Merge tag 'dt2-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
11a5aa32 12#include <linux/bootmem.h>
1da177e4
LT
13#include <linux/module.h>
14#include <linux/mm.h>
36d0fd21 15#include <linux/genalloc.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
c7909509 22#include <linux/dma-contiguous.h>
39af22a7 23#include <linux/highmem.h>
c7909509 24#include <linux/memblock.h>
99d1717d 25#include <linux/slab.h>
4ce63fcd 26#include <linux/iommu.h>
e9da6e99 27#include <linux/io.h>
4ce63fcd 28#include <linux/vmalloc.h>
158e8bfe 29#include <linux/sizes.h>
a254129e 30#include <linux/cma.h>
1da177e4 31
23759dc6 32#include <asm/memory.h>
43377453 33#include <asm/highmem.h>
1da177e4 34#include <asm/cacheflush.h>
1da177e4 35#include <asm/tlbflush.h>
99d1717d 36#include <asm/mach/arch.h>
4ce63fcd 37#include <asm/dma-iommu.h>
c7909509
MS
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
37134cd5 41
022ae537
RK
42#include "mm.h"
43
15237e1f
MS
44/*
45 * The DMA API is built upon the notion of "buffer ownership". A buffer
46 * is either exclusively owned by the CPU (and therefore may be accessed
47 * by it) or exclusively owned by the DMA device. These helper functions
48 * represent the transitions between these two ownership states.
49 *
50 * Note, however, that on later ARMs, this notion does not work due to
51 * speculative prefetches. We model our approach on the assumption that
52 * the CPU does do speculative prefetches, which means we clean caches
53 * before transfers and delay cache invalidation until transfer completion.
54 *
15237e1f 55 */
51fde349 56static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 57 size_t, enum dma_data_direction);
51fde349 58static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
59 size_t, enum dma_data_direction);
60
2dc6a016
MS
61/**
62 * arm_dma_map_page - map a portion of a page for streaming DMA
63 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
64 * @page: page that buffer resides in
65 * @offset: offset into page for start of buffer
66 * @size: size of buffer to map
67 * @dir: DMA transfer direction
68 *
69 * Ensure that any data held in the cache is appropriately discarded
70 * or written back.
71 *
72 * The device owns this memory once this call has completed. The CPU
73 * can regain ownership by calling dma_unmap_page().
74 */
51fde349 75static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
76 unsigned long offset, size_t size, enum dma_data_direction dir,
77 struct dma_attrs *attrs)
78{
dd37e940 79 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
80 __dma_page_cpu_to_dev(page, offset, size, dir);
81 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
82}
83
dd37e940
RH
84static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
85 unsigned long offset, size_t size, enum dma_data_direction dir,
86 struct dma_attrs *attrs)
87{
88 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
89}
90
2dc6a016
MS
91/**
92 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
93 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
94 * @handle: DMA address of buffer
95 * @size: size of buffer (same as passed to dma_map_page)
96 * @dir: DMA transfer direction (same as passed to dma_map_page)
97 *
98 * Unmap a page streaming mode DMA translation. The handle and size
99 * must match what was provided in the previous dma_map_page() call.
100 * All other usages are undefined.
101 *
102 * After this call, reads by the CPU to the buffer are guaranteed to see
103 * whatever the device wrote there.
104 */
51fde349 105static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
106 size_t size, enum dma_data_direction dir,
107 struct dma_attrs *attrs)
108{
dd37e940 109 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
110 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
111 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
112}
113
51fde349 114static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
115 dma_addr_t handle, size_t size, enum dma_data_direction dir)
116{
117 unsigned int offset = handle & (PAGE_SIZE - 1);
118 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 119 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
120}
121
51fde349 122static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
123 dma_addr_t handle, size_t size, enum dma_data_direction dir)
124{
125 unsigned int offset = handle & (PAGE_SIZE - 1);
126 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 127 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
128}
129
2dc6a016 130struct dma_map_ops arm_dma_ops = {
f99d6034
MS
131 .alloc = arm_dma_alloc,
132 .free = arm_dma_free,
133 .mmap = arm_dma_mmap,
dc2832e1 134 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
135 .map_page = arm_dma_map_page,
136 .unmap_page = arm_dma_unmap_page,
137 .map_sg = arm_dma_map_sg,
138 .unmap_sg = arm_dma_unmap_sg,
139 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
140 .sync_single_for_device = arm_dma_sync_single_for_device,
141 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
142 .sync_sg_for_device = arm_dma_sync_sg_for_device,
143 .set_dma_mask = arm_dma_set_mask,
144};
145EXPORT_SYMBOL(arm_dma_ops);
146
dd37e940
RH
147static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
148 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
149static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
150 dma_addr_t handle, struct dma_attrs *attrs);
151
152struct dma_map_ops arm_coherent_dma_ops = {
153 .alloc = arm_coherent_dma_alloc,
154 .free = arm_coherent_dma_free,
155 .mmap = arm_dma_mmap,
156 .get_sgtable = arm_dma_get_sgtable,
157 .map_page = arm_coherent_dma_map_page,
158 .map_sg = arm_dma_map_sg,
159 .set_dma_mask = arm_dma_set_mask,
160};
161EXPORT_SYMBOL(arm_coherent_dma_ops);
162
9f28cde0
RK
163static int __dma_supported(struct device *dev, u64 mask, bool warn)
164{
165 unsigned long max_dma_pfn;
166
167 /*
168 * If the mask allows for more memory than we can address,
169 * and we actually have that much memory, then we must
170 * indicate that DMA to this device is not supported.
171 */
172 if (sizeof(mask) != sizeof(dma_addr_t) &&
173 mask > (dma_addr_t)~0 &&
174 dma_to_pfn(dev, ~0) < max_pfn) {
175 if (warn) {
176 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
177 mask);
178 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
179 }
180 return 0;
181 }
182
183 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
184
185 /*
186 * Translate the device's DMA mask to a PFN limit. This
187 * PFN number includes the page which we can DMA to.
188 */
189 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
190 if (warn)
191 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
192 mask,
193 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
194 max_dma_pfn + 1);
195 return 0;
196 }
197
198 return 1;
199}
200
ab6494f0
CM
201static u64 get_coherent_dma_mask(struct device *dev)
202{
4dcfa600 203 u64 mask = (u64)DMA_BIT_MASK(32);
ab6494f0
CM
204
205 if (dev) {
206 mask = dev->coherent_dma_mask;
207
208 /*
209 * Sanity check the DMA mask - it must be non-zero, and
210 * must be able to be satisfied by a DMA allocation.
211 */
212 if (mask == 0) {
213 dev_warn(dev, "coherent DMA mask is unset\n");
214 return 0;
215 }
216
9f28cde0 217 if (!__dma_supported(dev, mask, true))
ab6494f0 218 return 0;
ab6494f0 219 }
1da177e4 220
ab6494f0
CM
221 return mask;
222}
223
c7909509
MS
224static void __dma_clear_buffer(struct page *page, size_t size)
225{
c7909509
MS
226 /*
227 * Ensure that the allocated pages are zeroed, and that any data
228 * lurking in the kernel direct-mapped region is invalidated.
229 */
9848e48f
MS
230 if (PageHighMem(page)) {
231 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
232 phys_addr_t end = base + size;
233 while (size > 0) {
234 void *ptr = kmap_atomic(page);
235 memset(ptr, 0, PAGE_SIZE);
236 dmac_flush_range(ptr, ptr + PAGE_SIZE);
237 kunmap_atomic(ptr);
238 page++;
239 size -= PAGE_SIZE;
240 }
241 outer_flush_range(base, end);
242 } else {
243 void *ptr = page_address(page);
4ce63fcd
MS
244 memset(ptr, 0, size);
245 dmac_flush_range(ptr, ptr + size);
246 outer_flush_range(__pa(ptr), __pa(ptr) + size);
247 }
c7909509
MS
248}
249
7a9a32a9
RK
250/*
251 * Allocate a DMA buffer for 'dev' of size 'size' using the
252 * specified gfp mask. Note that 'size' must be page aligned.
253 */
254static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
255{
256 unsigned long order = get_order(size);
257 struct page *page, *p, *e;
7a9a32a9
RK
258
259 page = alloc_pages(gfp, order);
260 if (!page)
261 return NULL;
262
263 /*
264 * Now split the huge page and free the excess pages
265 */
266 split_page(page, order);
267 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
268 __free_page(p);
269
c7909509 270 __dma_clear_buffer(page, size);
7a9a32a9
RK
271
272 return page;
273}
274
275/*
276 * Free a DMA buffer. 'size' must be page aligned.
277 */
278static void __dma_free_buffer(struct page *page, size_t size)
279{
280 struct page *e = page + (size >> PAGE_SHIFT);
281
282 while (page < e) {
283 __free_page(page);
284 page++;
285 }
286}
287
ab6494f0 288#ifdef CONFIG_MMU
a5e9d38b 289
e9da6e99 290static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f
MS
291 pgprot_t prot, struct page **ret_page,
292 const void *caller);
99d1717d 293
e9da6e99
MS
294static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
295 pgprot_t prot, struct page **ret_page,
296 const void *caller);
99d1717d 297
e9da6e99
MS
298static void *
299__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
300 const void *caller)
99d1717d 301{
e9da6e99
MS
302 /*
303 * DMA allocation can be mapped to user space, so lets
304 * set VM_USERMAP flags too.
305 */
513510dd
LA
306 return dma_common_contiguous_remap(page, size,
307 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 prot, caller);
99d1717d 309}
1da177e4 310
e9da6e99 311static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 312{
513510dd
LA
313 dma_common_free_remap(cpu_addr, size,
314 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
88c58f3b 315}
88c58f3b 316
6e5267aa 317#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
36d0fd21 318static struct gen_pool *atomic_pool;
6e5267aa 319
36d0fd21 320static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
c7909509
MS
321
322static int __init early_coherent_pool(char *p)
323{
36d0fd21 324 atomic_pool_size = memparse(p, &p);
c7909509
MS
325 return 0;
326}
327early_param("coherent_pool", early_coherent_pool);
328
6e5267aa
MS
329void __init init_dma_coherent_pool_size(unsigned long size)
330{
331 /*
332 * Catch any attempt to set the pool size too late.
333 */
36d0fd21 334 BUG_ON(atomic_pool);
6e5267aa
MS
335
336 /*
337 * Set architecture specific coherent pool size only if
338 * it has not been changed by kernel command line parameter.
339 */
36d0fd21
LA
340 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
341 atomic_pool_size = size;
6e5267aa
MS
342}
343
c7909509
MS
344/*
345 * Initialise the coherent pool for atomic allocations.
346 */
e9da6e99 347static int __init atomic_pool_init(void)
c7909509 348{
71b55663 349 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
9d1400cf 350 gfp_t gfp = GFP_KERNEL | GFP_DMA;
c7909509
MS
351 struct page *page;
352 void *ptr;
c7909509 353
36d0fd21
LA
354 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
355 if (!atomic_pool)
356 goto out;
6b3fe472 357
e464ef16 358 if (dev_get_cma_area(NULL))
36d0fd21
LA
359 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
360 &page, atomic_pool_init);
e9da6e99 361 else
36d0fd21
LA
362 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
363 &page, atomic_pool_init);
c7909509 364 if (ptr) {
36d0fd21
LA
365 int ret;
366
367 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
368 page_to_phys(page),
369 atomic_pool_size, -1);
370 if (ret)
371 goto destroy_genpool;
372
373 gen_pool_set_algo(atomic_pool,
374 gen_pool_first_fit_order_align,
375 (void *)PAGE_SHIFT);
376 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
377 atomic_pool_size / 1024);
c7909509
MS
378 return 0;
379 }
ec10665c 380
36d0fd21
LA
381destroy_genpool:
382 gen_pool_destroy(atomic_pool);
383 atomic_pool = NULL;
384out:
385 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
386 atomic_pool_size / 1024);
c7909509
MS
387 return -ENOMEM;
388}
389/*
390 * CMA is activated by core_initcall, so we must be called after it.
391 */
e9da6e99 392postcore_initcall(atomic_pool_init);
c7909509
MS
393
394struct dma_contig_early_reserve {
395 phys_addr_t base;
396 unsigned long size;
397};
398
399static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
400
401static int dma_mmu_remap_num __initdata;
402
403void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
404{
405 dma_mmu_remap[dma_mmu_remap_num].base = base;
406 dma_mmu_remap[dma_mmu_remap_num].size = size;
407 dma_mmu_remap_num++;
408}
409
410void __init dma_contiguous_remap(void)
411{
412 int i;
413 for (i = 0; i < dma_mmu_remap_num; i++) {
414 phys_addr_t start = dma_mmu_remap[i].base;
415 phys_addr_t end = start + dma_mmu_remap[i].size;
416 struct map_desc map;
417 unsigned long addr;
418
419 if (end > arm_lowmem_limit)
420 end = arm_lowmem_limit;
421 if (start >= end)
39f78e70 422 continue;
c7909509
MS
423
424 map.pfn = __phys_to_pfn(start);
425 map.virtual = __phys_to_virt(start);
426 map.length = end - start;
427 map.type = MT_MEMORY_DMA_READY;
428
429 /*
6b076991
RK
430 * Clear previous low-memory mapping to ensure that the
431 * TLB does not see any conflicting entries, then flush
432 * the TLB of the old entries before creating new mappings.
433 *
434 * This ensures that any speculatively loaded TLB entries
435 * (even though they may be rare) can not cause any problems,
436 * and ensures that this code is architecturally compliant.
c7909509
MS
437 */
438 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 439 addr += PMD_SIZE)
c7909509
MS
440 pmd_clear(pmd_off_k(addr));
441
6b076991
RK
442 flush_tlb_kernel_range(__phys_to_virt(start),
443 __phys_to_virt(end));
444
c7909509
MS
445 iotable_init(&map, 1);
446 }
447}
448
c7909509
MS
449static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
450 void *data)
451{
452 struct page *page = virt_to_page(addr);
453 pgprot_t prot = *(pgprot_t *)data;
454
455 set_pte_ext(pte, mk_pte(page, prot), 0);
456 return 0;
457}
458
459static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
460{
461 unsigned long start = (unsigned long) page_address(page);
462 unsigned end = start + size;
463
464 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
c7909509
MS
465 flush_tlb_kernel_range(start, end);
466}
467
468static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
469 pgprot_t prot, struct page **ret_page,
470 const void *caller)
471{
472 struct page *page;
473 void *ptr;
474 page = __dma_alloc_buffer(dev, size, gfp);
475 if (!page)
476 return NULL;
477
478 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
479 if (!ptr) {
480 __dma_free_buffer(page, size);
481 return NULL;
482 }
483
484 *ret_page = page;
485 return ptr;
486}
487
e9da6e99 488static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 489{
36d0fd21 490 unsigned long val;
e9da6e99 491 void *ptr = NULL;
c7909509 492
36d0fd21 493 if (!atomic_pool) {
e9da6e99 494 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
495 return NULL;
496 }
497
36d0fd21
LA
498 val = gen_pool_alloc(atomic_pool, size);
499 if (val) {
500 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
501
502 *ret_page = phys_to_page(phys);
503 ptr = (void *)val;
c7909509 504 }
e9da6e99
MS
505
506 return ptr;
c7909509
MS
507}
508
21d0a759
HD
509static bool __in_atomic_pool(void *start, size_t size)
510{
36d0fd21 511 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
21d0a759
HD
512}
513
e9da6e99 514static int __free_from_pool(void *start, size_t size)
c7909509 515{
21d0a759 516 if (!__in_atomic_pool(start, size))
c7909509
MS
517 return 0;
518
36d0fd21 519 gen_pool_free(atomic_pool, (unsigned long)start, size);
e9da6e99 520
c7909509
MS
521 return 1;
522}
523
524static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f
MS
525 pgprot_t prot, struct page **ret_page,
526 const void *caller)
c7909509
MS
527{
528 unsigned long order = get_order(size);
529 size_t count = size >> PAGE_SHIFT;
530 struct page *page;
9848e48f 531 void *ptr;
c7909509
MS
532
533 page = dma_alloc_from_contiguous(dev, count, order);
534 if (!page)
535 return NULL;
536
537 __dma_clear_buffer(page, size);
c7909509 538
9848e48f
MS
539 if (PageHighMem(page)) {
540 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
541 if (!ptr) {
542 dma_release_from_contiguous(dev, page, count);
543 return NULL;
544 }
545 } else {
546 __dma_remap(page, size, prot);
547 ptr = page_address(page);
548 }
c7909509 549 *ret_page = page;
9848e48f 550 return ptr;
c7909509
MS
551}
552
553static void __free_from_contiguous(struct device *dev, struct page *page,
9848e48f 554 void *cpu_addr, size_t size)
c7909509 555{
9848e48f
MS
556 if (PageHighMem(page))
557 __dma_free_remap(cpu_addr, size);
558 else
71b55663 559 __dma_remap(page, size, PAGE_KERNEL);
c7909509
MS
560 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
561}
562
f99d6034
MS
563static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
564{
565 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
566 pgprot_writecombine(prot) :
567 pgprot_dmacoherent(prot);
568 return prot;
569}
570
c7909509
MS
571#define nommu() 0
572
ab6494f0 573#else /* !CONFIG_MMU */
695ae0af 574
c7909509
MS
575#define nommu() 1
576
f99d6034 577#define __get_dma_pgprot(attrs, prot) __pgprot(0)
c7909509 578#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
e9da6e99 579#define __alloc_from_pool(size, ret_page) NULL
9848e48f 580#define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
c7909509 581#define __free_from_pool(cpu_addr, size) 0
9848e48f 582#define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
c7909509 583#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
584
585#endif /* CONFIG_MMU */
586
c7909509
MS
587static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
588 struct page **ret_page)
ab6494f0 589{
c7909509
MS
590 struct page *page;
591 page = __dma_alloc_buffer(dev, size, gfp);
592 if (!page)
593 return NULL;
594
595 *ret_page = page;
596 return page_address(page);
597}
598
599
600
601static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
dd37e940 602 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
c7909509
MS
603{
604 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 605 struct page *page = NULL;
31ebf944 606 void *addr;
ab6494f0 607
c7909509
MS
608#ifdef CONFIG_DMA_API_DEBUG
609 u64 limit = (mask + 1) & ~mask;
610 if (limit && size >= limit) {
611 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
612 size, mask);
613 return NULL;
614 }
615#endif
616
617 if (!mask)
618 return NULL;
619
620 if (mask < 0xffffffffULL)
621 gfp |= GFP_DMA;
622
ea2e7057
SB
623 /*
624 * Following is a work-around (a.k.a. hack) to prevent pages
625 * with __GFP_COMP being passed to split_page() which cannot
626 * handle them. The real problem is that this flag probably
627 * should be 0 on ARM as it is not supported on this
628 * platform; see CONFIG_HUGETLBFS.
629 */
630 gfp &= ~(__GFP_COMP);
631
553ac788 632 *handle = DMA_ERROR_CODE;
04da5694 633 size = PAGE_ALIGN(size);
ab6494f0 634
dd37e940 635 if (is_coherent || nommu())
c7909509 636 addr = __alloc_simple_buffer(dev, size, gfp, &page);
633dc92a 637 else if (!(gfp & __GFP_WAIT))
e9da6e99 638 addr = __alloc_from_pool(size, &page);
e464ef16 639 else if (!dev_get_cma_area(dev))
c7909509 640 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
31ebf944 641 else
9848e48f 642 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
695ae0af 643
31ebf944 644 if (addr)
9eedd963 645 *handle = pfn_to_dma(dev, page_to_pfn(page));
695ae0af 646
31ebf944
RK
647 return addr;
648}
1da177e4
LT
649
650/*
651 * Allocate DMA-coherent memory space and return both the kernel remapped
652 * virtual and bus address for that space.
653 */
f99d6034
MS
654void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
655 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 656{
0ea1ec71 657 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1fe53268
DB
658 void *memory;
659
660 if (dma_alloc_from_coherent(dev, size, handle, &memory))
661 return memory;
662
dd37e940
RH
663 return __dma_alloc(dev, size, handle, gfp, prot, false,
664 __builtin_return_address(0));
665}
666
667static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
668 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
669{
0ea1ec71 670 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
dd37e940
RH
671 void *memory;
672
673 if (dma_alloc_from_coherent(dev, size, handle, &memory))
674 return memory;
675
676 return __dma_alloc(dev, size, handle, gfp, prot, true,
45cd5290 677 __builtin_return_address(0));
1da177e4 678}
1da177e4
LT
679
680/*
f99d6034 681 * Create userspace mapping for the DMA-coherent memory.
1da177e4 682 */
f99d6034
MS
683int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
684 void *cpu_addr, dma_addr_t dma_addr, size_t size,
685 struct dma_attrs *attrs)
1da177e4 686{
ab6494f0
CM
687 int ret = -ENXIO;
688#ifdef CONFIG_MMU
50262a4b
MS
689 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
690 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 691 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
692 unsigned long off = vma->vm_pgoff;
693
f99d6034
MS
694 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
695
47142f07
MS
696 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
697 return ret;
698
50262a4b
MS
699 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
700 ret = remap_pfn_range(vma, vma->vm_start,
701 pfn + off,
702 vma->vm_end - vma->vm_start,
703 vma->vm_page_prot);
704 }
ab6494f0 705#endif /* CONFIG_MMU */
1da177e4
LT
706
707 return ret;
708}
709
1da177e4 710/*
c7909509 711 * Free a buffer as defined by the above mapping.
1da177e4 712 */
dd37e940
RH
713static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
714 dma_addr_t handle, struct dma_attrs *attrs,
715 bool is_coherent)
1da177e4 716{
c7909509 717 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
5edf71ae 718
1fe53268
DB
719 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
720 return;
721
3e82d012
RK
722 size = PAGE_ALIGN(size);
723
dd37e940 724 if (is_coherent || nommu()) {
c7909509 725 __dma_free_buffer(page, size);
d9e0d149
AK
726 } else if (__free_from_pool(cpu_addr, size)) {
727 return;
e464ef16 728 } else if (!dev_get_cma_area(dev)) {
695ae0af 729 __dma_free_remap(cpu_addr, size);
c7909509
MS
730 __dma_free_buffer(page, size);
731 } else {
c7909509
MS
732 /*
733 * Non-atomic allocations cannot be freed with IRQs disabled
734 */
735 WARN_ON(irqs_disabled());
9848e48f 736 __free_from_contiguous(dev, page, cpu_addr, size);
c7909509 737 }
1da177e4 738}
afd1a321 739
dd37e940
RH
740void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
741 dma_addr_t handle, struct dma_attrs *attrs)
742{
743 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
744}
745
746static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
747 dma_addr_t handle, struct dma_attrs *attrs)
748{
749 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
750}
751
dc2832e1
MS
752int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
753 void *cpu_addr, dma_addr_t handle, size_t size,
754 struct dma_attrs *attrs)
755{
756 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
757 int ret;
758
759 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
760 if (unlikely(ret))
761 return ret;
762
763 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
764 return 0;
765}
766
4ea0d737 767static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
768 size_t size, enum dma_data_direction dir,
769 void (*op)(const void *, size_t, int))
43377453 770{
15653371
RK
771 unsigned long pfn;
772 size_t left = size;
773
774 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
775 offset %= PAGE_SIZE;
776
43377453
NP
777 /*
778 * A single sg entry may refer to multiple physically contiguous
779 * pages. But we still need to process highmem pages individually.
780 * If highmem is not configured then the bulk of this loop gets
781 * optimized out.
782 */
43377453
NP
783 do {
784 size_t len = left;
93f1d629
RK
785 void *vaddr;
786
15653371
RK
787 page = pfn_to_page(pfn);
788
93f1d629 789 if (PageHighMem(page)) {
15653371 790 if (len + offset > PAGE_SIZE)
93f1d629 791 len = PAGE_SIZE - offset;
dd0f67f4
JK
792
793 if (cache_is_vipt_nonaliasing()) {
39af22a7 794 vaddr = kmap_atomic(page);
7e5a69e8 795 op(vaddr + offset, len, dir);
39af22a7 796 kunmap_atomic(vaddr);
dd0f67f4
JK
797 } else {
798 vaddr = kmap_high_get(page);
799 if (vaddr) {
800 op(vaddr + offset, len, dir);
801 kunmap_high(page);
802 }
43377453 803 }
93f1d629
RK
804 } else {
805 vaddr = page_address(page) + offset;
a9c9147e 806 op(vaddr, len, dir);
43377453 807 }
43377453 808 offset = 0;
15653371 809 pfn++;
43377453
NP
810 left -= len;
811 } while (left);
812}
4ea0d737 813
51fde349
MS
814/*
815 * Make an area consistent for devices.
816 * Note: Drivers should NOT use this function directly, as it will break
817 * platforms with CONFIG_DMABOUNCE.
818 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
819 */
820static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
821 size_t size, enum dma_data_direction dir)
822{
2161c248 823 phys_addr_t paddr;
65af191a 824
a9c9147e 825 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
826
827 paddr = page_to_phys(page) + off;
2ffe2da3
RK
828 if (dir == DMA_FROM_DEVICE) {
829 outer_inv_range(paddr, paddr + size);
830 } else {
831 outer_clean_range(paddr, paddr + size);
832 }
833 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 834}
4ea0d737 835
51fde349 836static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
837 size_t size, enum dma_data_direction dir)
838{
2161c248 839 phys_addr_t paddr = page_to_phys(page) + off;
2ffe2da3
RK
840
841 /* FIXME: non-speculating: not required */
deace4a6
RK
842 /* in any case, don't bother invalidating if DMA to device */
843 if (dir != DMA_TO_DEVICE) {
2ffe2da3
RK
844 outer_inv_range(paddr, paddr + size);
845
deace4a6
RK
846 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
847 }
c0177800
CM
848
849 /*
b2a234ed 850 * Mark the D-cache clean for these pages to avoid extra flushing.
c0177800 851 */
b2a234ed
ML
852 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
853 unsigned long pfn;
854 size_t left = size;
855
856 pfn = page_to_pfn(page) + off / PAGE_SIZE;
857 off %= PAGE_SIZE;
858 if (off) {
859 pfn++;
860 left -= PAGE_SIZE - off;
861 }
862 while (left >= PAGE_SIZE) {
863 page = pfn_to_page(pfn++);
864 set_bit(PG_dcache_clean, &page->flags);
865 left -= PAGE_SIZE;
866 }
867 }
4ea0d737 868}
43377453 869
afd1a321 870/**
2a550e73 871 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
872 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
873 * @sg: list of buffers
874 * @nents: number of buffers to map
875 * @dir: DMA transfer direction
876 *
877 * Map a set of buffers described by scatterlist in streaming mode for DMA.
878 * This is the scatter-gather version of the dma_map_single interface.
879 * Here the scatter gather list elements are each tagged with the
880 * appropriate dma address and length. They are obtained via
881 * sg_dma_{address,length}.
882 *
883 * Device ownership issues as mentioned for dma_map_single are the same
884 * here.
885 */
2dc6a016
MS
886int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
887 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 888{
2a550e73 889 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 890 struct scatterlist *s;
01135d92 891 int i, j;
afd1a321
RK
892
893 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
894#ifdef CONFIG_NEED_SG_DMA_LENGTH
895 s->dma_length = s->length;
896#endif
2a550e73
MS
897 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
898 s->length, dir, attrs);
01135d92
RK
899 if (dma_mapping_error(dev, s->dma_address))
900 goto bad_mapping;
afd1a321 901 }
afd1a321 902 return nents;
01135d92
RK
903
904 bad_mapping:
905 for_each_sg(sg, s, i, j)
2a550e73 906 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 907 return 0;
afd1a321 908}
afd1a321
RK
909
910/**
2a550e73 911 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
912 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
913 * @sg: list of buffers
0adfca6f 914 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
915 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
916 *
917 * Unmap a set of streaming mode DMA translations. Again, CPU access
918 * rules concerning calls here are the same as for dma_unmap_single().
919 */
2dc6a016
MS
920void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
921 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 922{
2a550e73 923 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 924 struct scatterlist *s;
01135d92 925
01135d92 926 int i;
24056f52 927
01135d92 928 for_each_sg(sg, s, nents, i)
2a550e73 929 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 930}
afd1a321
RK
931
932/**
2a550e73 933 * arm_dma_sync_sg_for_cpu
afd1a321
RK
934 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
935 * @sg: list of buffers
936 * @nents: number of buffers to map (returned from dma_map_sg)
937 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
938 */
2dc6a016 939void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
940 int nents, enum dma_data_direction dir)
941{
2a550e73 942 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
943 struct scatterlist *s;
944 int i;
945
2a550e73
MS
946 for_each_sg(sg, s, nents, i)
947 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
948 dir);
afd1a321 949}
afd1a321
RK
950
951/**
2a550e73 952 * arm_dma_sync_sg_for_device
afd1a321
RK
953 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
954 * @sg: list of buffers
955 * @nents: number of buffers to map (returned from dma_map_sg)
956 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
957 */
2dc6a016 958void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
959 int nents, enum dma_data_direction dir)
960{
2a550e73 961 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
962 struct scatterlist *s;
963 int i;
964
2a550e73
MS
965 for_each_sg(sg, s, nents, i)
966 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
967 dir);
afd1a321 968}
24056f52 969
022ae537
RK
970/*
971 * Return whether the given device DMA address mask can be supported
972 * properly. For example, if your device can only drive the low 24-bits
973 * during bus mastering, then you would pass 0x00ffffff as the mask
974 * to this function.
975 */
976int dma_supported(struct device *dev, u64 mask)
977{
9f28cde0 978 return __dma_supported(dev, mask, false);
022ae537
RK
979}
980EXPORT_SYMBOL(dma_supported);
981
87b54e78 982int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
983{
984 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
985 return -EIO;
986
022ae537 987 *dev->dma_mask = dma_mask;
022ae537
RK
988
989 return 0;
990}
022ae537 991
24056f52
RK
992#define PREALLOC_DMA_DEBUG_ENTRIES 4096
993
994static int __init dma_debug_do_init(void)
995{
996 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
997 return 0;
998}
999fs_initcall(dma_debug_do_init);
4ce63fcd
MS
1000
1001#ifdef CONFIG_ARM_DMA_USE_IOMMU
1002
1003/* IOMMU */
1004
4d852ef8
AH
1005static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1006
4ce63fcd
MS
1007static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1008 size_t size)
1009{
1010 unsigned int order = get_order(size);
1011 unsigned int align = 0;
1012 unsigned int count, start;
006f841d 1013 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1014 unsigned long flags;
4d852ef8
AH
1015 dma_addr_t iova;
1016 int i;
4ce63fcd 1017
60460abf
SWK
1018 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1019 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1020
68efd7d2
MS
1021 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1022 align = (1 << order) - 1;
4ce63fcd
MS
1023
1024 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8
AH
1025 for (i = 0; i < mapping->nr_bitmaps; i++) {
1026 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1027 mapping->bits, 0, count, align);
1028
1029 if (start > mapping->bits)
1030 continue;
1031
1032 bitmap_set(mapping->bitmaps[i], start, count);
1033 break;
4ce63fcd
MS
1034 }
1035
4d852ef8
AH
1036 /*
1037 * No unused range found. Try to extend the existing mapping
1038 * and perform a second attempt to reserve an IO virtual
1039 * address range of size bytes.
1040 */
1041 if (i == mapping->nr_bitmaps) {
1042 if (extend_iommu_mapping(mapping)) {
1043 spin_unlock_irqrestore(&mapping->lock, flags);
1044 return DMA_ERROR_CODE;
1045 }
1046
1047 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1048 mapping->bits, 0, count, align);
1049
1050 if (start > mapping->bits) {
1051 spin_unlock_irqrestore(&mapping->lock, flags);
1052 return DMA_ERROR_CODE;
1053 }
1054
1055 bitmap_set(mapping->bitmaps[i], start, count);
1056 }
4ce63fcd
MS
1057 spin_unlock_irqrestore(&mapping->lock, flags);
1058
006f841d 1059 iova = mapping->base + (mapping_size * i);
68efd7d2 1060 iova += start << PAGE_SHIFT;
4d852ef8
AH
1061
1062 return iova;
4ce63fcd
MS
1063}
1064
1065static inline void __free_iova(struct dma_iommu_mapping *mapping,
1066 dma_addr_t addr, size_t size)
1067{
4d852ef8 1068 unsigned int start, count;
006f841d 1069 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1070 unsigned long flags;
4d852ef8
AH
1071 dma_addr_t bitmap_base;
1072 u32 bitmap_index;
1073
1074 if (!size)
1075 return;
1076
006f841d 1077 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
4d852ef8
AH
1078 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1079
006f841d 1080 bitmap_base = mapping->base + mapping_size * bitmap_index;
4d852ef8 1081
68efd7d2 1082 start = (addr - bitmap_base) >> PAGE_SHIFT;
4d852ef8 1083
006f841d 1084 if (addr + size > bitmap_base + mapping_size) {
4d852ef8
AH
1085 /*
1086 * The address range to be freed reaches into the iova
1087 * range of the next bitmap. This should not happen as
1088 * we don't allow this in __alloc_iova (at the
1089 * moment).
1090 */
1091 BUG();
1092 } else
68efd7d2 1093 count = size >> PAGE_SHIFT;
4ce63fcd
MS
1094
1095 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8 1096 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
4ce63fcd
MS
1097 spin_unlock_irqrestore(&mapping->lock, flags);
1098}
1099
549a17e4
MS
1100static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1101 gfp_t gfp, struct dma_attrs *attrs)
4ce63fcd
MS
1102{
1103 struct page **pages;
1104 int count = size >> PAGE_SHIFT;
1105 int array_size = count * sizeof(struct page *);
1106 int i = 0;
1107
1108 if (array_size <= PAGE_SIZE)
1109 pages = kzalloc(array_size, gfp);
1110 else
1111 pages = vzalloc(array_size);
1112 if (!pages)
1113 return NULL;
1114
549a17e4
MS
1115 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1116 {
1117 unsigned long order = get_order(size);
1118 struct page *page;
1119
1120 page = dma_alloc_from_contiguous(dev, count, order);
1121 if (!page)
1122 goto error;
1123
1124 __dma_clear_buffer(page, size);
1125
1126 for (i = 0; i < count; i++)
1127 pages[i] = page + i;
1128
1129 return pages;
1130 }
1131
f8669bef
MS
1132 /*
1133 * IOMMU can map any pages, so himem can also be used here
1134 */
1135 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1136
4ce63fcd 1137 while (count) {
593f4735 1138 int j, order = __fls(count);
4ce63fcd 1139
f8669bef 1140 pages[i] = alloc_pages(gfp, order);
4ce63fcd 1141 while (!pages[i] && order)
f8669bef 1142 pages[i] = alloc_pages(gfp, --order);
4ce63fcd
MS
1143 if (!pages[i])
1144 goto error;
1145
5a796eeb 1146 if (order) {
4ce63fcd 1147 split_page(pages[i], order);
5a796eeb
HD
1148 j = 1 << order;
1149 while (--j)
1150 pages[i + j] = pages[i] + j;
1151 }
4ce63fcd
MS
1152
1153 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1154 i += 1 << order;
1155 count -= 1 << order;
1156 }
1157
1158 return pages;
1159error:
9fa8af91 1160 while (i--)
4ce63fcd
MS
1161 if (pages[i])
1162 __free_pages(pages[i], 0);
46c87852 1163 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1164 kfree(pages);
1165 else
1166 vfree(pages);
1167 return NULL;
1168}
1169
549a17e4
MS
1170static int __iommu_free_buffer(struct device *dev, struct page **pages,
1171 size_t size, struct dma_attrs *attrs)
4ce63fcd
MS
1172{
1173 int count = size >> PAGE_SHIFT;
1174 int array_size = count * sizeof(struct page *);
1175 int i;
549a17e4
MS
1176
1177 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1178 dma_release_from_contiguous(dev, pages[0], count);
1179 } else {
1180 for (i = 0; i < count; i++)
1181 if (pages[i])
1182 __free_pages(pages[i], 0);
1183 }
1184
46c87852 1185 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1186 kfree(pages);
1187 else
1188 vfree(pages);
1189 return 0;
1190}
1191
1192/*
1193 * Create a CPU mapping for a specified pages
1194 */
1195static void *
e9da6e99
MS
1196__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1197 const void *caller)
4ce63fcd 1198{
513510dd
LA
1199 return dma_common_pages_remap(pages, size,
1200 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
4ce63fcd
MS
1201}
1202
1203/*
1204 * Create a mapping in device IO address space for specified pages
1205 */
1206static dma_addr_t
1207__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1208{
1209 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1210 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1211 dma_addr_t dma_addr, iova;
1212 int i, ret = DMA_ERROR_CODE;
1213
1214 dma_addr = __alloc_iova(mapping, size);
1215 if (dma_addr == DMA_ERROR_CODE)
1216 return dma_addr;
1217
1218 iova = dma_addr;
1219 for (i = 0; i < count; ) {
1220 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1221 phys_addr_t phys = page_to_phys(pages[i]);
1222 unsigned int len, j;
1223
1224 for (j = i + 1; j < count; j++, next_pfn++)
1225 if (page_to_pfn(pages[j]) != next_pfn)
1226 break;
1227
1228 len = (j - i) << PAGE_SHIFT;
c9b24996
AH
1229 ret = iommu_map(mapping->domain, iova, phys, len,
1230 IOMMU_READ|IOMMU_WRITE);
4ce63fcd
MS
1231 if (ret < 0)
1232 goto fail;
1233 iova += len;
1234 i = j;
1235 }
1236 return dma_addr;
1237fail:
1238 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1239 __free_iova(mapping, dma_addr, size);
1240 return DMA_ERROR_CODE;
1241}
1242
1243static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1244{
1245 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1246
1247 /*
1248 * add optional in-page offset from iova to size and align
1249 * result to page size
1250 */
1251 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1252 iova &= PAGE_MASK;
1253
1254 iommu_unmap(mapping->domain, iova, size);
1255 __free_iova(mapping, iova, size);
1256 return 0;
1257}
1258
665bad7b
HD
1259static struct page **__atomic_get_pages(void *addr)
1260{
36d0fd21
LA
1261 struct page *page;
1262 phys_addr_t phys;
1263
1264 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1265 page = phys_to_page(phys);
665bad7b 1266
36d0fd21 1267 return (struct page **)page;
665bad7b
HD
1268}
1269
955c757e 1270static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1271{
1272 struct vm_struct *area;
1273
665bad7b
HD
1274 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1275 return __atomic_get_pages(cpu_addr);
1276
955c757e
MS
1277 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1278 return cpu_addr;
1279
e9da6e99
MS
1280 area = find_vm_area(cpu_addr);
1281 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1282 return area->pages;
1283 return NULL;
1284}
1285
479ed93a
HD
1286static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1287 dma_addr_t *handle)
1288{
1289 struct page *page;
1290 void *addr;
1291
1292 addr = __alloc_from_pool(size, &page);
1293 if (!addr)
1294 return NULL;
1295
1296 *handle = __iommu_create_mapping(dev, &page, size);
1297 if (*handle == DMA_ERROR_CODE)
1298 goto err_mapping;
1299
1300 return addr;
1301
1302err_mapping:
1303 __free_from_pool(addr, size);
1304 return NULL;
1305}
1306
d5898291 1307static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
479ed93a
HD
1308 dma_addr_t handle, size_t size)
1309{
1310 __iommu_remove_mapping(dev, handle, size);
d5898291 1311 __free_from_pool(cpu_addr, size);
479ed93a
HD
1312}
1313
4ce63fcd
MS
1314static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1315 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1316{
71b55663 1317 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
4ce63fcd
MS
1318 struct page **pages;
1319 void *addr = NULL;
1320
1321 *handle = DMA_ERROR_CODE;
1322 size = PAGE_ALIGN(size);
1323
10c8562f 1324 if (!(gfp & __GFP_WAIT))
479ed93a
HD
1325 return __iommu_alloc_atomic(dev, size, handle);
1326
5b91a98c
RZ
1327 /*
1328 * Following is a work-around (a.k.a. hack) to prevent pages
1329 * with __GFP_COMP being passed to split_page() which cannot
1330 * handle them. The real problem is that this flag probably
1331 * should be 0 on ARM as it is not supported on this
1332 * platform; see CONFIG_HUGETLBFS.
1333 */
1334 gfp &= ~(__GFP_COMP);
1335
549a17e4 1336 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
4ce63fcd
MS
1337 if (!pages)
1338 return NULL;
1339
1340 *handle = __iommu_create_mapping(dev, pages, size);
1341 if (*handle == DMA_ERROR_CODE)
1342 goto err_buffer;
1343
955c757e
MS
1344 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1345 return pages;
1346
e9da6e99
MS
1347 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1348 __builtin_return_address(0));
4ce63fcd
MS
1349 if (!addr)
1350 goto err_mapping;
1351
1352 return addr;
1353
1354err_mapping:
1355 __iommu_remove_mapping(dev, *handle, size);
1356err_buffer:
549a17e4 1357 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1358 return NULL;
1359}
1360
1361static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1362 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1363 struct dma_attrs *attrs)
1364{
e9da6e99
MS
1365 unsigned long uaddr = vma->vm_start;
1366 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1367 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1368
1369 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1370
e9da6e99
MS
1371 if (!pages)
1372 return -ENXIO;
4ce63fcd 1373
e9da6e99
MS
1374 do {
1375 int ret = vm_insert_page(vma, uaddr, *pages++);
1376 if (ret) {
1377 pr_err("Remapping memory failed: %d\n", ret);
1378 return ret;
1379 }
1380 uaddr += PAGE_SIZE;
1381 usize -= PAGE_SIZE;
1382 } while (usize > 0);
4ce63fcd 1383
4ce63fcd
MS
1384 return 0;
1385}
1386
1387/*
1388 * free a page as defined by the above mapping.
1389 * Must not be called with IRQs disabled.
1390 */
1391void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1392 dma_addr_t handle, struct dma_attrs *attrs)
1393{
836bfa0d 1394 struct page **pages;
4ce63fcd
MS
1395 size = PAGE_ALIGN(size);
1396
836bfa0d
YC
1397 if (__in_atomic_pool(cpu_addr, size)) {
1398 __iommu_free_atomic(dev, cpu_addr, handle, size);
e9da6e99 1399 return;
4ce63fcd 1400 }
e9da6e99 1401
836bfa0d
YC
1402 pages = __iommu_get_pages(cpu_addr, attrs);
1403 if (!pages) {
1404 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
479ed93a
HD
1405 return;
1406 }
1407
955c757e 1408 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
513510dd
LA
1409 dma_common_free_remap(cpu_addr, size,
1410 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
955c757e 1411 }
e9da6e99
MS
1412
1413 __iommu_remove_mapping(dev, handle, size);
549a17e4 1414 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1415}
1416
dc2832e1
MS
1417static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1418 void *cpu_addr, dma_addr_t dma_addr,
1419 size_t size, struct dma_attrs *attrs)
1420{
1421 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1422 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1423
1424 if (!pages)
1425 return -ENXIO;
1426
1427 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1428 GFP_KERNEL);
4ce63fcd
MS
1429}
1430
c9b24996
AH
1431static int __dma_direction_to_prot(enum dma_data_direction dir)
1432{
1433 int prot;
1434
1435 switch (dir) {
1436 case DMA_BIDIRECTIONAL:
1437 prot = IOMMU_READ | IOMMU_WRITE;
1438 break;
1439 case DMA_TO_DEVICE:
1440 prot = IOMMU_READ;
1441 break;
1442 case DMA_FROM_DEVICE:
1443 prot = IOMMU_WRITE;
1444 break;
1445 default:
1446 prot = 0;
1447 }
1448
1449 return prot;
1450}
1451
4ce63fcd
MS
1452/*
1453 * Map a part of the scatter-gather list into contiguous io address space
1454 */
1455static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1456 size_t size, dma_addr_t *handle,
0fa478df
RH
1457 enum dma_data_direction dir, struct dma_attrs *attrs,
1458 bool is_coherent)
4ce63fcd
MS
1459{
1460 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1461 dma_addr_t iova, iova_base;
1462 int ret = 0;
1463 unsigned int count;
1464 struct scatterlist *s;
c9b24996 1465 int prot;
4ce63fcd
MS
1466
1467 size = PAGE_ALIGN(size);
1468 *handle = DMA_ERROR_CODE;
1469
1470 iova_base = iova = __alloc_iova(mapping, size);
1471 if (iova == DMA_ERROR_CODE)
1472 return -ENOMEM;
1473
1474 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1475 phys_addr_t phys = page_to_phys(sg_page(s));
1476 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1477
0fa478df
RH
1478 if (!is_coherent &&
1479 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1480 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1481
c9b24996
AH
1482 prot = __dma_direction_to_prot(dir);
1483
1484 ret = iommu_map(mapping->domain, iova, phys, len, prot);
4ce63fcd
MS
1485 if (ret < 0)
1486 goto fail;
1487 count += len >> PAGE_SHIFT;
1488 iova += len;
1489 }
1490 *handle = iova_base;
1491
1492 return 0;
1493fail:
1494 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1495 __free_iova(mapping, iova_base, size);
1496 return ret;
1497}
1498
0fa478df
RH
1499static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1500 enum dma_data_direction dir, struct dma_attrs *attrs,
1501 bool is_coherent)
4ce63fcd
MS
1502{
1503 struct scatterlist *s = sg, *dma = sg, *start = sg;
1504 int i, count = 0;
1505 unsigned int offset = s->offset;
1506 unsigned int size = s->offset + s->length;
1507 unsigned int max = dma_get_max_seg_size(dev);
1508
1509 for (i = 1; i < nents; i++) {
1510 s = sg_next(s);
1511
1512 s->dma_address = DMA_ERROR_CODE;
1513 s->dma_length = 0;
1514
1515 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1516 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1517 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1518 goto bad_mapping;
1519
1520 dma->dma_address += offset;
1521 dma->dma_length = size - offset;
1522
1523 size = offset = s->offset;
1524 start = s;
1525 dma = sg_next(dma);
1526 count += 1;
1527 }
1528 size += s->length;
1529 }
0fa478df
RH
1530 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1531 is_coherent) < 0)
4ce63fcd
MS
1532 goto bad_mapping;
1533
1534 dma->dma_address += offset;
1535 dma->dma_length = size - offset;
1536
1537 return count+1;
1538
1539bad_mapping:
1540 for_each_sg(sg, s, count, i)
1541 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1542 return 0;
1543}
1544
1545/**
0fa478df 1546 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1547 * @dev: valid struct device pointer
1548 * @sg: list of buffers
0fa478df
RH
1549 * @nents: number of buffers to map
1550 * @dir: DMA transfer direction
4ce63fcd 1551 *
0fa478df
RH
1552 * Map a set of i/o coherent buffers described by scatterlist in streaming
1553 * mode for DMA. The scatter gather list elements are merged together (if
1554 * possible) and tagged with the appropriate dma address and length. They are
1555 * obtained via sg_dma_{address,length}.
4ce63fcd 1556 */
0fa478df
RH
1557int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1558 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1559{
1560 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1561}
1562
1563/**
1564 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1565 * @dev: valid struct device pointer
1566 * @sg: list of buffers
1567 * @nents: number of buffers to map
1568 * @dir: DMA transfer direction
1569 *
1570 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1571 * The scatter gather list elements are merged together (if possible) and
1572 * tagged with the appropriate dma address and length. They are obtained via
1573 * sg_dma_{address,length}.
1574 */
1575int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1576 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1577{
1578 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1579}
1580
1581static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1582 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1583 bool is_coherent)
4ce63fcd
MS
1584{
1585 struct scatterlist *s;
1586 int i;
1587
1588 for_each_sg(sg, s, nents, i) {
1589 if (sg_dma_len(s))
1590 __iommu_remove_mapping(dev, sg_dma_address(s),
1591 sg_dma_len(s));
0fa478df 1592 if (!is_coherent &&
97ef952a 1593 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1594 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1595 s->length, dir);
1596 }
1597}
1598
0fa478df
RH
1599/**
1600 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1601 * @dev: valid struct device pointer
1602 * @sg: list of buffers
1603 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1604 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1605 *
1606 * Unmap a set of streaming mode DMA translations. Again, CPU access
1607 * rules concerning calls here are the same as for dma_unmap_single().
1608 */
1609void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1610 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1611{
1612 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1613}
1614
1615/**
1616 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1617 * @dev: valid struct device pointer
1618 * @sg: list of buffers
1619 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1620 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1621 *
1622 * Unmap a set of streaming mode DMA translations. Again, CPU access
1623 * rules concerning calls here are the same as for dma_unmap_single().
1624 */
1625void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1626 enum dma_data_direction dir, struct dma_attrs *attrs)
1627{
1628 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1629}
1630
4ce63fcd
MS
1631/**
1632 * arm_iommu_sync_sg_for_cpu
1633 * @dev: valid struct device pointer
1634 * @sg: list of buffers
1635 * @nents: number of buffers to map (returned from dma_map_sg)
1636 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1637 */
1638void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1639 int nents, enum dma_data_direction dir)
1640{
1641 struct scatterlist *s;
1642 int i;
1643
1644 for_each_sg(sg, s, nents, i)
0fa478df 1645 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1646
1647}
1648
1649/**
1650 * arm_iommu_sync_sg_for_device
1651 * @dev: valid struct device pointer
1652 * @sg: list of buffers
1653 * @nents: number of buffers to map (returned from dma_map_sg)
1654 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1655 */
1656void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1657 int nents, enum dma_data_direction dir)
1658{
1659 struct scatterlist *s;
1660 int i;
1661
1662 for_each_sg(sg, s, nents, i)
0fa478df 1663 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1664}
1665
1666
1667/**
0fa478df 1668 * arm_coherent_iommu_map_page
4ce63fcd
MS
1669 * @dev: valid struct device pointer
1670 * @page: page that buffer resides in
1671 * @offset: offset into page for start of buffer
1672 * @size: size of buffer to map
1673 * @dir: DMA transfer direction
1674 *
0fa478df 1675 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1676 */
0fa478df 1677static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd
MS
1678 unsigned long offset, size_t size, enum dma_data_direction dir,
1679 struct dma_attrs *attrs)
1680{
1681 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1682 dma_addr_t dma_addr;
13987d68 1683 int ret, prot, len = PAGE_ALIGN(size + offset);
4ce63fcd 1684
4ce63fcd
MS
1685 dma_addr = __alloc_iova(mapping, len);
1686 if (dma_addr == DMA_ERROR_CODE)
1687 return dma_addr;
1688
c9b24996 1689 prot = __dma_direction_to_prot(dir);
13987d68
WD
1690
1691 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
4ce63fcd
MS
1692 if (ret < 0)
1693 goto fail;
1694
1695 return dma_addr + offset;
1696fail:
1697 __free_iova(mapping, dma_addr, len);
1698 return DMA_ERROR_CODE;
1699}
1700
0fa478df
RH
1701/**
1702 * arm_iommu_map_page
1703 * @dev: valid struct device pointer
1704 * @page: page that buffer resides in
1705 * @offset: offset into page for start of buffer
1706 * @size: size of buffer to map
1707 * @dir: DMA transfer direction
1708 *
1709 * IOMMU aware version of arm_dma_map_page()
1710 */
1711static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1712 unsigned long offset, size_t size, enum dma_data_direction dir,
1713 struct dma_attrs *attrs)
1714{
1715 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1716 __dma_page_cpu_to_dev(page, offset, size, dir);
1717
1718 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1719}
1720
1721/**
1722 * arm_coherent_iommu_unmap_page
1723 * @dev: valid struct device pointer
1724 * @handle: DMA address of buffer
1725 * @size: size of buffer (same as passed to dma_map_page)
1726 * @dir: DMA transfer direction (same as passed to dma_map_page)
1727 *
1728 * Coherent IOMMU aware version of arm_dma_unmap_page()
1729 */
1730static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1731 size_t size, enum dma_data_direction dir,
1732 struct dma_attrs *attrs)
1733{
1734 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1735 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1736 int offset = handle & ~PAGE_MASK;
1737 int len = PAGE_ALIGN(size + offset);
1738
1739 if (!iova)
1740 return;
1741
1742 iommu_unmap(mapping->domain, iova, len);
1743 __free_iova(mapping, iova, len);
1744}
1745
4ce63fcd
MS
1746/**
1747 * arm_iommu_unmap_page
1748 * @dev: valid struct device pointer
1749 * @handle: DMA address of buffer
1750 * @size: size of buffer (same as passed to dma_map_page)
1751 * @dir: DMA transfer direction (same as passed to dma_map_page)
1752 *
1753 * IOMMU aware version of arm_dma_unmap_page()
1754 */
1755static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1756 size_t size, enum dma_data_direction dir,
1757 struct dma_attrs *attrs)
1758{
1759 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1760 dma_addr_t iova = handle & PAGE_MASK;
1761 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1762 int offset = handle & ~PAGE_MASK;
1763 int len = PAGE_ALIGN(size + offset);
1764
1765 if (!iova)
1766 return;
1767
0fa478df 1768 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1769 __dma_page_dev_to_cpu(page, offset, size, dir);
1770
1771 iommu_unmap(mapping->domain, iova, len);
1772 __free_iova(mapping, iova, len);
1773}
1774
1775static void arm_iommu_sync_single_for_cpu(struct device *dev,
1776 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1777{
1778 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1779 dma_addr_t iova = handle & PAGE_MASK;
1780 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1781 unsigned int offset = handle & ~PAGE_MASK;
1782
1783 if (!iova)
1784 return;
1785
0fa478df 1786 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
1787}
1788
1789static void arm_iommu_sync_single_for_device(struct device *dev,
1790 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1791{
1792 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1793 dma_addr_t iova = handle & PAGE_MASK;
1794 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1795 unsigned int offset = handle & ~PAGE_MASK;
1796
1797 if (!iova)
1798 return;
1799
1800 __dma_page_cpu_to_dev(page, offset, size, dir);
1801}
1802
1803struct dma_map_ops iommu_ops = {
1804 .alloc = arm_iommu_alloc_attrs,
1805 .free = arm_iommu_free_attrs,
1806 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1807 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1808
1809 .map_page = arm_iommu_map_page,
1810 .unmap_page = arm_iommu_unmap_page,
1811 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1812 .sync_single_for_device = arm_iommu_sync_single_for_device,
1813
1814 .map_sg = arm_iommu_map_sg,
1815 .unmap_sg = arm_iommu_unmap_sg,
1816 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1817 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
d09e1333
HD
1818
1819 .set_dma_mask = arm_dma_set_mask,
4ce63fcd
MS
1820};
1821
0fa478df
RH
1822struct dma_map_ops iommu_coherent_ops = {
1823 .alloc = arm_iommu_alloc_attrs,
1824 .free = arm_iommu_free_attrs,
1825 .mmap = arm_iommu_mmap_attrs,
1826 .get_sgtable = arm_iommu_get_sgtable,
1827
1828 .map_page = arm_coherent_iommu_map_page,
1829 .unmap_page = arm_coherent_iommu_unmap_page,
1830
1831 .map_sg = arm_coherent_iommu_map_sg,
1832 .unmap_sg = arm_coherent_iommu_unmap_sg,
d09e1333
HD
1833
1834 .set_dma_mask = arm_dma_set_mask,
0fa478df
RH
1835};
1836
4ce63fcd
MS
1837/**
1838 * arm_iommu_create_mapping
1839 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1840 * @base: start address of the valid IO address space
68efd7d2 1841 * @size: maximum size of the valid IO address space
4ce63fcd
MS
1842 *
1843 * Creates a mapping structure which holds information about used/unused
1844 * IO address ranges, which is required to perform memory allocation and
1845 * mapping with IOMMU aware functions.
1846 *
1847 * The client device need to be attached to the mapping with
1848 * arm_iommu_attach_device function.
1849 */
1850struct dma_iommu_mapping *
68efd7d2 1851arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
4ce63fcd 1852{
68efd7d2
MS
1853 unsigned int bits = size >> PAGE_SHIFT;
1854 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
4ce63fcd 1855 struct dma_iommu_mapping *mapping;
68efd7d2 1856 int extensions = 1;
4ce63fcd
MS
1857 int err = -ENOMEM;
1858
68efd7d2 1859 if (!bitmap_size)
4ce63fcd
MS
1860 return ERR_PTR(-EINVAL);
1861
68efd7d2
MS
1862 if (bitmap_size > PAGE_SIZE) {
1863 extensions = bitmap_size / PAGE_SIZE;
1864 bitmap_size = PAGE_SIZE;
1865 }
1866
4ce63fcd
MS
1867 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1868 if (!mapping)
1869 goto err;
1870
68efd7d2
MS
1871 mapping->bitmap_size = bitmap_size;
1872 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
4d852ef8
AH
1873 GFP_KERNEL);
1874 if (!mapping->bitmaps)
4ce63fcd
MS
1875 goto err2;
1876
68efd7d2 1877 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
4d852ef8
AH
1878 if (!mapping->bitmaps[0])
1879 goto err3;
1880
1881 mapping->nr_bitmaps = 1;
1882 mapping->extensions = extensions;
4ce63fcd 1883 mapping->base = base;
68efd7d2 1884 mapping->bits = BITS_PER_BYTE * bitmap_size;
4d852ef8 1885
4ce63fcd
MS
1886 spin_lock_init(&mapping->lock);
1887
1888 mapping->domain = iommu_domain_alloc(bus);
1889 if (!mapping->domain)
4d852ef8 1890 goto err4;
4ce63fcd
MS
1891
1892 kref_init(&mapping->kref);
1893 return mapping;
4d852ef8
AH
1894err4:
1895 kfree(mapping->bitmaps[0]);
4ce63fcd 1896err3:
4d852ef8 1897 kfree(mapping->bitmaps);
4ce63fcd
MS
1898err2:
1899 kfree(mapping);
1900err:
1901 return ERR_PTR(err);
1902}
18177d12 1903EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
1904
1905static void release_iommu_mapping(struct kref *kref)
1906{
4d852ef8 1907 int i;
4ce63fcd
MS
1908 struct dma_iommu_mapping *mapping =
1909 container_of(kref, struct dma_iommu_mapping, kref);
1910
1911 iommu_domain_free(mapping->domain);
4d852ef8
AH
1912 for (i = 0; i < mapping->nr_bitmaps; i++)
1913 kfree(mapping->bitmaps[i]);
1914 kfree(mapping->bitmaps);
4ce63fcd
MS
1915 kfree(mapping);
1916}
1917
4d852ef8
AH
1918static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1919{
1920 int next_bitmap;
1921
1922 if (mapping->nr_bitmaps > mapping->extensions)
1923 return -EINVAL;
1924
1925 next_bitmap = mapping->nr_bitmaps;
1926 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1927 GFP_ATOMIC);
1928 if (!mapping->bitmaps[next_bitmap])
1929 return -ENOMEM;
1930
1931 mapping->nr_bitmaps++;
1932
1933 return 0;
1934}
1935
4ce63fcd
MS
1936void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1937{
1938 if (mapping)
1939 kref_put(&mapping->kref, release_iommu_mapping);
1940}
18177d12 1941EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd
MS
1942
1943/**
1944 * arm_iommu_attach_device
1945 * @dev: valid struct device pointer
1946 * @mapping: io address space mapping structure (returned from
1947 * arm_iommu_create_mapping)
1948 *
1949 * Attaches specified io address space mapping to the provided device,
1950 * this replaces the dma operations (dma_map_ops pointer) with the
1951 * IOMMU aware version. More than one client might be attached to
1952 * the same io address space mapping.
1953 */
1954int arm_iommu_attach_device(struct device *dev,
1955 struct dma_iommu_mapping *mapping)
1956{
1957 int err;
1958
1959 err = iommu_attach_device(mapping->domain, dev);
1960 if (err)
1961 return err;
1962
1963 kref_get(&mapping->kref);
1964 dev->archdata.mapping = mapping;
1965 set_dma_ops(dev, &iommu_ops);
1966
75c59716 1967 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
4ce63fcd
MS
1968 return 0;
1969}
18177d12 1970EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 1971
6fe36758
HD
1972/**
1973 * arm_iommu_detach_device
1974 * @dev: valid struct device pointer
1975 *
1976 * Detaches the provided device from a previously attached map.
1977 * This voids the dma operations (dma_map_ops pointer)
1978 */
1979void arm_iommu_detach_device(struct device *dev)
1980{
1981 struct dma_iommu_mapping *mapping;
1982
1983 mapping = to_dma_iommu_mapping(dev);
1984 if (!mapping) {
1985 dev_warn(dev, "Not attached\n");
1986 return;
1987 }
1988
1989 iommu_detach_device(mapping->domain, dev);
1990 kref_put(&mapping->kref, release_iommu_mapping);
9e4b259d 1991 dev->archdata.mapping = NULL;
6fe36758
HD
1992 set_dma_ops(dev, NULL);
1993
1994 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1995}
18177d12 1996EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 1997
4ce63fcd 1998#endif