_page(sg_page(s), s->offset,
643 s->length, dir);
afd1a321
RK
644 }
645}
646EXPORT_SYMBOL(dma_sync_sg_for_device);