Linux 3.12-rc3
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
5a0e3ad6 14#include <linux/gfp.h>
1da177e4
LT
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
c7909509 20#include <linux/dma-contiguous.h>
39af22a7 21#include <linux/highmem.h>
c7909509 22#include <linux/memblock.h>
99d1717d 23#include <linux/slab.h>
4ce63fcd 24#include <linux/iommu.h>
e9da6e99 25#include <linux/io.h>
4ce63fcd 26#include <linux/vmalloc.h>
158e8bfe 27#include <linux/sizes.h>
1da177e4 28
23759dc6 29#include <asm/memory.h>
43377453 30#include <asm/highmem.h>
1da177e4 31#include <asm/cacheflush.h>
1da177e4 32#include <asm/tlbflush.h>
99d1717d 33#include <asm/mach/arch.h>
4ce63fcd 34#include <asm/dma-iommu.h>
c7909509
MS
35#include <asm/mach/map.h>
36#include <asm/system_info.h>
37#include <asm/dma-contiguous.h>
37134cd5 38
022ae537
RK
39#include "mm.h"
40
15237e1f
MS
41/*
42 * The DMA API is built upon the notion of "buffer ownership". A buffer
43 * is either exclusively owned by the CPU (and therefore may be accessed
44 * by it) or exclusively owned by the DMA device. These helper functions
45 * represent the transitions between these two ownership states.
46 *
47 * Note, however, that on later ARMs, this notion does not work due to
48 * speculative prefetches. We model our approach on the assumption that
49 * the CPU does do speculative prefetches, which means we clean caches
50 * before transfers and delay cache invalidation until transfer completion.
51 *
15237e1f 52 */
51fde349 53static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 54 size_t, enum dma_data_direction);
51fde349 55static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
56 size_t, enum dma_data_direction);
57
2dc6a016
MS
58/**
59 * arm_dma_map_page - map a portion of a page for streaming DMA
60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61 * @page: page that buffer resides in
62 * @offset: offset into page for start of buffer
63 * @size: size of buffer to map
64 * @dir: DMA transfer direction
65 *
66 * Ensure that any data held in the cache is appropriately discarded
67 * or written back.
68 *
69 * The device owns this memory once this call has completed. The CPU
70 * can regain ownership by calling dma_unmap_page().
71 */
51fde349 72static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
73 unsigned long offset, size_t size, enum dma_data_direction dir,
74 struct dma_attrs *attrs)
75{
dd37e940 76 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
77 __dma_page_cpu_to_dev(page, offset, size, dir);
78 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
79}
80
dd37e940
RH
81static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82 unsigned long offset, size_t size, enum dma_data_direction dir,
83 struct dma_attrs *attrs)
84{
85 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
86}
87
2dc6a016
MS
88/**
89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91 * @handle: DMA address of buffer
92 * @size: size of buffer (same as passed to dma_map_page)
93 * @dir: DMA transfer direction (same as passed to dma_map_page)
94 *
95 * Unmap a page streaming mode DMA translation. The handle and size
96 * must match what was provided in the previous dma_map_page() call.
97 * All other usages are undefined.
98 *
99 * After this call, reads by the CPU to the buffer are guaranteed to see
100 * whatever the device wrote there.
101 */
51fde349 102static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
103 size_t size, enum dma_data_direction dir,
104 struct dma_attrs *attrs)
105{
dd37e940 106 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
107 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
109}
110
51fde349 111static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
112 dma_addr_t handle, size_t size, enum dma_data_direction dir)
113{
114 unsigned int offset = handle & (PAGE_SIZE - 1);
115 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 116 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
117}
118
51fde349 119static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
120 dma_addr_t handle, size_t size, enum dma_data_direction dir)
121{
122 unsigned int offset = handle & (PAGE_SIZE - 1);
123 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 124 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
125}
126
2dc6a016 127struct dma_map_ops arm_dma_ops = {
f99d6034
MS
128 .alloc = arm_dma_alloc,
129 .free = arm_dma_free,
130 .mmap = arm_dma_mmap,
dc2832e1 131 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
132 .map_page = arm_dma_map_page,
133 .unmap_page = arm_dma_unmap_page,
134 .map_sg = arm_dma_map_sg,
135 .unmap_sg = arm_dma_unmap_sg,
136 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
137 .sync_single_for_device = arm_dma_sync_single_for_device,
138 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
139 .sync_sg_for_device = arm_dma_sync_sg_for_device,
140 .set_dma_mask = arm_dma_set_mask,
141};
142EXPORT_SYMBOL(arm_dma_ops);
143
dd37e940
RH
144static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
145 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
146static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
147 dma_addr_t handle, struct dma_attrs *attrs);
148
149struct dma_map_ops arm_coherent_dma_ops = {
150 .alloc = arm_coherent_dma_alloc,
151 .free = arm_coherent_dma_free,
152 .mmap = arm_dma_mmap,
153 .get_sgtable = arm_dma_get_sgtable,
154 .map_page = arm_coherent_dma_map_page,
155 .map_sg = arm_dma_map_sg,
156 .set_dma_mask = arm_dma_set_mask,
157};
158EXPORT_SYMBOL(arm_coherent_dma_ops);
159
ab6494f0
CM
160static u64 get_coherent_dma_mask(struct device *dev)
161{
022ae537 162 u64 mask = (u64)arm_dma_limit;
ab6494f0
CM
163
164 if (dev) {
165 mask = dev->coherent_dma_mask;
166
167 /*
168 * Sanity check the DMA mask - it must be non-zero, and
169 * must be able to be satisfied by a DMA allocation.
170 */
171 if (mask == 0) {
172 dev_warn(dev, "coherent DMA mask is unset\n");
173 return 0;
174 }
175
022ae537 176 if ((~mask) & (u64)arm_dma_limit) {
ab6494f0
CM
177 dev_warn(dev, "coherent DMA mask %#llx is smaller "
178 "than system GFP_DMA mask %#llx\n",
022ae537 179 mask, (u64)arm_dma_limit);
ab6494f0
CM
180 return 0;
181 }
182 }
1da177e4 183
ab6494f0
CM
184 return mask;
185}
186
c7909509
MS
187static void __dma_clear_buffer(struct page *page, size_t size)
188{
c7909509
MS
189 /*
190 * Ensure that the allocated pages are zeroed, and that any data
191 * lurking in the kernel direct-mapped region is invalidated.
192 */
9848e48f
MS
193 if (PageHighMem(page)) {
194 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
195 phys_addr_t end = base + size;
196 while (size > 0) {
197 void *ptr = kmap_atomic(page);
198 memset(ptr, 0, PAGE_SIZE);
199 dmac_flush_range(ptr, ptr + PAGE_SIZE);
200 kunmap_atomic(ptr);
201 page++;
202 size -= PAGE_SIZE;
203 }
204 outer_flush_range(base, end);
205 } else {
206 void *ptr = page_address(page);
4ce63fcd
MS
207 memset(ptr, 0, size);
208 dmac_flush_range(ptr, ptr + size);
209 outer_flush_range(__pa(ptr), __pa(ptr) + size);
210 }
c7909509
MS
211}
212
7a9a32a9
RK
213/*
214 * Allocate a DMA buffer for 'dev' of size 'size' using the
215 * specified gfp mask. Note that 'size' must be page aligned.
216 */
217static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
218{
219 unsigned long order = get_order(size);
220 struct page *page, *p, *e;
7a9a32a9
RK
221
222 page = alloc_pages(gfp, order);
223 if (!page)
224 return NULL;
225
226 /*
227 * Now split the huge page and free the excess pages
228 */
229 split_page(page, order);
230 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
231 __free_page(p);
232
c7909509 233 __dma_clear_buffer(page, size);
7a9a32a9
RK
234
235 return page;
236}
237
238/*
239 * Free a DMA buffer. 'size' must be page aligned.
240 */
241static void __dma_free_buffer(struct page *page, size_t size)
242{
243 struct page *e = page + (size >> PAGE_SHIFT);
244
245 while (page < e) {
246 __free_page(page);
247 page++;
248 }
249}
250
ab6494f0 251#ifdef CONFIG_MMU
e9da6e99 252#ifdef CONFIG_HUGETLB_PAGE
1355e2a6 253#warning ARM Coherent DMA allocator does not (yet) support huge TLB
e9da6e99 254#endif
a5e9d38b 255
e9da6e99 256static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f
MS
257 pgprot_t prot, struct page **ret_page,
258 const void *caller);
99d1717d 259
e9da6e99
MS
260static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
261 pgprot_t prot, struct page **ret_page,
262 const void *caller);
99d1717d 263
e9da6e99
MS
264static void *
265__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
266 const void *caller)
99d1717d 267{
e9da6e99
MS
268 struct vm_struct *area;
269 unsigned long addr;
99d1717d 270
e9da6e99
MS
271 /*
272 * DMA allocation can be mapped to user space, so lets
273 * set VM_USERMAP flags too.
274 */
275 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
276 caller);
277 if (!area)
278 return NULL;
279 addr = (unsigned long)area->addr;
280 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
99d1717d 281
e9da6e99
MS
282 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
283 vunmap((void *)addr);
284 return NULL;
285 }
286 return (void *)addr;
99d1717d 287}
1da177e4 288
e9da6e99 289static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 290{
e9da6e99
MS
291 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
292 struct vm_struct *area = find_vm_area(cpu_addr);
293 if (!area || (area->flags & flags) != flags) {
294 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
295 return;
99d1717d 296 }
e9da6e99
MS
297 unmap_kernel_range((unsigned long)cpu_addr, size);
298 vunmap(cpu_addr);
88c58f3b 299}
88c58f3b 300
6e5267aa
MS
301#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
302
e9da6e99
MS
303struct dma_pool {
304 size_t size;
305 spinlock_t lock;
306 unsigned long *bitmap;
307 unsigned long nr_pages;
308 void *vaddr;
6b3fe472 309 struct page **pages;
c7909509
MS
310};
311
e9da6e99 312static struct dma_pool atomic_pool = {
6e5267aa 313 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
e9da6e99 314};
c7909509
MS
315
316static int __init early_coherent_pool(char *p)
317{
e9da6e99 318 atomic_pool.size = memparse(p, &p);
c7909509
MS
319 return 0;
320}
321early_param("coherent_pool", early_coherent_pool);
322
6e5267aa
MS
323void __init init_dma_coherent_pool_size(unsigned long size)
324{
325 /*
326 * Catch any attempt to set the pool size too late.
327 */
328 BUG_ON(atomic_pool.vaddr);
329
330 /*
331 * Set architecture specific coherent pool size only if
332 * it has not been changed by kernel command line parameter.
333 */
334 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
335 atomic_pool.size = size;
336}
337
c7909509
MS
338/*
339 * Initialise the coherent pool for atomic allocations.
340 */
e9da6e99 341static int __init atomic_pool_init(void)
c7909509 342{
e9da6e99 343 struct dma_pool *pool = &atomic_pool;
c7909509 344 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
9d1400cf 345 gfp_t gfp = GFP_KERNEL | GFP_DMA;
e9da6e99
MS
346 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
347 unsigned long *bitmap;
c7909509 348 struct page *page;
6b3fe472 349 struct page **pages;
c7909509 350 void *ptr;
e9da6e99 351 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
c7909509 352
e9da6e99
MS
353 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
354 if (!bitmap)
355 goto no_bitmap;
c7909509 356
6b3fe472
HD
357 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
358 if (!pages)
359 goto no_pages;
360
f825c736 361 if (IS_ENABLED(CONFIG_DMA_CMA))
9848e48f
MS
362 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
363 atomic_pool_init);
e9da6e99 364 else
9d1400cf
MS
365 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
366 atomic_pool_init);
c7909509 367 if (ptr) {
6b3fe472
HD
368 int i;
369
370 for (i = 0; i < nr_pages; i++)
371 pages[i] = page + i;
372
e9da6e99
MS
373 spin_lock_init(&pool->lock);
374 pool->vaddr = ptr;
6b3fe472 375 pool->pages = pages;
e9da6e99
MS
376 pool->bitmap = bitmap;
377 pool->nr_pages = nr_pages;
378 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
379 (unsigned)pool->size / 1024);
c7909509
MS
380 return 0;
381 }
ec10665c
SK
382
383 kfree(pages);
6b3fe472 384no_pages:
e9da6e99
MS
385 kfree(bitmap);
386no_bitmap:
387 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
388 (unsigned)pool->size / 1024);
c7909509
MS
389 return -ENOMEM;
390}
391/*
392 * CMA is activated by core_initcall, so we must be called after it.
393 */
e9da6e99 394postcore_initcall(atomic_pool_init);
c7909509
MS
395
396struct dma_contig_early_reserve {
397 phys_addr_t base;
398 unsigned long size;
399};
400
401static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
402
403static int dma_mmu_remap_num __initdata;
404
405void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
406{
407 dma_mmu_remap[dma_mmu_remap_num].base = base;
408 dma_mmu_remap[dma_mmu_remap_num].size = size;
409 dma_mmu_remap_num++;
410}
411
412void __init dma_contiguous_remap(void)
413{
414 int i;
415 for (i = 0; i < dma_mmu_remap_num; i++) {
416 phys_addr_t start = dma_mmu_remap[i].base;
417 phys_addr_t end = start + dma_mmu_remap[i].size;
418 struct map_desc map;
419 unsigned long addr;
420
421 if (end > arm_lowmem_limit)
422 end = arm_lowmem_limit;
423 if (start >= end)
39f78e70 424 continue;
c7909509
MS
425
426 map.pfn = __phys_to_pfn(start);
427 map.virtual = __phys_to_virt(start);
428 map.length = end - start;
429 map.type = MT_MEMORY_DMA_READY;
430
431 /*
432 * Clear previous low-memory mapping
433 */
434 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 435 addr += PMD_SIZE)
c7909509
MS
436 pmd_clear(pmd_off_k(addr));
437
438 iotable_init(&map, 1);
439 }
440}
441
c7909509
MS
442static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
443 void *data)
444{
445 struct page *page = virt_to_page(addr);
446 pgprot_t prot = *(pgprot_t *)data;
447
448 set_pte_ext(pte, mk_pte(page, prot), 0);
449 return 0;
450}
451
452static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
453{
454 unsigned long start = (unsigned long) page_address(page);
455 unsigned end = start + size;
456
457 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
c7909509
MS
458 flush_tlb_kernel_range(start, end);
459}
460
461static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
462 pgprot_t prot, struct page **ret_page,
463 const void *caller)
464{
465 struct page *page;
466 void *ptr;
467 page = __dma_alloc_buffer(dev, size, gfp);
468 if (!page)
469 return NULL;
470
471 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
472 if (!ptr) {
473 __dma_free_buffer(page, size);
474 return NULL;
475 }
476
477 *ret_page = page;
478 return ptr;
479}
480
e9da6e99 481static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 482{
e9da6e99
MS
483 struct dma_pool *pool = &atomic_pool;
484 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
485 unsigned int pageno;
486 unsigned long flags;
487 void *ptr = NULL;
e4ea6918 488 unsigned long align_mask;
c7909509 489
e9da6e99
MS
490 if (!pool->vaddr) {
491 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
492 return NULL;
493 }
494
495 /*
496 * Align the region allocation - allocations from pool are rather
497 * small, so align them to their order in pages, minimum is a page
498 * size. This helps reduce fragmentation of the DMA space.
499 */
e4ea6918 500 align_mask = (1 << get_order(size)) - 1;
e9da6e99
MS
501
502 spin_lock_irqsave(&pool->lock, flags);
503 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
e4ea6918 504 0, count, align_mask);
e9da6e99
MS
505 if (pageno < pool->nr_pages) {
506 bitmap_set(pool->bitmap, pageno, count);
507 ptr = pool->vaddr + PAGE_SIZE * pageno;
6b3fe472 508 *ret_page = pool->pages[pageno];
fb71285f
MS
509 } else {
510 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
511 "Please increase it with coherent_pool= kernel parameter!\n",
512 (unsigned)pool->size / 1024);
c7909509 513 }
e9da6e99
MS
514 spin_unlock_irqrestore(&pool->lock, flags);
515
516 return ptr;
c7909509
MS
517}
518
21d0a759
HD
519static bool __in_atomic_pool(void *start, size_t size)
520{
521 struct dma_pool *pool = &atomic_pool;
522 void *end = start + size;
523 void *pool_start = pool->vaddr;
524 void *pool_end = pool->vaddr + pool->size;
525
f3d87524 526 if (start < pool_start || start >= pool_end)
21d0a759
HD
527 return false;
528
529 if (end <= pool_end)
530 return true;
531
532 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
533 start, end - 1, pool_start, pool_end - 1);
534
535 return false;
536}
537
e9da6e99 538static int __free_from_pool(void *start, size_t size)
c7909509 539{
e9da6e99
MS
540 struct dma_pool *pool = &atomic_pool;
541 unsigned long pageno, count;
542 unsigned long flags;
c7909509 543
21d0a759 544 if (!__in_atomic_pool(start, size))
c7909509
MS
545 return 0;
546
e9da6e99
MS
547 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
548 count = size >> PAGE_SHIFT;
549
550 spin_lock_irqsave(&pool->lock, flags);
551 bitmap_clear(pool->bitmap, pageno, count);
552 spin_unlock_irqrestore(&pool->lock, flags);
553
c7909509
MS
554 return 1;
555}
556
557static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f
MS
558 pgprot_t prot, struct page **ret_page,
559 const void *caller)
c7909509
MS
560{
561 unsigned long order = get_order(size);
562 size_t count = size >> PAGE_SHIFT;
563 struct page *page;
9848e48f 564 void *ptr;
c7909509
MS
565
566 page = dma_alloc_from_contiguous(dev, count, order);
567 if (!page)
568 return NULL;
569
570 __dma_clear_buffer(page, size);
c7909509 571
9848e48f
MS
572 if (PageHighMem(page)) {
573 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
574 if (!ptr) {
575 dma_release_from_contiguous(dev, page, count);
576 return NULL;
577 }
578 } else {
579 __dma_remap(page, size, prot);
580 ptr = page_address(page);
581 }
c7909509 582 *ret_page = page;
9848e48f 583 return ptr;
c7909509
MS
584}
585
586static void __free_from_contiguous(struct device *dev, struct page *page,
9848e48f 587 void *cpu_addr, size_t size)
c7909509 588{
9848e48f
MS
589 if (PageHighMem(page))
590 __dma_free_remap(cpu_addr, size);
591 else
592 __dma_remap(page, size, pgprot_kernel);
c7909509
MS
593 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
594}
595
f99d6034
MS
596static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
597{
598 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
599 pgprot_writecombine(prot) :
600 pgprot_dmacoherent(prot);
601 return prot;
602}
603
c7909509
MS
604#define nommu() 0
605
ab6494f0 606#else /* !CONFIG_MMU */
695ae0af 607
c7909509
MS
608#define nommu() 1
609
f99d6034 610#define __get_dma_pgprot(attrs, prot) __pgprot(0)
c7909509 611#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
e9da6e99 612#define __alloc_from_pool(size, ret_page) NULL
9848e48f 613#define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
c7909509 614#define __free_from_pool(cpu_addr, size) 0
9848e48f 615#define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
c7909509 616#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
617
618#endif /* CONFIG_MMU */
619
c7909509
MS
620static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
621 struct page **ret_page)
ab6494f0 622{
c7909509
MS
623 struct page *page;
624 page = __dma_alloc_buffer(dev, size, gfp);
625 if (!page)
626 return NULL;
627
628 *ret_page = page;
629 return page_address(page);
630}
631
632
633
634static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
dd37e940 635 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
c7909509
MS
636{
637 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 638 struct page *page = NULL;
31ebf944 639 void *addr;
ab6494f0 640
c7909509
MS
641#ifdef CONFIG_DMA_API_DEBUG
642 u64 limit = (mask + 1) & ~mask;
643 if (limit && size >= limit) {
644 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
645 size, mask);
646 return NULL;
647 }
648#endif
649
650 if (!mask)
651 return NULL;
652
653 if (mask < 0xffffffffULL)
654 gfp |= GFP_DMA;
655
ea2e7057
SB
656 /*
657 * Following is a work-around (a.k.a. hack) to prevent pages
658 * with __GFP_COMP being passed to split_page() which cannot
659 * handle them. The real problem is that this flag probably
660 * should be 0 on ARM as it is not supported on this
661 * platform; see CONFIG_HUGETLBFS.
662 */
663 gfp &= ~(__GFP_COMP);
664
553ac788 665 *handle = DMA_ERROR_CODE;
04da5694 666 size = PAGE_ALIGN(size);
ab6494f0 667
dd37e940 668 if (is_coherent || nommu())
c7909509 669 addr = __alloc_simple_buffer(dev, size, gfp, &page);
633dc92a 670 else if (!(gfp & __GFP_WAIT))
e9da6e99 671 addr = __alloc_from_pool(size, &page);
f825c736 672 else if (!IS_ENABLED(CONFIG_DMA_CMA))
c7909509 673 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
31ebf944 674 else
9848e48f 675 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
695ae0af 676
31ebf944 677 if (addr)
9eedd963 678 *handle = pfn_to_dma(dev, page_to_pfn(page));
695ae0af 679
31ebf944
RK
680 return addr;
681}
1da177e4
LT
682
683/*
684 * Allocate DMA-coherent memory space and return both the kernel remapped
685 * virtual and bus address for that space.
686 */
f99d6034
MS
687void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
688 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 689{
f99d6034 690 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1fe53268
DB
691 void *memory;
692
693 if (dma_alloc_from_coherent(dev, size, handle, &memory))
694 return memory;
695
dd37e940
RH
696 return __dma_alloc(dev, size, handle, gfp, prot, false,
697 __builtin_return_address(0));
698}
699
700static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
701 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
702{
703 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
704 void *memory;
705
706 if (dma_alloc_from_coherent(dev, size, handle, &memory))
707 return memory;
708
709 return __dma_alloc(dev, size, handle, gfp, prot, true,
45cd5290 710 __builtin_return_address(0));
1da177e4 711}
1da177e4
LT
712
713/*
f99d6034 714 * Create userspace mapping for the DMA-coherent memory.
1da177e4 715 */
f99d6034
MS
716int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
717 void *cpu_addr, dma_addr_t dma_addr, size_t size,
718 struct dma_attrs *attrs)
1da177e4 719{
ab6494f0
CM
720 int ret = -ENXIO;
721#ifdef CONFIG_MMU
50262a4b
MS
722 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
723 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 724 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
725 unsigned long off = vma->vm_pgoff;
726
f99d6034
MS
727 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
728
47142f07
MS
729 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
730 return ret;
731
50262a4b
MS
732 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
733 ret = remap_pfn_range(vma, vma->vm_start,
734 pfn + off,
735 vma->vm_end - vma->vm_start,
736 vma->vm_page_prot);
737 }
ab6494f0 738#endif /* CONFIG_MMU */
1da177e4
LT
739
740 return ret;
741}
742
1da177e4 743/*
c7909509 744 * Free a buffer as defined by the above mapping.
1da177e4 745 */
dd37e940
RH
746static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
747 dma_addr_t handle, struct dma_attrs *attrs,
748 bool is_coherent)
1da177e4 749{
c7909509 750 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
5edf71ae 751
1fe53268
DB
752 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
753 return;
754
3e82d012
RK
755 size = PAGE_ALIGN(size);
756
dd37e940 757 if (is_coherent || nommu()) {
c7909509 758 __dma_free_buffer(page, size);
d9e0d149
AK
759 } else if (__free_from_pool(cpu_addr, size)) {
760 return;
f825c736 761 } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
695ae0af 762 __dma_free_remap(cpu_addr, size);
c7909509
MS
763 __dma_free_buffer(page, size);
764 } else {
c7909509
MS
765 /*
766 * Non-atomic allocations cannot be freed with IRQs disabled
767 */
768 WARN_ON(irqs_disabled());
9848e48f 769 __free_from_contiguous(dev, page, cpu_addr, size);
c7909509 770 }
1da177e4 771}
afd1a321 772
dd37e940
RH
773void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
774 dma_addr_t handle, struct dma_attrs *attrs)
775{
776 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
777}
778
779static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
780 dma_addr_t handle, struct dma_attrs *attrs)
781{
782 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
783}
784
dc2832e1
MS
785int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
786 void *cpu_addr, dma_addr_t handle, size_t size,
787 struct dma_attrs *attrs)
788{
789 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
790 int ret;
791
792 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
793 if (unlikely(ret))
794 return ret;
795
796 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
797 return 0;
798}
799
4ea0d737 800static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
801 size_t size, enum dma_data_direction dir,
802 void (*op)(const void *, size_t, int))
43377453 803{
15653371
RK
804 unsigned long pfn;
805 size_t left = size;
806
807 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
808 offset %= PAGE_SIZE;
809
43377453
NP
810 /*
811 * A single sg entry may refer to multiple physically contiguous
812 * pages. But we still need to process highmem pages individually.
813 * If highmem is not configured then the bulk of this loop gets
814 * optimized out.
815 */
43377453
NP
816 do {
817 size_t len = left;
93f1d629
RK
818 void *vaddr;
819
15653371
RK
820 page = pfn_to_page(pfn);
821
93f1d629 822 if (PageHighMem(page)) {
15653371 823 if (len + offset > PAGE_SIZE)
93f1d629 824 len = PAGE_SIZE - offset;
dd0f67f4
JK
825
826 if (cache_is_vipt_nonaliasing()) {
39af22a7 827 vaddr = kmap_atomic(page);
7e5a69e8 828 op(vaddr + offset, len, dir);
39af22a7 829 kunmap_atomic(vaddr);
dd0f67f4
JK
830 } else {
831 vaddr = kmap_high_get(page);
832 if (vaddr) {
833 op(vaddr + offset, len, dir);
834 kunmap_high(page);
835 }
43377453 836 }
93f1d629
RK
837 } else {
838 vaddr = page_address(page) + offset;
a9c9147e 839 op(vaddr, len, dir);
43377453 840 }
43377453 841 offset = 0;
15653371 842 pfn++;
43377453
NP
843 left -= len;
844 } while (left);
845}
4ea0d737 846
51fde349
MS
847/*
848 * Make an area consistent for devices.
849 * Note: Drivers should NOT use this function directly, as it will break
850 * platforms with CONFIG_DMABOUNCE.
851 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
852 */
853static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
854 size_t size, enum dma_data_direction dir)
855{
65af191a 856 unsigned long paddr;
65af191a 857
a9c9147e 858 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
859
860 paddr = page_to_phys(page) + off;
2ffe2da3
RK
861 if (dir == DMA_FROM_DEVICE) {
862 outer_inv_range(paddr, paddr + size);
863 } else {
864 outer_clean_range(paddr, paddr + size);
865 }
866 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 867}
4ea0d737 868
51fde349 869static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
870 size_t size, enum dma_data_direction dir)
871{
2ffe2da3
RK
872 unsigned long paddr = page_to_phys(page) + off;
873
874 /* FIXME: non-speculating: not required */
875 /* don't bother invalidating if DMA to device */
876 if (dir != DMA_TO_DEVICE)
877 outer_inv_range(paddr, paddr + size);
878
a9c9147e 879 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
c0177800
CM
880
881 /*
b2a234ed 882 * Mark the D-cache clean for these pages to avoid extra flushing.
c0177800 883 */
b2a234ed
ML
884 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
885 unsigned long pfn;
886 size_t left = size;
887
888 pfn = page_to_pfn(page) + off / PAGE_SIZE;
889 off %= PAGE_SIZE;
890 if (off) {
891 pfn++;
892 left -= PAGE_SIZE - off;
893 }
894 while (left >= PAGE_SIZE) {
895 page = pfn_to_page(pfn++);
896 set_bit(PG_dcache_clean, &page->flags);
897 left -= PAGE_SIZE;
898 }
899 }
4ea0d737 900}
43377453 901
afd1a321 902/**
2a550e73 903 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
904 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
905 * @sg: list of buffers
906 * @nents: number of buffers to map
907 * @dir: DMA transfer direction
908 *
909 * Map a set of buffers described by scatterlist in streaming mode for DMA.
910 * This is the scatter-gather version of the dma_map_single interface.
911 * Here the scatter gather list elements are each tagged with the
912 * appropriate dma address and length. They are obtained via
913 * sg_dma_{address,length}.
914 *
915 * Device ownership issues as mentioned for dma_map_single are the same
916 * here.
917 */
2dc6a016
MS
918int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
919 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 920{
2a550e73 921 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 922 struct scatterlist *s;
01135d92 923 int i, j;
afd1a321
RK
924
925 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
926#ifdef CONFIG_NEED_SG_DMA_LENGTH
927 s->dma_length = s->length;
928#endif
2a550e73
MS
929 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
930 s->length, dir, attrs);
01135d92
RK
931 if (dma_mapping_error(dev, s->dma_address))
932 goto bad_mapping;
afd1a321 933 }
afd1a321 934 return nents;
01135d92
RK
935
936 bad_mapping:
937 for_each_sg(sg, s, i, j)
2a550e73 938 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 939 return 0;
afd1a321 940}
afd1a321
RK
941
942/**
2a550e73 943 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
944 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
945 * @sg: list of buffers
0adfca6f 946 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
947 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
948 *
949 * Unmap a set of streaming mode DMA translations. Again, CPU access
950 * rules concerning calls here are the same as for dma_unmap_single().
951 */
2dc6a016
MS
952void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
953 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 954{
2a550e73 955 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 956 struct scatterlist *s;
01135d92 957
01135d92 958 int i;
24056f52 959
01135d92 960 for_each_sg(sg, s, nents, i)
2a550e73 961 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 962}
afd1a321
RK
963
964/**
2a550e73 965 * arm_dma_sync_sg_for_cpu
afd1a321
RK
966 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
967 * @sg: list of buffers
968 * @nents: number of buffers to map (returned from dma_map_sg)
969 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
970 */
2dc6a016 971void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
972 int nents, enum dma_data_direction dir)
973{
2a550e73 974 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
975 struct scatterlist *s;
976 int i;
977
2a550e73
MS
978 for_each_sg(sg, s, nents, i)
979 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
980 dir);
afd1a321 981}
afd1a321
RK
982
983/**
2a550e73 984 * arm_dma_sync_sg_for_device
afd1a321
RK
985 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
986 * @sg: list of buffers
987 * @nents: number of buffers to map (returned from dma_map_sg)
988 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
989 */
2dc6a016 990void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
991 int nents, enum dma_data_direction dir)
992{
2a550e73 993 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
994 struct scatterlist *s;
995 int i;
996
2a550e73
MS
997 for_each_sg(sg, s, nents, i)
998 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
999 dir);
afd1a321 1000}
24056f52 1001
022ae537
RK
1002/*
1003 * Return whether the given device DMA address mask can be supported
1004 * properly. For example, if your device can only drive the low 24-bits
1005 * during bus mastering, then you would pass 0x00ffffff as the mask
1006 * to this function.
1007 */
1008int dma_supported(struct device *dev, u64 mask)
1009{
1010 if (mask < (u64)arm_dma_limit)
1011 return 0;
1012 return 1;
1013}
1014EXPORT_SYMBOL(dma_supported);
1015
87b54e78 1016int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
1017{
1018 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1019 return -EIO;
1020
022ae537 1021 *dev->dma_mask = dma_mask;
022ae537
RK
1022
1023 return 0;
1024}
022ae537 1025
24056f52
RK
1026#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1027
1028static int __init dma_debug_do_init(void)
1029{
1030 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1031 return 0;
1032}
1033fs_initcall(dma_debug_do_init);
4ce63fcd
MS
1034
1035#ifdef CONFIG_ARM_DMA_USE_IOMMU
1036
1037/* IOMMU */
1038
1039static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1040 size_t size)
1041{
1042 unsigned int order = get_order(size);
1043 unsigned int align = 0;
1044 unsigned int count, start;
1045 unsigned long flags;
1046
60460abf
SWK
1047 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1048 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1049
4ce63fcd
MS
1050 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1051 (1 << mapping->order) - 1) >> mapping->order;
1052
1053 if (order > mapping->order)
1054 align = (1 << (order - mapping->order)) - 1;
1055
1056 spin_lock_irqsave(&mapping->lock, flags);
1057 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1058 count, align);
1059 if (start > mapping->bits) {
1060 spin_unlock_irqrestore(&mapping->lock, flags);
1061 return DMA_ERROR_CODE;
1062 }
1063
1064 bitmap_set(mapping->bitmap, start, count);
1065 spin_unlock_irqrestore(&mapping->lock, flags);
1066
1067 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1068}
1069
1070static inline void __free_iova(struct dma_iommu_mapping *mapping,
1071 dma_addr_t addr, size_t size)
1072{
1073 unsigned int start = (addr - mapping->base) >>
1074 (mapping->order + PAGE_SHIFT);
1075 unsigned int count = ((size >> PAGE_SHIFT) +
1076 (1 << mapping->order) - 1) >> mapping->order;
1077 unsigned long flags;
1078
1079 spin_lock_irqsave(&mapping->lock, flags);
1080 bitmap_clear(mapping->bitmap, start, count);
1081 spin_unlock_irqrestore(&mapping->lock, flags);
1082}
1083
549a17e4
MS
1084static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1085 gfp_t gfp, struct dma_attrs *attrs)
4ce63fcd
MS
1086{
1087 struct page **pages;
1088 int count = size >> PAGE_SHIFT;
1089 int array_size = count * sizeof(struct page *);
1090 int i = 0;
1091
1092 if (array_size <= PAGE_SIZE)
1093 pages = kzalloc(array_size, gfp);
1094 else
1095 pages = vzalloc(array_size);
1096 if (!pages)
1097 return NULL;
1098
549a17e4
MS
1099 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1100 {
1101 unsigned long order = get_order(size);
1102 struct page *page;
1103
1104 page = dma_alloc_from_contiguous(dev, count, order);
1105 if (!page)
1106 goto error;
1107
1108 __dma_clear_buffer(page, size);
1109
1110 for (i = 0; i < count; i++)
1111 pages[i] = page + i;
1112
1113 return pages;
1114 }
1115
f8669bef
MS
1116 /*
1117 * IOMMU can map any pages, so himem can also be used here
1118 */
1119 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1120
4ce63fcd 1121 while (count) {
593f4735 1122 int j, order = __fls(count);
4ce63fcd 1123
f8669bef 1124 pages[i] = alloc_pages(gfp, order);
4ce63fcd 1125 while (!pages[i] && order)
f8669bef 1126 pages[i] = alloc_pages(gfp, --order);
4ce63fcd
MS
1127 if (!pages[i])
1128 goto error;
1129
5a796eeb 1130 if (order) {
4ce63fcd 1131 split_page(pages[i], order);
5a796eeb
HD
1132 j = 1 << order;
1133 while (--j)
1134 pages[i + j] = pages[i] + j;
1135 }
4ce63fcd
MS
1136
1137 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1138 i += 1 << order;
1139 count -= 1 << order;
1140 }
1141
1142 return pages;
1143error:
9fa8af91 1144 while (i--)
4ce63fcd
MS
1145 if (pages[i])
1146 __free_pages(pages[i], 0);
46c87852 1147 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1148 kfree(pages);
1149 else
1150 vfree(pages);
1151 return NULL;
1152}
1153
549a17e4
MS
1154static int __iommu_free_buffer(struct device *dev, struct page **pages,
1155 size_t size, struct dma_attrs *attrs)
4ce63fcd
MS
1156{
1157 int count = size >> PAGE_SHIFT;
1158 int array_size = count * sizeof(struct page *);
1159 int i;
549a17e4
MS
1160
1161 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1162 dma_release_from_contiguous(dev, pages[0], count);
1163 } else {
1164 for (i = 0; i < count; i++)
1165 if (pages[i])
1166 __free_pages(pages[i], 0);
1167 }
1168
46c87852 1169 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1170 kfree(pages);
1171 else
1172 vfree(pages);
1173 return 0;
1174}
1175
1176/*
1177 * Create a CPU mapping for a specified pages
1178 */
1179static void *
e9da6e99
MS
1180__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1181 const void *caller)
4ce63fcd 1182{
e9da6e99
MS
1183 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1184 struct vm_struct *area;
1185 unsigned long p;
4ce63fcd 1186
e9da6e99
MS
1187 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1188 caller);
1189 if (!area)
4ce63fcd 1190 return NULL;
4ce63fcd 1191
e9da6e99
MS
1192 area->pages = pages;
1193 area->nr_pages = nr_pages;
1194 p = (unsigned long)area->addr;
4ce63fcd 1195
e9da6e99
MS
1196 for (i = 0; i < nr_pages; i++) {
1197 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1198 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1199 goto err;
1200 p += PAGE_SIZE;
4ce63fcd 1201 }
e9da6e99
MS
1202 return area->addr;
1203err:
1204 unmap_kernel_range((unsigned long)area->addr, size);
1205 vunmap(area->addr);
4ce63fcd
MS
1206 return NULL;
1207}
1208
1209/*
1210 * Create a mapping in device IO address space for specified pages
1211 */
1212static dma_addr_t
1213__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1214{
1215 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1216 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1217 dma_addr_t dma_addr, iova;
1218 int i, ret = DMA_ERROR_CODE;
1219
1220 dma_addr = __alloc_iova(mapping, size);
1221 if (dma_addr == DMA_ERROR_CODE)
1222 return dma_addr;
1223
1224 iova = dma_addr;
1225 for (i = 0; i < count; ) {
1226 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1227 phys_addr_t phys = page_to_phys(pages[i]);
1228 unsigned int len, j;
1229
1230 for (j = i + 1; j < count; j++, next_pfn++)
1231 if (page_to_pfn(pages[j]) != next_pfn)
1232 break;
1233
1234 len = (j - i) << PAGE_SHIFT;
1235 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1236 if (ret < 0)
1237 goto fail;
1238 iova += len;
1239 i = j;
1240 }
1241 return dma_addr;
1242fail:
1243 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1244 __free_iova(mapping, dma_addr, size);
1245 return DMA_ERROR_CODE;
1246}
1247
1248static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1249{
1250 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1251
1252 /*
1253 * add optional in-page offset from iova to size and align
1254 * result to page size
1255 */
1256 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1257 iova &= PAGE_MASK;
1258
1259 iommu_unmap(mapping->domain, iova, size);
1260 __free_iova(mapping, iova, size);
1261 return 0;
1262}
1263
665bad7b
HD
1264static struct page **__atomic_get_pages(void *addr)
1265{
1266 struct dma_pool *pool = &atomic_pool;
1267 struct page **pages = pool->pages;
1268 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1269
1270 return pages + offs;
1271}
1272
955c757e 1273static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1274{
1275 struct vm_struct *area;
1276
665bad7b
HD
1277 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1278 return __atomic_get_pages(cpu_addr);
1279
955c757e
MS
1280 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1281 return cpu_addr;
1282
e9da6e99
MS
1283 area = find_vm_area(cpu_addr);
1284 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1285 return area->pages;
1286 return NULL;
1287}
1288
479ed93a
HD
1289static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1290 dma_addr_t *handle)
1291{
1292 struct page *page;
1293 void *addr;
1294
1295 addr = __alloc_from_pool(size, &page);
1296 if (!addr)
1297 return NULL;
1298
1299 *handle = __iommu_create_mapping(dev, &page, size);
1300 if (*handle == DMA_ERROR_CODE)
1301 goto err_mapping;
1302
1303 return addr;
1304
1305err_mapping:
1306 __free_from_pool(addr, size);
1307 return NULL;
1308}
1309
d5898291 1310static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
479ed93a
HD
1311 dma_addr_t handle, size_t size)
1312{
1313 __iommu_remove_mapping(dev, handle, size);
d5898291 1314 __free_from_pool(cpu_addr, size);
479ed93a
HD
1315}
1316
4ce63fcd
MS
1317static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1318 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1319{
1320 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1321 struct page **pages;
1322 void *addr = NULL;
1323
1324 *handle = DMA_ERROR_CODE;
1325 size = PAGE_ALIGN(size);
1326
479ed93a
HD
1327 if (gfp & GFP_ATOMIC)
1328 return __iommu_alloc_atomic(dev, size, handle);
1329
5b91a98c
RZ
1330 /*
1331 * Following is a work-around (a.k.a. hack) to prevent pages
1332 * with __GFP_COMP being passed to split_page() which cannot
1333 * handle them. The real problem is that this flag probably
1334 * should be 0 on ARM as it is not supported on this
1335 * platform; see CONFIG_HUGETLBFS.
1336 */
1337 gfp &= ~(__GFP_COMP);
1338
549a17e4 1339 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
4ce63fcd
MS
1340 if (!pages)
1341 return NULL;
1342
1343 *handle = __iommu_create_mapping(dev, pages, size);
1344 if (*handle == DMA_ERROR_CODE)
1345 goto err_buffer;
1346
955c757e
MS
1347 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1348 return pages;
1349
e9da6e99
MS
1350 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1351 __builtin_return_address(0));
4ce63fcd
MS
1352 if (!addr)
1353 goto err_mapping;
1354
1355 return addr;
1356
1357err_mapping:
1358 __iommu_remove_mapping(dev, *handle, size);
1359err_buffer:
549a17e4 1360 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1361 return NULL;
1362}
1363
1364static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1365 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1366 struct dma_attrs *attrs)
1367{
e9da6e99
MS
1368 unsigned long uaddr = vma->vm_start;
1369 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1370 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1371
1372 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1373
e9da6e99
MS
1374 if (!pages)
1375 return -ENXIO;
4ce63fcd 1376
e9da6e99
MS
1377 do {
1378 int ret = vm_insert_page(vma, uaddr, *pages++);
1379 if (ret) {
1380 pr_err("Remapping memory failed: %d\n", ret);
1381 return ret;
1382 }
1383 uaddr += PAGE_SIZE;
1384 usize -= PAGE_SIZE;
1385 } while (usize > 0);
4ce63fcd 1386
4ce63fcd
MS
1387 return 0;
1388}
1389
1390/*
1391 * free a page as defined by the above mapping.
1392 * Must not be called with IRQs disabled.
1393 */
1394void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1395 dma_addr_t handle, struct dma_attrs *attrs)
1396{
836bfa0d 1397 struct page **pages;
4ce63fcd
MS
1398 size = PAGE_ALIGN(size);
1399
836bfa0d
YC
1400 if (__in_atomic_pool(cpu_addr, size)) {
1401 __iommu_free_atomic(dev, cpu_addr, handle, size);
e9da6e99 1402 return;
4ce63fcd 1403 }
e9da6e99 1404
836bfa0d
YC
1405 pages = __iommu_get_pages(cpu_addr, attrs);
1406 if (!pages) {
1407 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
479ed93a
HD
1408 return;
1409 }
1410
955c757e
MS
1411 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1412 unmap_kernel_range((unsigned long)cpu_addr, size);
1413 vunmap(cpu_addr);
1414 }
e9da6e99
MS
1415
1416 __iommu_remove_mapping(dev, handle, size);
549a17e4 1417 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1418}
1419
dc2832e1
MS
1420static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1421 void *cpu_addr, dma_addr_t dma_addr,
1422 size_t size, struct dma_attrs *attrs)
1423{
1424 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1425 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1426
1427 if (!pages)
1428 return -ENXIO;
1429
1430 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1431 GFP_KERNEL);
4ce63fcd
MS
1432}
1433
1434/*
1435 * Map a part of the scatter-gather list into contiguous io address space
1436 */
1437static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1438 size_t size, dma_addr_t *handle,
0fa478df
RH
1439 enum dma_data_direction dir, struct dma_attrs *attrs,
1440 bool is_coherent)
4ce63fcd
MS
1441{
1442 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1443 dma_addr_t iova, iova_base;
1444 int ret = 0;
1445 unsigned int count;
1446 struct scatterlist *s;
1447
1448 size = PAGE_ALIGN(size);
1449 *handle = DMA_ERROR_CODE;
1450
1451 iova_base = iova = __alloc_iova(mapping, size);
1452 if (iova == DMA_ERROR_CODE)
1453 return -ENOMEM;
1454
1455 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1456 phys_addr_t phys = page_to_phys(sg_page(s));
1457 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1458
0fa478df
RH
1459 if (!is_coherent &&
1460 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1461 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1462
1463 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1464 if (ret < 0)
1465 goto fail;
1466 count += len >> PAGE_SHIFT;
1467 iova += len;
1468 }
1469 *handle = iova_base;
1470
1471 return 0;
1472fail:
1473 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1474 __free_iova(mapping, iova_base, size);
1475 return ret;
1476}
1477
0fa478df
RH
1478static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1479 enum dma_data_direction dir, struct dma_attrs *attrs,
1480 bool is_coherent)
4ce63fcd
MS
1481{
1482 struct scatterlist *s = sg, *dma = sg, *start = sg;
1483 int i, count = 0;
1484 unsigned int offset = s->offset;
1485 unsigned int size = s->offset + s->length;
1486 unsigned int max = dma_get_max_seg_size(dev);
1487
1488 for (i = 1; i < nents; i++) {
1489 s = sg_next(s);
1490
1491 s->dma_address = DMA_ERROR_CODE;
1492 s->dma_length = 0;
1493
1494 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1495 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1496 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1497 goto bad_mapping;
1498
1499 dma->dma_address += offset;
1500 dma->dma_length = size - offset;
1501
1502 size = offset = s->offset;
1503 start = s;
1504 dma = sg_next(dma);
1505 count += 1;
1506 }
1507 size += s->length;
1508 }
0fa478df
RH
1509 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1510 is_coherent) < 0)
4ce63fcd
MS
1511 goto bad_mapping;
1512
1513 dma->dma_address += offset;
1514 dma->dma_length = size - offset;
1515
1516 return count+1;
1517
1518bad_mapping:
1519 for_each_sg(sg, s, count, i)
1520 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1521 return 0;
1522}
1523
1524/**
0fa478df 1525 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1526 * @dev: valid struct device pointer
1527 * @sg: list of buffers
0fa478df
RH
1528 * @nents: number of buffers to map
1529 * @dir: DMA transfer direction
4ce63fcd 1530 *
0fa478df
RH
1531 * Map a set of i/o coherent buffers described by scatterlist in streaming
1532 * mode for DMA. The scatter gather list elements are merged together (if
1533 * possible) and tagged with the appropriate dma address and length. They are
1534 * obtained via sg_dma_{address,length}.
4ce63fcd 1535 */
0fa478df
RH
1536int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1537 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1538{
1539 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1540}
1541
1542/**
1543 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1544 * @dev: valid struct device pointer
1545 * @sg: list of buffers
1546 * @nents: number of buffers to map
1547 * @dir: DMA transfer direction
1548 *
1549 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1550 * The scatter gather list elements are merged together (if possible) and
1551 * tagged with the appropriate dma address and length. They are obtained via
1552 * sg_dma_{address,length}.
1553 */
1554int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1555 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1556{
1557 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1558}
1559
1560static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1561 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1562 bool is_coherent)
4ce63fcd
MS
1563{
1564 struct scatterlist *s;
1565 int i;
1566
1567 for_each_sg(sg, s, nents, i) {
1568 if (sg_dma_len(s))
1569 __iommu_remove_mapping(dev, sg_dma_address(s),
1570 sg_dma_len(s));
0fa478df 1571 if (!is_coherent &&
97ef952a 1572 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1573 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1574 s->length, dir);
1575 }
1576}
1577
0fa478df
RH
1578/**
1579 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1580 * @dev: valid struct device pointer
1581 * @sg: list of buffers
1582 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1583 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1584 *
1585 * Unmap a set of streaming mode DMA translations. Again, CPU access
1586 * rules concerning calls here are the same as for dma_unmap_single().
1587 */
1588void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1589 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1590{
1591 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1592}
1593
1594/**
1595 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1596 * @dev: valid struct device pointer
1597 * @sg: list of buffers
1598 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1599 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1600 *
1601 * Unmap a set of streaming mode DMA translations. Again, CPU access
1602 * rules concerning calls here are the same as for dma_unmap_single().
1603 */
1604void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1605 enum dma_data_direction dir, struct dma_attrs *attrs)
1606{
1607 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1608}
1609
4ce63fcd
MS
1610/**
1611 * arm_iommu_sync_sg_for_cpu
1612 * @dev: valid struct device pointer
1613 * @sg: list of buffers
1614 * @nents: number of buffers to map (returned from dma_map_sg)
1615 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1616 */
1617void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1618 int nents, enum dma_data_direction dir)
1619{
1620 struct scatterlist *s;
1621 int i;
1622
1623 for_each_sg(sg, s, nents, i)
0fa478df 1624 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1625
1626}
1627
1628/**
1629 * arm_iommu_sync_sg_for_device
1630 * @dev: valid struct device pointer
1631 * @sg: list of buffers
1632 * @nents: number of buffers to map (returned from dma_map_sg)
1633 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1634 */
1635void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1636 int nents, enum dma_data_direction dir)
1637{
1638 struct scatterlist *s;
1639 int i;
1640
1641 for_each_sg(sg, s, nents, i)
0fa478df 1642 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1643}
1644
1645
1646/**
0fa478df 1647 * arm_coherent_iommu_map_page
4ce63fcd
MS
1648 * @dev: valid struct device pointer
1649 * @page: page that buffer resides in
1650 * @offset: offset into page for start of buffer
1651 * @size: size of buffer to map
1652 * @dir: DMA transfer direction
1653 *
0fa478df 1654 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1655 */
0fa478df 1656static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd
MS
1657 unsigned long offset, size_t size, enum dma_data_direction dir,
1658 struct dma_attrs *attrs)
1659{
1660 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1661 dma_addr_t dma_addr;
13987d68 1662 int ret, prot, len = PAGE_ALIGN(size + offset);
4ce63fcd 1663
4ce63fcd
MS
1664 dma_addr = __alloc_iova(mapping, len);
1665 if (dma_addr == DMA_ERROR_CODE)
1666 return dma_addr;
1667
13987d68
WD
1668 switch (dir) {
1669 case DMA_BIDIRECTIONAL:
1670 prot = IOMMU_READ | IOMMU_WRITE;
1671 break;
1672 case DMA_TO_DEVICE:
1673 prot = IOMMU_READ;
1674 break;
1675 case DMA_FROM_DEVICE:
1676 prot = IOMMU_WRITE;
1677 break;
1678 default:
1679 prot = 0;
1680 }
1681
1682 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
4ce63fcd
MS
1683 if (ret < 0)
1684 goto fail;
1685
1686 return dma_addr + offset;
1687fail:
1688 __free_iova(mapping, dma_addr, len);
1689 return DMA_ERROR_CODE;
1690}
1691
0fa478df
RH
1692/**
1693 * arm_iommu_map_page
1694 * @dev: valid struct device pointer
1695 * @page: page that buffer resides in
1696 * @offset: offset into page for start of buffer
1697 * @size: size of buffer to map
1698 * @dir: DMA transfer direction
1699 *
1700 * IOMMU aware version of arm_dma_map_page()
1701 */
1702static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1703 unsigned long offset, size_t size, enum dma_data_direction dir,
1704 struct dma_attrs *attrs)
1705{
1706 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1707 __dma_page_cpu_to_dev(page, offset, size, dir);
1708
1709 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1710}
1711
1712/**
1713 * arm_coherent_iommu_unmap_page
1714 * @dev: valid struct device pointer
1715 * @handle: DMA address of buffer
1716 * @size: size of buffer (same as passed to dma_map_page)
1717 * @dir: DMA transfer direction (same as passed to dma_map_page)
1718 *
1719 * Coherent IOMMU aware version of arm_dma_unmap_page()
1720 */
1721static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1722 size_t size, enum dma_data_direction dir,
1723 struct dma_attrs *attrs)
1724{
1725 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1726 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1727 int offset = handle & ~PAGE_MASK;
1728 int len = PAGE_ALIGN(size + offset);
1729
1730 if (!iova)
1731 return;
1732
1733 iommu_unmap(mapping->domain, iova, len);
1734 __free_iova(mapping, iova, len);
1735}
1736
4ce63fcd
MS
1737/**
1738 * arm_iommu_unmap_page
1739 * @dev: valid struct device pointer
1740 * @handle: DMA address of buffer
1741 * @size: size of buffer (same as passed to dma_map_page)
1742 * @dir: DMA transfer direction (same as passed to dma_map_page)
1743 *
1744 * IOMMU aware version of arm_dma_unmap_page()
1745 */
1746static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1747 size_t size, enum dma_data_direction dir,
1748 struct dma_attrs *attrs)
1749{
1750 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1751 dma_addr_t iova = handle & PAGE_MASK;
1752 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1753 int offset = handle & ~PAGE_MASK;
1754 int len = PAGE_ALIGN(size + offset);
1755
1756 if (!iova)
1757 return;
1758
0fa478df 1759 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1760 __dma_page_dev_to_cpu(page, offset, size, dir);
1761
1762 iommu_unmap(mapping->domain, iova, len);
1763 __free_iova(mapping, iova, len);
1764}
1765
1766static void arm_iommu_sync_single_for_cpu(struct device *dev,
1767 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1768{
1769 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1770 dma_addr_t iova = handle & PAGE_MASK;
1771 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1772 unsigned int offset = handle & ~PAGE_MASK;
1773
1774 if (!iova)
1775 return;
1776
0fa478df 1777 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
1778}
1779
1780static void arm_iommu_sync_single_for_device(struct device *dev,
1781 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1782{
1783 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1784 dma_addr_t iova = handle & PAGE_MASK;
1785 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1786 unsigned int offset = handle & ~PAGE_MASK;
1787
1788 if (!iova)
1789 return;
1790
1791 __dma_page_cpu_to_dev(page, offset, size, dir);
1792}
1793
1794struct dma_map_ops iommu_ops = {
1795 .alloc = arm_iommu_alloc_attrs,
1796 .free = arm_iommu_free_attrs,
1797 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1798 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1799
1800 .map_page = arm_iommu_map_page,
1801 .unmap_page = arm_iommu_unmap_page,
1802 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1803 .sync_single_for_device = arm_iommu_sync_single_for_device,
1804
1805 .map_sg = arm_iommu_map_sg,
1806 .unmap_sg = arm_iommu_unmap_sg,
1807 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1808 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
d09e1333
HD
1809
1810 .set_dma_mask = arm_dma_set_mask,
4ce63fcd
MS
1811};
1812
0fa478df
RH
1813struct dma_map_ops iommu_coherent_ops = {
1814 .alloc = arm_iommu_alloc_attrs,
1815 .free = arm_iommu_free_attrs,
1816 .mmap = arm_iommu_mmap_attrs,
1817 .get_sgtable = arm_iommu_get_sgtable,
1818
1819 .map_page = arm_coherent_iommu_map_page,
1820 .unmap_page = arm_coherent_iommu_unmap_page,
1821
1822 .map_sg = arm_coherent_iommu_map_sg,
1823 .unmap_sg = arm_coherent_iommu_unmap_sg,
d09e1333
HD
1824
1825 .set_dma_mask = arm_dma_set_mask,
0fa478df
RH
1826};
1827
4ce63fcd
MS
1828/**
1829 * arm_iommu_create_mapping
1830 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1831 * @base: start address of the valid IO address space
1832 * @size: size of the valid IO address space
1833 * @order: accuracy of the IO addresses allocations
1834 *
1835 * Creates a mapping structure which holds information about used/unused
1836 * IO address ranges, which is required to perform memory allocation and
1837 * mapping with IOMMU aware functions.
1838 *
1839 * The client device need to be attached to the mapping with
1840 * arm_iommu_attach_device function.
1841 */
1842struct dma_iommu_mapping *
1843arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1844 int order)
1845{
1846 unsigned int count = size >> (PAGE_SHIFT + order);
1847 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1848 struct dma_iommu_mapping *mapping;
1849 int err = -ENOMEM;
1850
1851 if (!count)
1852 return ERR_PTR(-EINVAL);
1853
1854 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1855 if (!mapping)
1856 goto err;
1857
1858 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1859 if (!mapping->bitmap)
1860 goto err2;
1861
1862 mapping->base = base;
1863 mapping->bits = BITS_PER_BYTE * bitmap_size;
1864 mapping->order = order;
1865 spin_lock_init(&mapping->lock);
1866
1867 mapping->domain = iommu_domain_alloc(bus);
1868 if (!mapping->domain)
1869 goto err3;
1870
1871 kref_init(&mapping->kref);
1872 return mapping;
1873err3:
1874 kfree(mapping->bitmap);
1875err2:
1876 kfree(mapping);
1877err:
1878 return ERR_PTR(err);
1879}
18177d12 1880EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
1881
1882static void release_iommu_mapping(struct kref *kref)
1883{
1884 struct dma_iommu_mapping *mapping =
1885 container_of(kref, struct dma_iommu_mapping, kref);
1886
1887 iommu_domain_free(mapping->domain);
1888 kfree(mapping->bitmap);
1889 kfree(mapping);
1890}
1891
1892void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1893{
1894 if (mapping)
1895 kref_put(&mapping->kref, release_iommu_mapping);
1896}
18177d12 1897EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd
MS
1898
1899/**
1900 * arm_iommu_attach_device
1901 * @dev: valid struct device pointer
1902 * @mapping: io address space mapping structure (returned from
1903 * arm_iommu_create_mapping)
1904 *
1905 * Attaches specified io address space mapping to the provided device,
1906 * this replaces the dma operations (dma_map_ops pointer) with the
1907 * IOMMU aware version. More than one client might be attached to
1908 * the same io address space mapping.
1909 */
1910int arm_iommu_attach_device(struct device *dev,
1911 struct dma_iommu_mapping *mapping)
1912{
1913 int err;
1914
1915 err = iommu_attach_device(mapping->domain, dev);
1916 if (err)
1917 return err;
1918
1919 kref_get(&mapping->kref);
1920 dev->archdata.mapping = mapping;
1921 set_dma_ops(dev, &iommu_ops);
1922
75c59716 1923 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
4ce63fcd
MS
1924 return 0;
1925}
18177d12 1926EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 1927
6fe36758
HD
1928/**
1929 * arm_iommu_detach_device
1930 * @dev: valid struct device pointer
1931 *
1932 * Detaches the provided device from a previously attached map.
1933 * This voids the dma operations (dma_map_ops pointer)
1934 */
1935void arm_iommu_detach_device(struct device *dev)
1936{
1937 struct dma_iommu_mapping *mapping;
1938
1939 mapping = to_dma_iommu_mapping(dev);
1940 if (!mapping) {
1941 dev_warn(dev, "Not attached\n");
1942 return;
1943 }
1944
1945 iommu_detach_device(mapping->domain, dev);
1946 kref_put(&mapping->kref, release_iommu_mapping);
9e4b259d 1947 dev->archdata.mapping = NULL;
6fe36758
HD
1948 set_dma_ops(dev, NULL);
1949
1950 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1951}
18177d12 1952EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 1953
4ce63fcd 1954#endif