arm: mvebu: Add SMP support for Armada XP
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
5a0e3ad6 14#include <linux/gfp.h>
1da177e4
LT
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
c7909509 20#include <linux/dma-contiguous.h>
39af22a7 21#include <linux/highmem.h>
c7909509 22#include <linux/memblock.h>
99d1717d 23#include <linux/slab.h>
4ce63fcd 24#include <linux/iommu.h>
e9da6e99 25#include <linux/io.h>
4ce63fcd 26#include <linux/vmalloc.h>
158e8bfe 27#include <linux/sizes.h>
1da177e4 28
23759dc6 29#include <asm/memory.h>
43377453 30#include <asm/highmem.h>
1da177e4 31#include <asm/cacheflush.h>
1da177e4 32#include <asm/tlbflush.h>
99d1717d 33#include <asm/mach/arch.h>
4ce63fcd 34#include <asm/dma-iommu.h>
c7909509
MS
35#include <asm/mach/map.h>
36#include <asm/system_info.h>
37#include <asm/dma-contiguous.h>
37134cd5 38
022ae537
RK
39#include "mm.h"
40
15237e1f
MS
41/*
42 * The DMA API is built upon the notion of "buffer ownership". A buffer
43 * is either exclusively owned by the CPU (and therefore may be accessed
44 * by it) or exclusively owned by the DMA device. These helper functions
45 * represent the transitions between these two ownership states.
46 *
47 * Note, however, that on later ARMs, this notion does not work due to
48 * speculative prefetches. We model our approach on the assumption that
49 * the CPU does do speculative prefetches, which means we clean caches
50 * before transfers and delay cache invalidation until transfer completion.
51 *
15237e1f 52 */
51fde349 53static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 54 size_t, enum dma_data_direction);
51fde349 55static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
56 size_t, enum dma_data_direction);
57
2dc6a016
MS
58/**
59 * arm_dma_map_page - map a portion of a page for streaming DMA
60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61 * @page: page that buffer resides in
62 * @offset: offset into page for start of buffer
63 * @size: size of buffer to map
64 * @dir: DMA transfer direction
65 *
66 * Ensure that any data held in the cache is appropriately discarded
67 * or written back.
68 *
69 * The device owns this memory once this call has completed. The CPU
70 * can regain ownership by calling dma_unmap_page().
71 */
51fde349 72static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
73 unsigned long offset, size_t size, enum dma_data_direction dir,
74 struct dma_attrs *attrs)
75{
dd37e940 76 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
77 __dma_page_cpu_to_dev(page, offset, size, dir);
78 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
79}
80
dd37e940
RH
81static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82 unsigned long offset, size_t size, enum dma_data_direction dir,
83 struct dma_attrs *attrs)
84{
85 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
86}
87
2dc6a016
MS
88/**
89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91 * @handle: DMA address of buffer
92 * @size: size of buffer (same as passed to dma_map_page)
93 * @dir: DMA transfer direction (same as passed to dma_map_page)
94 *
95 * Unmap a page streaming mode DMA translation. The handle and size
96 * must match what was provided in the previous dma_map_page() call.
97 * All other usages are undefined.
98 *
99 * After this call, reads by the CPU to the buffer are guaranteed to see
100 * whatever the device wrote there.
101 */
51fde349 102static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
103 size_t size, enum dma_data_direction dir,
104 struct dma_attrs *attrs)
105{
dd37e940 106 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
107 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
109}
110
51fde349 111static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
112 dma_addr_t handle, size_t size, enum dma_data_direction dir)
113{
114 unsigned int offset = handle & (PAGE_SIZE - 1);
115 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 116 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
117}
118
51fde349 119static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
120 dma_addr_t handle, size_t size, enum dma_data_direction dir)
121{
122 unsigned int offset = handle & (PAGE_SIZE - 1);
123 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 124 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
125}
126
127static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
128
129struct dma_map_ops arm_dma_ops = {
f99d6034
MS
130 .alloc = arm_dma_alloc,
131 .free = arm_dma_free,
132 .mmap = arm_dma_mmap,
dc2832e1 133 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
134 .map_page = arm_dma_map_page,
135 .unmap_page = arm_dma_unmap_page,
136 .map_sg = arm_dma_map_sg,
137 .unmap_sg = arm_dma_unmap_sg,
138 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
139 .sync_single_for_device = arm_dma_sync_single_for_device,
140 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
141 .sync_sg_for_device = arm_dma_sync_sg_for_device,
142 .set_dma_mask = arm_dma_set_mask,
143};
144EXPORT_SYMBOL(arm_dma_ops);
145
dd37e940
RH
146static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
147 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
148static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
149 dma_addr_t handle, struct dma_attrs *attrs);
150
151struct dma_map_ops arm_coherent_dma_ops = {
152 .alloc = arm_coherent_dma_alloc,
153 .free = arm_coherent_dma_free,
154 .mmap = arm_dma_mmap,
155 .get_sgtable = arm_dma_get_sgtable,
156 .map_page = arm_coherent_dma_map_page,
157 .map_sg = arm_dma_map_sg,
158 .set_dma_mask = arm_dma_set_mask,
159};
160EXPORT_SYMBOL(arm_coherent_dma_ops);
161
ab6494f0
CM
162static u64 get_coherent_dma_mask(struct device *dev)
163{
022ae537 164 u64 mask = (u64)arm_dma_limit;
ab6494f0
CM
165
166 if (dev) {
167 mask = dev->coherent_dma_mask;
168
169 /*
170 * Sanity check the DMA mask - it must be non-zero, and
171 * must be able to be satisfied by a DMA allocation.
172 */
173 if (mask == 0) {
174 dev_warn(dev, "coherent DMA mask is unset\n");
175 return 0;
176 }
177
022ae537 178 if ((~mask) & (u64)arm_dma_limit) {
ab6494f0
CM
179 dev_warn(dev, "coherent DMA mask %#llx is smaller "
180 "than system GFP_DMA mask %#llx\n",
022ae537 181 mask, (u64)arm_dma_limit);
ab6494f0
CM
182 return 0;
183 }
184 }
1da177e4 185
ab6494f0
CM
186 return mask;
187}
188
c7909509
MS
189static void __dma_clear_buffer(struct page *page, size_t size)
190{
191 void *ptr;
192 /*
193 * Ensure that the allocated pages are zeroed, and that any data
194 * lurking in the kernel direct-mapped region is invalidated.
195 */
196 ptr = page_address(page);
4ce63fcd
MS
197 if (ptr) {
198 memset(ptr, 0, size);
199 dmac_flush_range(ptr, ptr + size);
200 outer_flush_range(__pa(ptr), __pa(ptr) + size);
201 }
c7909509
MS
202}
203
7a9a32a9
RK
204/*
205 * Allocate a DMA buffer for 'dev' of size 'size' using the
206 * specified gfp mask. Note that 'size' must be page aligned.
207 */
208static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
209{
210 unsigned long order = get_order(size);
211 struct page *page, *p, *e;
7a9a32a9
RK
212
213 page = alloc_pages(gfp, order);
214 if (!page)
215 return NULL;
216
217 /*
218 * Now split the huge page and free the excess pages
219 */
220 split_page(page, order);
221 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
222 __free_page(p);
223
c7909509 224 __dma_clear_buffer(page, size);
7a9a32a9
RK
225
226 return page;
227}
228
229/*
230 * Free a DMA buffer. 'size' must be page aligned.
231 */
232static void __dma_free_buffer(struct page *page, size_t size)
233{
234 struct page *e = page + (size >> PAGE_SHIFT);
235
236 while (page < e) {
237 __free_page(page);
238 page++;
239 }
240}
241
ab6494f0 242#ifdef CONFIG_MMU
e9da6e99
MS
243#ifdef CONFIG_HUGETLB_PAGE
244#error ARM Coherent DMA allocator does not (yet) support huge TLB
245#endif
a5e9d38b 246
e9da6e99
MS
247static void *__alloc_from_contiguous(struct device *dev, size_t size,
248 pgprot_t prot, struct page **ret_page);
99d1717d 249
e9da6e99
MS
250static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
251 pgprot_t prot, struct page **ret_page,
252 const void *caller);
99d1717d 253
e9da6e99
MS
254static void *
255__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
256 const void *caller)
99d1717d 257{
e9da6e99
MS
258 struct vm_struct *area;
259 unsigned long addr;
99d1717d 260
e9da6e99
MS
261 /*
262 * DMA allocation can be mapped to user space, so lets
263 * set VM_USERMAP flags too.
264 */
265 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
266 caller);
267 if (!area)
268 return NULL;
269 addr = (unsigned long)area->addr;
270 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
99d1717d 271
e9da6e99
MS
272 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
273 vunmap((void *)addr);
274 return NULL;
275 }
276 return (void *)addr;
99d1717d 277}
1da177e4 278
e9da6e99 279static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 280{
e9da6e99
MS
281 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
282 struct vm_struct *area = find_vm_area(cpu_addr);
283 if (!area || (area->flags & flags) != flags) {
284 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
285 return;
99d1717d 286 }
e9da6e99
MS
287 unmap_kernel_range((unsigned long)cpu_addr, size);
288 vunmap(cpu_addr);
88c58f3b 289}
88c58f3b 290
6e5267aa
MS
291#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
292
e9da6e99
MS
293struct dma_pool {
294 size_t size;
295 spinlock_t lock;
296 unsigned long *bitmap;
297 unsigned long nr_pages;
298 void *vaddr;
6b3fe472 299 struct page **pages;
c7909509
MS
300};
301
e9da6e99 302static struct dma_pool atomic_pool = {
6e5267aa 303 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
e9da6e99 304};
c7909509
MS
305
306static int __init early_coherent_pool(char *p)
307{
e9da6e99 308 atomic_pool.size = memparse(p, &p);
c7909509
MS
309 return 0;
310}
311early_param("coherent_pool", early_coherent_pool);
312
6e5267aa
MS
313void __init init_dma_coherent_pool_size(unsigned long size)
314{
315 /*
316 * Catch any attempt to set the pool size too late.
317 */
318 BUG_ON(atomic_pool.vaddr);
319
320 /*
321 * Set architecture specific coherent pool size only if
322 * it has not been changed by kernel command line parameter.
323 */
324 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
325 atomic_pool.size = size;
326}
327
c7909509
MS
328/*
329 * Initialise the coherent pool for atomic allocations.
330 */
e9da6e99 331static int __init atomic_pool_init(void)
c7909509 332{
e9da6e99 333 struct dma_pool *pool = &atomic_pool;
c7909509 334 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
e9da6e99
MS
335 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
336 unsigned long *bitmap;
c7909509 337 struct page *page;
6b3fe472 338 struct page **pages;
c7909509 339 void *ptr;
e9da6e99 340 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
c7909509 341
e9da6e99
MS
342 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
343 if (!bitmap)
344 goto no_bitmap;
c7909509 345
6b3fe472
HD
346 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
347 if (!pages)
348 goto no_pages;
349
e9da6e99
MS
350 if (IS_ENABLED(CONFIG_CMA))
351 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
352 else
353 ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
354 &page, NULL);
c7909509 355 if (ptr) {
6b3fe472
HD
356 int i;
357
358 for (i = 0; i < nr_pages; i++)
359 pages[i] = page + i;
360
e9da6e99
MS
361 spin_lock_init(&pool->lock);
362 pool->vaddr = ptr;
6b3fe472 363 pool->pages = pages;
e9da6e99
MS
364 pool->bitmap = bitmap;
365 pool->nr_pages = nr_pages;
366 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
367 (unsigned)pool->size / 1024);
c7909509
MS
368 return 0;
369 }
ec10665c
SK
370
371 kfree(pages);
6b3fe472 372no_pages:
e9da6e99
MS
373 kfree(bitmap);
374no_bitmap:
375 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
376 (unsigned)pool->size / 1024);
c7909509
MS
377 return -ENOMEM;
378}
379/*
380 * CMA is activated by core_initcall, so we must be called after it.
381 */
e9da6e99 382postcore_initcall(atomic_pool_init);
c7909509
MS
383
384struct dma_contig_early_reserve {
385 phys_addr_t base;
386 unsigned long size;
387};
388
389static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
390
391static int dma_mmu_remap_num __initdata;
392
393void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
394{
395 dma_mmu_remap[dma_mmu_remap_num].base = base;
396 dma_mmu_remap[dma_mmu_remap_num].size = size;
397 dma_mmu_remap_num++;
398}
399
400void __init dma_contiguous_remap(void)
401{
402 int i;
403 for (i = 0; i < dma_mmu_remap_num; i++) {
404 phys_addr_t start = dma_mmu_remap[i].base;
405 phys_addr_t end = start + dma_mmu_remap[i].size;
406 struct map_desc map;
407 unsigned long addr;
408
409 if (end > arm_lowmem_limit)
410 end = arm_lowmem_limit;
411 if (start >= end)
39f78e70 412 continue;
c7909509
MS
413
414 map.pfn = __phys_to_pfn(start);
415 map.virtual = __phys_to_virt(start);
416 map.length = end - start;
417 map.type = MT_MEMORY_DMA_READY;
418
419 /*
420 * Clear previous low-memory mapping
421 */
422 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 423 addr += PMD_SIZE)
c7909509
MS
424 pmd_clear(pmd_off_k(addr));
425
426 iotable_init(&map, 1);
427 }
428}
429
c7909509
MS
430static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
431 void *data)
432{
433 struct page *page = virt_to_page(addr);
434 pgprot_t prot = *(pgprot_t *)data;
435
436 set_pte_ext(pte, mk_pte(page, prot), 0);
437 return 0;
438}
439
440static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
441{
442 unsigned long start = (unsigned long) page_address(page);
443 unsigned end = start + size;
444
445 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
446 dsb();
447 flush_tlb_kernel_range(start, end);
448}
449
450static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
451 pgprot_t prot, struct page **ret_page,
452 const void *caller)
453{
454 struct page *page;
455 void *ptr;
456 page = __dma_alloc_buffer(dev, size, gfp);
457 if (!page)
458 return NULL;
459
460 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
461 if (!ptr) {
462 __dma_free_buffer(page, size);
463 return NULL;
464 }
465
466 *ret_page = page;
467 return ptr;
468}
469
e9da6e99 470static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 471{
e9da6e99
MS
472 struct dma_pool *pool = &atomic_pool;
473 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
474 unsigned int pageno;
475 unsigned long flags;
476 void *ptr = NULL;
e4ea6918 477 unsigned long align_mask;
c7909509 478
e9da6e99
MS
479 if (!pool->vaddr) {
480 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
481 return NULL;
482 }
483
484 /*
485 * Align the region allocation - allocations from pool are rather
486 * small, so align them to their order in pages, minimum is a page
487 * size. This helps reduce fragmentation of the DMA space.
488 */
e4ea6918 489 align_mask = (1 << get_order(size)) - 1;
e9da6e99
MS
490
491 spin_lock_irqsave(&pool->lock, flags);
492 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
e4ea6918 493 0, count, align_mask);
e9da6e99
MS
494 if (pageno < pool->nr_pages) {
495 bitmap_set(pool->bitmap, pageno, count);
496 ptr = pool->vaddr + PAGE_SIZE * pageno;
6b3fe472 497 *ret_page = pool->pages[pageno];
fb71285f
MS
498 } else {
499 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
500 "Please increase it with coherent_pool= kernel parameter!\n",
501 (unsigned)pool->size / 1024);
c7909509 502 }
e9da6e99
MS
503 spin_unlock_irqrestore(&pool->lock, flags);
504
505 return ptr;
c7909509
MS
506}
507
21d0a759
HD
508static bool __in_atomic_pool(void *start, size_t size)
509{
510 struct dma_pool *pool = &atomic_pool;
511 void *end = start + size;
512 void *pool_start = pool->vaddr;
513 void *pool_end = pool->vaddr + pool->size;
514
f3d87524 515 if (start < pool_start || start >= pool_end)
21d0a759
HD
516 return false;
517
518 if (end <= pool_end)
519 return true;
520
521 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
522 start, end - 1, pool_start, pool_end - 1);
523
524 return false;
525}
526
e9da6e99 527static int __free_from_pool(void *start, size_t size)
c7909509 528{
e9da6e99
MS
529 struct dma_pool *pool = &atomic_pool;
530 unsigned long pageno, count;
531 unsigned long flags;
c7909509 532
21d0a759 533 if (!__in_atomic_pool(start, size))
c7909509
MS
534 return 0;
535
e9da6e99
MS
536 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
537 count = size >> PAGE_SHIFT;
538
539 spin_lock_irqsave(&pool->lock, flags);
540 bitmap_clear(pool->bitmap, pageno, count);
541 spin_unlock_irqrestore(&pool->lock, flags);
542
c7909509
MS
543 return 1;
544}
545
546static void *__alloc_from_contiguous(struct device *dev, size_t size,
547 pgprot_t prot, struct page **ret_page)
548{
549 unsigned long order = get_order(size);
550 size_t count = size >> PAGE_SHIFT;
551 struct page *page;
552
553 page = dma_alloc_from_contiguous(dev, count, order);
554 if (!page)
555 return NULL;
556
557 __dma_clear_buffer(page, size);
558 __dma_remap(page, size, prot);
559
560 *ret_page = page;
561 return page_address(page);
562}
563
564static void __free_from_contiguous(struct device *dev, struct page *page,
565 size_t size)
566{
567 __dma_remap(page, size, pgprot_kernel);
568 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
569}
570
f99d6034
MS
571static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
572{
573 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
574 pgprot_writecombine(prot) :
575 pgprot_dmacoherent(prot);
576 return prot;
577}
578
c7909509
MS
579#define nommu() 0
580
ab6494f0 581#else /* !CONFIG_MMU */
695ae0af 582
c7909509
MS
583#define nommu() 1
584
f99d6034 585#define __get_dma_pgprot(attrs, prot) __pgprot(0)
c7909509 586#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
e9da6e99 587#define __alloc_from_pool(size, ret_page) NULL
c7909509
MS
588#define __alloc_from_contiguous(dev, size, prot, ret) NULL
589#define __free_from_pool(cpu_addr, size) 0
590#define __free_from_contiguous(dev, page, size) do { } while (0)
591#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
592
593#endif /* CONFIG_MMU */
594
c7909509
MS
595static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
596 struct page **ret_page)
ab6494f0 597{
c7909509
MS
598 struct page *page;
599 page = __dma_alloc_buffer(dev, size, gfp);
600 if (!page)
601 return NULL;
602
603 *ret_page = page;
604 return page_address(page);
605}
606
607
608
609static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
dd37e940 610 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
c7909509
MS
611{
612 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 613 struct page *page = NULL;
31ebf944 614 void *addr;
ab6494f0 615
c7909509
MS
616#ifdef CONFIG_DMA_API_DEBUG
617 u64 limit = (mask + 1) & ~mask;
618 if (limit && size >= limit) {
619 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
620 size, mask);
621 return NULL;
622 }
623#endif
624
625 if (!mask)
626 return NULL;
627
628 if (mask < 0xffffffffULL)
629 gfp |= GFP_DMA;
630
ea2e7057
SB
631 /*
632 * Following is a work-around (a.k.a. hack) to prevent pages
633 * with __GFP_COMP being passed to split_page() which cannot
634 * handle them. The real problem is that this flag probably
635 * should be 0 on ARM as it is not supported on this
636 * platform; see CONFIG_HUGETLBFS.
637 */
638 gfp &= ~(__GFP_COMP);
639
553ac788 640 *handle = DMA_ERROR_CODE;
04da5694 641 size = PAGE_ALIGN(size);
ab6494f0 642
dd37e940 643 if (is_coherent || nommu())
c7909509 644 addr = __alloc_simple_buffer(dev, size, gfp, &page);
e9da6e99
MS
645 else if (gfp & GFP_ATOMIC)
646 addr = __alloc_from_pool(size, &page);
f1ae98da 647 else if (!IS_ENABLED(CONFIG_CMA))
c7909509 648 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
31ebf944 649 else
c7909509 650 addr = __alloc_from_contiguous(dev, size, prot, &page);
695ae0af 651
31ebf944 652 if (addr)
9eedd963 653 *handle = pfn_to_dma(dev, page_to_pfn(page));
695ae0af 654
31ebf944
RK
655 return addr;
656}
1da177e4
LT
657
658/*
659 * Allocate DMA-coherent memory space and return both the kernel remapped
660 * virtual and bus address for that space.
661 */
f99d6034
MS
662void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
663 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 664{
f99d6034 665 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1fe53268
DB
666 void *memory;
667
668 if (dma_alloc_from_coherent(dev, size, handle, &memory))
669 return memory;
670
dd37e940
RH
671 return __dma_alloc(dev, size, handle, gfp, prot, false,
672 __builtin_return_address(0));
673}
674
675static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
676 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
677{
678 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
679 void *memory;
680
681 if (dma_alloc_from_coherent(dev, size, handle, &memory))
682 return memory;
683
684 return __dma_alloc(dev, size, handle, gfp, prot, true,
45cd5290 685 __builtin_return_address(0));
1da177e4 686}
1da177e4
LT
687
688/*
f99d6034 689 * Create userspace mapping for the DMA-coherent memory.
1da177e4 690 */
f99d6034
MS
691int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
692 void *cpu_addr, dma_addr_t dma_addr, size_t size,
693 struct dma_attrs *attrs)
1da177e4 694{
ab6494f0
CM
695 int ret = -ENXIO;
696#ifdef CONFIG_MMU
50262a4b
MS
697 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
698 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 699 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
700 unsigned long off = vma->vm_pgoff;
701
f99d6034
MS
702 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
703
47142f07
MS
704 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
705 return ret;
706
50262a4b
MS
707 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
708 ret = remap_pfn_range(vma, vma->vm_start,
709 pfn + off,
710 vma->vm_end - vma->vm_start,
711 vma->vm_page_prot);
712 }
ab6494f0 713#endif /* CONFIG_MMU */
1da177e4
LT
714
715 return ret;
716}
717
1da177e4 718/*
c7909509 719 * Free a buffer as defined by the above mapping.
1da177e4 720 */
dd37e940
RH
721static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
722 dma_addr_t handle, struct dma_attrs *attrs,
723 bool is_coherent)
1da177e4 724{
c7909509 725 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
5edf71ae 726
1fe53268
DB
727 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
728 return;
729
3e82d012
RK
730 size = PAGE_ALIGN(size);
731
dd37e940 732 if (is_coherent || nommu()) {
c7909509 733 __dma_free_buffer(page, size);
d9e0d149
AK
734 } else if (__free_from_pool(cpu_addr, size)) {
735 return;
f1ae98da 736 } else if (!IS_ENABLED(CONFIG_CMA)) {
695ae0af 737 __dma_free_remap(cpu_addr, size);
c7909509
MS
738 __dma_free_buffer(page, size);
739 } else {
c7909509
MS
740 /*
741 * Non-atomic allocations cannot be freed with IRQs disabled
742 */
743 WARN_ON(irqs_disabled());
744 __free_from_contiguous(dev, page, size);
745 }
1da177e4 746}
afd1a321 747
dd37e940
RH
748void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
749 dma_addr_t handle, struct dma_attrs *attrs)
750{
751 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
752}
753
754static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
755 dma_addr_t handle, struct dma_attrs *attrs)
756{
757 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
758}
759
dc2832e1
MS
760int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
761 void *cpu_addr, dma_addr_t handle, size_t size,
762 struct dma_attrs *attrs)
763{
764 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
765 int ret;
766
767 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
768 if (unlikely(ret))
769 return ret;
770
771 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
772 return 0;
773}
774
4ea0d737 775static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
776 size_t size, enum dma_data_direction dir,
777 void (*op)(const void *, size_t, int))
43377453
NP
778{
779 /*
780 * A single sg entry may refer to multiple physically contiguous
781 * pages. But we still need to process highmem pages individually.
782 * If highmem is not configured then the bulk of this loop gets
783 * optimized out.
784 */
785 size_t left = size;
786 do {
787 size_t len = left;
93f1d629
RK
788 void *vaddr;
789
790 if (PageHighMem(page)) {
791 if (len + offset > PAGE_SIZE) {
792 if (offset >= PAGE_SIZE) {
793 page += offset / PAGE_SIZE;
794 offset %= PAGE_SIZE;
795 }
796 len = PAGE_SIZE - offset;
797 }
798 vaddr = kmap_high_get(page);
799 if (vaddr) {
800 vaddr += offset;
a9c9147e 801 op(vaddr, len, dir);
93f1d629 802 kunmap_high(page);
7e5a69e8 803 } else if (cache_is_vipt()) {
39af22a7
NP
804 /* unmapped pages might still be cached */
805 vaddr = kmap_atomic(page);
7e5a69e8 806 op(vaddr + offset, len, dir);
39af22a7 807 kunmap_atomic(vaddr);
43377453 808 }
93f1d629
RK
809 } else {
810 vaddr = page_address(page) + offset;
a9c9147e 811 op(vaddr, len, dir);
43377453 812 }
43377453
NP
813 offset = 0;
814 page++;
815 left -= len;
816 } while (left);
817}
4ea0d737 818
51fde349
MS
819/*
820 * Make an area consistent for devices.
821 * Note: Drivers should NOT use this function directly, as it will break
822 * platforms with CONFIG_DMABOUNCE.
823 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
824 */
825static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
826 size_t size, enum dma_data_direction dir)
827{
65af191a 828 unsigned long paddr;
65af191a 829
a9c9147e 830 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
831
832 paddr = page_to_phys(page) + off;
2ffe2da3
RK
833 if (dir == DMA_FROM_DEVICE) {
834 outer_inv_range(paddr, paddr + size);
835 } else {
836 outer_clean_range(paddr, paddr + size);
837 }
838 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 839}
4ea0d737 840
51fde349 841static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
842 size_t size, enum dma_data_direction dir)
843{
2ffe2da3
RK
844 unsigned long paddr = page_to_phys(page) + off;
845
846 /* FIXME: non-speculating: not required */
847 /* don't bother invalidating if DMA to device */
848 if (dir != DMA_TO_DEVICE)
849 outer_inv_range(paddr, paddr + size);
850
a9c9147e 851 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
c0177800
CM
852
853 /*
854 * Mark the D-cache clean for this page to avoid extra flushing.
855 */
856 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
857 set_bit(PG_dcache_clean, &page->flags);
4ea0d737 858}
43377453 859
afd1a321 860/**
2a550e73 861 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
862 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
863 * @sg: list of buffers
864 * @nents: number of buffers to map
865 * @dir: DMA transfer direction
866 *
867 * Map a set of buffers described by scatterlist in streaming mode for DMA.
868 * This is the scatter-gather version of the dma_map_single interface.
869 * Here the scatter gather list elements are each tagged with the
870 * appropriate dma address and length. They are obtained via
871 * sg_dma_{address,length}.
872 *
873 * Device ownership issues as mentioned for dma_map_single are the same
874 * here.
875 */
2dc6a016
MS
876int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
877 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 878{
2a550e73 879 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 880 struct scatterlist *s;
01135d92 881 int i, j;
afd1a321
RK
882
883 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
884#ifdef CONFIG_NEED_SG_DMA_LENGTH
885 s->dma_length = s->length;
886#endif
2a550e73
MS
887 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
888 s->length, dir, attrs);
01135d92
RK
889 if (dma_mapping_error(dev, s->dma_address))
890 goto bad_mapping;
afd1a321 891 }
afd1a321 892 return nents;
01135d92
RK
893
894 bad_mapping:
895 for_each_sg(sg, s, i, j)
2a550e73 896 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 897 return 0;
afd1a321 898}
afd1a321
RK
899
900/**
2a550e73 901 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
902 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
903 * @sg: list of buffers
0adfca6f 904 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
905 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
906 *
907 * Unmap a set of streaming mode DMA translations. Again, CPU access
908 * rules concerning calls here are the same as for dma_unmap_single().
909 */
2dc6a016
MS
910void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
911 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 912{
2a550e73 913 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 914 struct scatterlist *s;
01135d92 915
01135d92 916 int i;
24056f52 917
01135d92 918 for_each_sg(sg, s, nents, i)
2a550e73 919 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 920}
afd1a321
RK
921
922/**
2a550e73 923 * arm_dma_sync_sg_for_cpu
afd1a321
RK
924 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
925 * @sg: list of buffers
926 * @nents: number of buffers to map (returned from dma_map_sg)
927 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
928 */
2dc6a016 929void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
930 int nents, enum dma_data_direction dir)
931{
2a550e73 932 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
933 struct scatterlist *s;
934 int i;
935
2a550e73
MS
936 for_each_sg(sg, s, nents, i)
937 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
938 dir);
afd1a321 939}
afd1a321
RK
940
941/**
2a550e73 942 * arm_dma_sync_sg_for_device
afd1a321
RK
943 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
944 * @sg: list of buffers
945 * @nents: number of buffers to map (returned from dma_map_sg)
946 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
947 */
2dc6a016 948void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
949 int nents, enum dma_data_direction dir)
950{
2a550e73 951 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
952 struct scatterlist *s;
953 int i;
954
2a550e73
MS
955 for_each_sg(sg, s, nents, i)
956 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
957 dir);
afd1a321 958}
24056f52 959
022ae537
RK
960/*
961 * Return whether the given device DMA address mask can be supported
962 * properly. For example, if your device can only drive the low 24-bits
963 * during bus mastering, then you would pass 0x00ffffff as the mask
964 * to this function.
965 */
966int dma_supported(struct device *dev, u64 mask)
967{
968 if (mask < (u64)arm_dma_limit)
969 return 0;
970 return 1;
971}
972EXPORT_SYMBOL(dma_supported);
973
2dc6a016 974static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
975{
976 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
977 return -EIO;
978
022ae537 979 *dev->dma_mask = dma_mask;
022ae537
RK
980
981 return 0;
982}
022ae537 983
24056f52
RK
984#define PREALLOC_DMA_DEBUG_ENTRIES 4096
985
986static int __init dma_debug_do_init(void)
987{
988 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
989 return 0;
990}
991fs_initcall(dma_debug_do_init);
4ce63fcd
MS
992
993#ifdef CONFIG_ARM_DMA_USE_IOMMU
994
995/* IOMMU */
996
997static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
998 size_t size)
999{
1000 unsigned int order = get_order(size);
1001 unsigned int align = 0;
1002 unsigned int count, start;
1003 unsigned long flags;
1004
1005 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1006 (1 << mapping->order) - 1) >> mapping->order;
1007
1008 if (order > mapping->order)
1009 align = (1 << (order - mapping->order)) - 1;
1010
1011 spin_lock_irqsave(&mapping->lock, flags);
1012 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1013 count, align);
1014 if (start > mapping->bits) {
1015 spin_unlock_irqrestore(&mapping->lock, flags);
1016 return DMA_ERROR_CODE;
1017 }
1018
1019 bitmap_set(mapping->bitmap, start, count);
1020 spin_unlock_irqrestore(&mapping->lock, flags);
1021
1022 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1023}
1024
1025static inline void __free_iova(struct dma_iommu_mapping *mapping,
1026 dma_addr_t addr, size_t size)
1027{
1028 unsigned int start = (addr - mapping->base) >>
1029 (mapping->order + PAGE_SHIFT);
1030 unsigned int count = ((size >> PAGE_SHIFT) +
1031 (1 << mapping->order) - 1) >> mapping->order;
1032 unsigned long flags;
1033
1034 spin_lock_irqsave(&mapping->lock, flags);
1035 bitmap_clear(mapping->bitmap, start, count);
1036 spin_unlock_irqrestore(&mapping->lock, flags);
1037}
1038
1039static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
1040{
1041 struct page **pages;
1042 int count = size >> PAGE_SHIFT;
1043 int array_size = count * sizeof(struct page *);
1044 int i = 0;
1045
1046 if (array_size <= PAGE_SIZE)
1047 pages = kzalloc(array_size, gfp);
1048 else
1049 pages = vzalloc(array_size);
1050 if (!pages)
1051 return NULL;
1052
1053 while (count) {
593f4735 1054 int j, order = __fls(count);
4ce63fcd
MS
1055
1056 pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
1057 while (!pages[i] && order)
1058 pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
1059 if (!pages[i])
1060 goto error;
1061
5a796eeb 1062 if (order) {
4ce63fcd 1063 split_page(pages[i], order);
5a796eeb
HD
1064 j = 1 << order;
1065 while (--j)
1066 pages[i + j] = pages[i] + j;
1067 }
4ce63fcd
MS
1068
1069 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1070 i += 1 << order;
1071 count -= 1 << order;
1072 }
1073
1074 return pages;
1075error:
9fa8af91 1076 while (i--)
4ce63fcd
MS
1077 if (pages[i])
1078 __free_pages(pages[i], 0);
46c87852 1079 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1080 kfree(pages);
1081 else
1082 vfree(pages);
1083 return NULL;
1084}
1085
1086static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
1087{
1088 int count = size >> PAGE_SHIFT;
1089 int array_size = count * sizeof(struct page *);
1090 int i;
1091 for (i = 0; i < count; i++)
1092 if (pages[i])
1093 __free_pages(pages[i], 0);
46c87852 1094 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1095 kfree(pages);
1096 else
1097 vfree(pages);
1098 return 0;
1099}
1100
1101/*
1102 * Create a CPU mapping for a specified pages
1103 */
1104static void *
e9da6e99
MS
1105__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1106 const void *caller)
4ce63fcd 1107{
e9da6e99
MS
1108 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1109 struct vm_struct *area;
1110 unsigned long p;
4ce63fcd 1111
e9da6e99
MS
1112 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1113 caller);
1114 if (!area)
4ce63fcd 1115 return NULL;
4ce63fcd 1116
e9da6e99
MS
1117 area->pages = pages;
1118 area->nr_pages = nr_pages;
1119 p = (unsigned long)area->addr;
4ce63fcd 1120
e9da6e99
MS
1121 for (i = 0; i < nr_pages; i++) {
1122 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1123 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1124 goto err;
1125 p += PAGE_SIZE;
4ce63fcd 1126 }
e9da6e99
MS
1127 return area->addr;
1128err:
1129 unmap_kernel_range((unsigned long)area->addr, size);
1130 vunmap(area->addr);
4ce63fcd
MS
1131 return NULL;
1132}
1133
1134/*
1135 * Create a mapping in device IO address space for specified pages
1136 */
1137static dma_addr_t
1138__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1139{
1140 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1141 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1142 dma_addr_t dma_addr, iova;
1143 int i, ret = DMA_ERROR_CODE;
1144
1145 dma_addr = __alloc_iova(mapping, size);
1146 if (dma_addr == DMA_ERROR_CODE)
1147 return dma_addr;
1148
1149 iova = dma_addr;
1150 for (i = 0; i < count; ) {
1151 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1152 phys_addr_t phys = page_to_phys(pages[i]);
1153 unsigned int len, j;
1154
1155 for (j = i + 1; j < count; j++, next_pfn++)
1156 if (page_to_pfn(pages[j]) != next_pfn)
1157 break;
1158
1159 len = (j - i) << PAGE_SHIFT;
1160 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1161 if (ret < 0)
1162 goto fail;
1163 iova += len;
1164 i = j;
1165 }
1166 return dma_addr;
1167fail:
1168 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1169 __free_iova(mapping, dma_addr, size);
1170 return DMA_ERROR_CODE;
1171}
1172
1173static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1174{
1175 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1176
1177 /*
1178 * add optional in-page offset from iova to size and align
1179 * result to page size
1180 */
1181 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1182 iova &= PAGE_MASK;
1183
1184 iommu_unmap(mapping->domain, iova, size);
1185 __free_iova(mapping, iova, size);
1186 return 0;
1187}
1188
665bad7b
HD
1189static struct page **__atomic_get_pages(void *addr)
1190{
1191 struct dma_pool *pool = &atomic_pool;
1192 struct page **pages = pool->pages;
1193 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1194
1195 return pages + offs;
1196}
1197
955c757e 1198static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1199{
1200 struct vm_struct *area;
1201
665bad7b
HD
1202 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1203 return __atomic_get_pages(cpu_addr);
1204
955c757e
MS
1205 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1206 return cpu_addr;
1207
e9da6e99
MS
1208 area = find_vm_area(cpu_addr);
1209 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1210 return area->pages;
1211 return NULL;
1212}
1213
479ed93a
HD
1214static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1215 dma_addr_t *handle)
1216{
1217 struct page *page;
1218 void *addr;
1219
1220 addr = __alloc_from_pool(size, &page);
1221 if (!addr)
1222 return NULL;
1223
1224 *handle = __iommu_create_mapping(dev, &page, size);
1225 if (*handle == DMA_ERROR_CODE)
1226 goto err_mapping;
1227
1228 return addr;
1229
1230err_mapping:
1231 __free_from_pool(addr, size);
1232 return NULL;
1233}
1234
1235static void __iommu_free_atomic(struct device *dev, struct page **pages,
1236 dma_addr_t handle, size_t size)
1237{
1238 __iommu_remove_mapping(dev, handle, size);
1239 __free_from_pool(page_address(pages[0]), size);
1240}
1241
4ce63fcd
MS
1242static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1243 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1244{
1245 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1246 struct page **pages;
1247 void *addr = NULL;
1248
1249 *handle = DMA_ERROR_CODE;
1250 size = PAGE_ALIGN(size);
1251
479ed93a
HD
1252 if (gfp & GFP_ATOMIC)
1253 return __iommu_alloc_atomic(dev, size, handle);
1254
4ce63fcd
MS
1255 pages = __iommu_alloc_buffer(dev, size, gfp);
1256 if (!pages)
1257 return NULL;
1258
1259 *handle = __iommu_create_mapping(dev, pages, size);
1260 if (*handle == DMA_ERROR_CODE)
1261 goto err_buffer;
1262
955c757e
MS
1263 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1264 return pages;
1265
e9da6e99
MS
1266 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1267 __builtin_return_address(0));
4ce63fcd
MS
1268 if (!addr)
1269 goto err_mapping;
1270
1271 return addr;
1272
1273err_mapping:
1274 __iommu_remove_mapping(dev, *handle, size);
1275err_buffer:
1276 __iommu_free_buffer(dev, pages, size);
1277 return NULL;
1278}
1279
1280static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1281 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1282 struct dma_attrs *attrs)
1283{
e9da6e99
MS
1284 unsigned long uaddr = vma->vm_start;
1285 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1286 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1287
1288 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1289
e9da6e99
MS
1290 if (!pages)
1291 return -ENXIO;
4ce63fcd 1292
e9da6e99
MS
1293 do {
1294 int ret = vm_insert_page(vma, uaddr, *pages++);
1295 if (ret) {
1296 pr_err("Remapping memory failed: %d\n", ret);
1297 return ret;
1298 }
1299 uaddr += PAGE_SIZE;
1300 usize -= PAGE_SIZE;
1301 } while (usize > 0);
4ce63fcd 1302
4ce63fcd
MS
1303 return 0;
1304}
1305
1306/*
1307 * free a page as defined by the above mapping.
1308 * Must not be called with IRQs disabled.
1309 */
1310void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1311 dma_addr_t handle, struct dma_attrs *attrs)
1312{
955c757e 1313 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1314 size = PAGE_ALIGN(size);
1315
e9da6e99
MS
1316 if (!pages) {
1317 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1318 return;
4ce63fcd 1319 }
e9da6e99 1320
479ed93a
HD
1321 if (__in_atomic_pool(cpu_addr, size)) {
1322 __iommu_free_atomic(dev, pages, handle, size);
1323 return;
1324 }
1325
955c757e
MS
1326 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1327 unmap_kernel_range((unsigned long)cpu_addr, size);
1328 vunmap(cpu_addr);
1329 }
e9da6e99
MS
1330
1331 __iommu_remove_mapping(dev, handle, size);
1332 __iommu_free_buffer(dev, pages, size);
4ce63fcd
MS
1333}
1334
dc2832e1
MS
1335static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1336 void *cpu_addr, dma_addr_t dma_addr,
1337 size_t size, struct dma_attrs *attrs)
1338{
1339 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1340 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1341
1342 if (!pages)
1343 return -ENXIO;
1344
1345 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1346 GFP_KERNEL);
4ce63fcd
MS
1347}
1348
1349/*
1350 * Map a part of the scatter-gather list into contiguous io address space
1351 */
1352static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1353 size_t size, dma_addr_t *handle,
0fa478df
RH
1354 enum dma_data_direction dir, struct dma_attrs *attrs,
1355 bool is_coherent)
4ce63fcd
MS
1356{
1357 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1358 dma_addr_t iova, iova_base;
1359 int ret = 0;
1360 unsigned int count;
1361 struct scatterlist *s;
1362
1363 size = PAGE_ALIGN(size);
1364 *handle = DMA_ERROR_CODE;
1365
1366 iova_base = iova = __alloc_iova(mapping, size);
1367 if (iova == DMA_ERROR_CODE)
1368 return -ENOMEM;
1369
1370 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1371 phys_addr_t phys = page_to_phys(sg_page(s));
1372 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1373
0fa478df
RH
1374 if (!is_coherent &&
1375 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1376 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1377
1378 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1379 if (ret < 0)
1380 goto fail;
1381 count += len >> PAGE_SHIFT;
1382 iova += len;
1383 }
1384 *handle = iova_base;
1385
1386 return 0;
1387fail:
1388 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1389 __free_iova(mapping, iova_base, size);
1390 return ret;
1391}
1392
0fa478df
RH
1393static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1394 enum dma_data_direction dir, struct dma_attrs *attrs,
1395 bool is_coherent)
4ce63fcd
MS
1396{
1397 struct scatterlist *s = sg, *dma = sg, *start = sg;
1398 int i, count = 0;
1399 unsigned int offset = s->offset;
1400 unsigned int size = s->offset + s->length;
1401 unsigned int max = dma_get_max_seg_size(dev);
1402
1403 for (i = 1; i < nents; i++) {
1404 s = sg_next(s);
1405
1406 s->dma_address = DMA_ERROR_CODE;
1407 s->dma_length = 0;
1408
1409 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1410 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1411 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1412 goto bad_mapping;
1413
1414 dma->dma_address += offset;
1415 dma->dma_length = size - offset;
1416
1417 size = offset = s->offset;
1418 start = s;
1419 dma = sg_next(dma);
1420 count += 1;
1421 }
1422 size += s->length;
1423 }
0fa478df
RH
1424 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1425 is_coherent) < 0)
4ce63fcd
MS
1426 goto bad_mapping;
1427
1428 dma->dma_address += offset;
1429 dma->dma_length = size - offset;
1430
1431 return count+1;
1432
1433bad_mapping:
1434 for_each_sg(sg, s, count, i)
1435 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1436 return 0;
1437}
1438
1439/**
0fa478df 1440 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1441 * @dev: valid struct device pointer
1442 * @sg: list of buffers
0fa478df
RH
1443 * @nents: number of buffers to map
1444 * @dir: DMA transfer direction
4ce63fcd 1445 *
0fa478df
RH
1446 * Map a set of i/o coherent buffers described by scatterlist in streaming
1447 * mode for DMA. The scatter gather list elements are merged together (if
1448 * possible) and tagged with the appropriate dma address and length. They are
1449 * obtained via sg_dma_{address,length}.
4ce63fcd 1450 */
0fa478df
RH
1451int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1452 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1453{
1454 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1455}
1456
1457/**
1458 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1459 * @dev: valid struct device pointer
1460 * @sg: list of buffers
1461 * @nents: number of buffers to map
1462 * @dir: DMA transfer direction
1463 *
1464 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1465 * The scatter gather list elements are merged together (if possible) and
1466 * tagged with the appropriate dma address and length. They are obtained via
1467 * sg_dma_{address,length}.
1468 */
1469int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1470 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1471{
1472 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1473}
1474
1475static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1476 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1477 bool is_coherent)
4ce63fcd
MS
1478{
1479 struct scatterlist *s;
1480 int i;
1481
1482 for_each_sg(sg, s, nents, i) {
1483 if (sg_dma_len(s))
1484 __iommu_remove_mapping(dev, sg_dma_address(s),
1485 sg_dma_len(s));
0fa478df 1486 if (!is_coherent &&
97ef952a 1487 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1488 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1489 s->length, dir);
1490 }
1491}
1492
0fa478df
RH
1493/**
1494 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1495 * @dev: valid struct device pointer
1496 * @sg: list of buffers
1497 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1498 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1499 *
1500 * Unmap a set of streaming mode DMA translations. Again, CPU access
1501 * rules concerning calls here are the same as for dma_unmap_single().
1502 */
1503void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1504 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1505{
1506 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1507}
1508
1509/**
1510 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1511 * @dev: valid struct device pointer
1512 * @sg: list of buffers
1513 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1514 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1515 *
1516 * Unmap a set of streaming mode DMA translations. Again, CPU access
1517 * rules concerning calls here are the same as for dma_unmap_single().
1518 */
1519void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1520 enum dma_data_direction dir, struct dma_attrs *attrs)
1521{
1522 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1523}
1524
4ce63fcd
MS
1525/**
1526 * arm_iommu_sync_sg_for_cpu
1527 * @dev: valid struct device pointer
1528 * @sg: list of buffers
1529 * @nents: number of buffers to map (returned from dma_map_sg)
1530 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1531 */
1532void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1533 int nents, enum dma_data_direction dir)
1534{
1535 struct scatterlist *s;
1536 int i;
1537
1538 for_each_sg(sg, s, nents, i)
0fa478df 1539 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1540
1541}
1542
1543/**
1544 * arm_iommu_sync_sg_for_device
1545 * @dev: valid struct device pointer
1546 * @sg: list of buffers
1547 * @nents: number of buffers to map (returned from dma_map_sg)
1548 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1549 */
1550void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1551 int nents, enum dma_data_direction dir)
1552{
1553 struct scatterlist *s;
1554 int i;
1555
1556 for_each_sg(sg, s, nents, i)
0fa478df 1557 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1558}
1559
1560
1561/**
0fa478df 1562 * arm_coherent_iommu_map_page
4ce63fcd
MS
1563 * @dev: valid struct device pointer
1564 * @page: page that buffer resides in
1565 * @offset: offset into page for start of buffer
1566 * @size: size of buffer to map
1567 * @dir: DMA transfer direction
1568 *
0fa478df 1569 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1570 */
0fa478df 1571static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd
MS
1572 unsigned long offset, size_t size, enum dma_data_direction dir,
1573 struct dma_attrs *attrs)
1574{
1575 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1576 dma_addr_t dma_addr;
1577 int ret, len = PAGE_ALIGN(size + offset);
1578
4ce63fcd
MS
1579 dma_addr = __alloc_iova(mapping, len);
1580 if (dma_addr == DMA_ERROR_CODE)
1581 return dma_addr;
1582
1583 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1584 if (ret < 0)
1585 goto fail;
1586
1587 return dma_addr + offset;
1588fail:
1589 __free_iova(mapping, dma_addr, len);
1590 return DMA_ERROR_CODE;
1591}
1592
0fa478df
RH
1593/**
1594 * arm_iommu_map_page
1595 * @dev: valid struct device pointer
1596 * @page: page that buffer resides in
1597 * @offset: offset into page for start of buffer
1598 * @size: size of buffer to map
1599 * @dir: DMA transfer direction
1600 *
1601 * IOMMU aware version of arm_dma_map_page()
1602 */
1603static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1604 unsigned long offset, size_t size, enum dma_data_direction dir,
1605 struct dma_attrs *attrs)
1606{
1607 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1608 __dma_page_cpu_to_dev(page, offset, size, dir);
1609
1610 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1611}
1612
1613/**
1614 * arm_coherent_iommu_unmap_page
1615 * @dev: valid struct device pointer
1616 * @handle: DMA address of buffer
1617 * @size: size of buffer (same as passed to dma_map_page)
1618 * @dir: DMA transfer direction (same as passed to dma_map_page)
1619 *
1620 * Coherent IOMMU aware version of arm_dma_unmap_page()
1621 */
1622static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1623 size_t size, enum dma_data_direction dir,
1624 struct dma_attrs *attrs)
1625{
1626 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1627 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1628 int offset = handle & ~PAGE_MASK;
1629 int len = PAGE_ALIGN(size + offset);
1630
1631 if (!iova)
1632 return;
1633
1634 iommu_unmap(mapping->domain, iova, len);
1635 __free_iova(mapping, iova, len);
1636}
1637
4ce63fcd
MS
1638/**
1639 * arm_iommu_unmap_page
1640 * @dev: valid struct device pointer
1641 * @handle: DMA address of buffer
1642 * @size: size of buffer (same as passed to dma_map_page)
1643 * @dir: DMA transfer direction (same as passed to dma_map_page)
1644 *
1645 * IOMMU aware version of arm_dma_unmap_page()
1646 */
1647static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1648 size_t size, enum dma_data_direction dir,
1649 struct dma_attrs *attrs)
1650{
1651 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1652 dma_addr_t iova = handle & PAGE_MASK;
1653 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1654 int offset = handle & ~PAGE_MASK;
1655 int len = PAGE_ALIGN(size + offset);
1656
1657 if (!iova)
1658 return;
1659
0fa478df 1660 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1661 __dma_page_dev_to_cpu(page, offset, size, dir);
1662
1663 iommu_unmap(mapping->domain, iova, len);
1664 __free_iova(mapping, iova, len);
1665}
1666
1667static void arm_iommu_sync_single_for_cpu(struct device *dev,
1668 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1669{
1670 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1671 dma_addr_t iova = handle & PAGE_MASK;
1672 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1673 unsigned int offset = handle & ~PAGE_MASK;
1674
1675 if (!iova)
1676 return;
1677
0fa478df 1678 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
1679}
1680
1681static void arm_iommu_sync_single_for_device(struct device *dev,
1682 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1683{
1684 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1685 dma_addr_t iova = handle & PAGE_MASK;
1686 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1687 unsigned int offset = handle & ~PAGE_MASK;
1688
1689 if (!iova)
1690 return;
1691
1692 __dma_page_cpu_to_dev(page, offset, size, dir);
1693}
1694
1695struct dma_map_ops iommu_ops = {
1696 .alloc = arm_iommu_alloc_attrs,
1697 .free = arm_iommu_free_attrs,
1698 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1699 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1700
1701 .map_page = arm_iommu_map_page,
1702 .unmap_page = arm_iommu_unmap_page,
1703 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1704 .sync_single_for_device = arm_iommu_sync_single_for_device,
1705
1706 .map_sg = arm_iommu_map_sg,
1707 .unmap_sg = arm_iommu_unmap_sg,
1708 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1709 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1710};
1711
0fa478df
RH
1712struct dma_map_ops iommu_coherent_ops = {
1713 .alloc = arm_iommu_alloc_attrs,
1714 .free = arm_iommu_free_attrs,
1715 .mmap = arm_iommu_mmap_attrs,
1716 .get_sgtable = arm_iommu_get_sgtable,
1717
1718 .map_page = arm_coherent_iommu_map_page,
1719 .unmap_page = arm_coherent_iommu_unmap_page,
1720
1721 .map_sg = arm_coherent_iommu_map_sg,
1722 .unmap_sg = arm_coherent_iommu_unmap_sg,
1723};
1724
4ce63fcd
MS
1725/**
1726 * arm_iommu_create_mapping
1727 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1728 * @base: start address of the valid IO address space
1729 * @size: size of the valid IO address space
1730 * @order: accuracy of the IO addresses allocations
1731 *
1732 * Creates a mapping structure which holds information about used/unused
1733 * IO address ranges, which is required to perform memory allocation and
1734 * mapping with IOMMU aware functions.
1735 *
1736 * The client device need to be attached to the mapping with
1737 * arm_iommu_attach_device function.
1738 */
1739struct dma_iommu_mapping *
1740arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1741 int order)
1742{
1743 unsigned int count = size >> (PAGE_SHIFT + order);
1744 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1745 struct dma_iommu_mapping *mapping;
1746 int err = -ENOMEM;
1747
1748 if (!count)
1749 return ERR_PTR(-EINVAL);
1750
1751 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1752 if (!mapping)
1753 goto err;
1754
1755 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1756 if (!mapping->bitmap)
1757 goto err2;
1758
1759 mapping->base = base;
1760 mapping->bits = BITS_PER_BYTE * bitmap_size;
1761 mapping->order = order;
1762 spin_lock_init(&mapping->lock);
1763
1764 mapping->domain = iommu_domain_alloc(bus);
1765 if (!mapping->domain)
1766 goto err3;
1767
1768 kref_init(&mapping->kref);
1769 return mapping;
1770err3:
1771 kfree(mapping->bitmap);
1772err2:
1773 kfree(mapping);
1774err:
1775 return ERR_PTR(err);
1776}
1777
1778static void release_iommu_mapping(struct kref *kref)
1779{
1780 struct dma_iommu_mapping *mapping =
1781 container_of(kref, struct dma_iommu_mapping, kref);
1782
1783 iommu_domain_free(mapping->domain);
1784 kfree(mapping->bitmap);
1785 kfree(mapping);
1786}
1787
1788void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1789{
1790 if (mapping)
1791 kref_put(&mapping->kref, release_iommu_mapping);
1792}
1793
1794/**
1795 * arm_iommu_attach_device
1796 * @dev: valid struct device pointer
1797 * @mapping: io address space mapping structure (returned from
1798 * arm_iommu_create_mapping)
1799 *
1800 * Attaches specified io address space mapping to the provided device,
1801 * this replaces the dma operations (dma_map_ops pointer) with the
1802 * IOMMU aware version. More than one client might be attached to
1803 * the same io address space mapping.
1804 */
1805int arm_iommu_attach_device(struct device *dev,
1806 struct dma_iommu_mapping *mapping)
1807{
1808 int err;
1809
1810 err = iommu_attach_device(mapping->domain, dev);
1811 if (err)
1812 return err;
1813
1814 kref_get(&mapping->kref);
1815 dev->archdata.mapping = mapping;
1816 set_dma_ops(dev, &iommu_ops);
1817
75c59716 1818 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
4ce63fcd
MS
1819 return 0;
1820}
1821
1822#endif