ARM: dma-mapping: split out vmregion code from dma coherent mapping code
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
14#include <linux/slab.h>
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
20
23759dc6 21#include <asm/memory.h>
43377453 22#include <asm/highmem.h>
1da177e4 23#include <asm/cacheflush.h>
1da177e4 24#include <asm/tlbflush.h>
37134cd5
KH
25#include <asm/sizes.h>
26
27/* Sanity check size */
28#if (CONSISTENT_DMA_SIZE % SZ_2M)
29#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
30#endif
1da177e4 31
1da177e4 32#define CONSISTENT_END (0xffe00000)
37134cd5
KH
33#define CONSISTENT_BASE (CONSISTENT_END - CONSISTENT_DMA_SIZE)
34
1da177e4 35#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
37134cd5
KH
36#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
37#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
38
ab6494f0
CM
39static u64 get_coherent_dma_mask(struct device *dev)
40{
41 u64 mask = ISA_DMA_THRESHOLD;
42
43 if (dev) {
44 mask = dev->coherent_dma_mask;
45
46 /*
47 * Sanity check the DMA mask - it must be non-zero, and
48 * must be able to be satisfied by a DMA allocation.
49 */
50 if (mask == 0) {
51 dev_warn(dev, "coherent DMA mask is unset\n");
52 return 0;
53 }
54
55 if ((~mask) & ISA_DMA_THRESHOLD) {
56 dev_warn(dev, "coherent DMA mask %#llx is smaller "
57 "than system GFP_DMA mask %#llx\n",
58 mask, (unsigned long long)ISA_DMA_THRESHOLD);
59 return 0;
60 }
61 }
1da177e4 62
ab6494f0
CM
63 return mask;
64}
65
66#ifdef CONFIG_MMU
1da177e4 67/*
37134cd5 68 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
1da177e4 69 */
37134cd5 70static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
1da177e4 71
13ccf3ad 72#include "vmregion.h"
1da177e4 73
13ccf3ad
RK
74static struct arm_vmregion_head consistent_head = {
75 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
1da177e4
LT
76 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
77 .vm_start = CONSISTENT_BASE,
78 .vm_end = CONSISTENT_END,
79};
80
1da177e4
LT
81#ifdef CONFIG_HUGETLB_PAGE
82#error ARM Coherent DMA allocator does not (yet) support huge TLB
83#endif
84
85static void *
f9e3214a 86__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
1da177e4
LT
87 pgprot_t prot)
88{
89 struct page *page;
13ccf3ad 90 struct arm_vmregion *c;
1da177e4 91 unsigned long order;
ab6494f0
CM
92 u64 mask = get_coherent_dma_mask(dev);
93 u64 limit;
1da177e4 94
37134cd5 95 if (!consistent_pte[0]) {
1da177e4
LT
96 printk(KERN_ERR "%s: not initialised\n", __func__);
97 dump_stack();
98 return NULL;
99 }
100
ab6494f0
CM
101 if (!mask)
102 goto no_page;
1da177e4 103
1da177e4
LT
104 size = PAGE_ALIGN(size);
105 limit = (mask + 1) & ~mask;
13ccf3ad 106 if (limit && size >= limit) {
1da177e4
LT
107 printk(KERN_WARNING "coherent allocation too big "
108 "(requested %#x mask %#llx)\n", size, mask);
109 goto no_page;
110 }
111
112 order = get_order(size);
113
c06e004c 114 if (mask < 0xffffffffULL)
1da177e4
LT
115 gfp |= GFP_DMA;
116
117 page = alloc_pages(gfp, order);
118 if (!page)
119 goto no_page;
120
121 /*
122 * Invalidate any data that might be lurking in the
123 * kernel direct-mapped region for device DMA.
124 */
125 {
7ae5a761
RK
126 void *ptr = page_address(page);
127 memset(ptr, 0, size);
128 dmac_flush_range(ptr, ptr + size);
129 outer_flush_range(__pa(ptr), __pa(ptr) + size);
1da177e4
LT
130 }
131
132 /*
133 * Allocate a virtual address in the consistent mapping region.
134 */
13ccf3ad 135 c = arm_vmregion_alloc(&consistent_head, size,
1da177e4
LT
136 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
137 if (c) {
37134cd5 138 pte_t *pte;
1da177e4 139 struct page *end = page + (1 << order);
37134cd5
KH
140 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
141 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
1da177e4 142
37134cd5 143 pte = consistent_pte[idx] + off;
1da177e4
LT
144 c->vm_pages = page;
145
8dfcc9ba
NP
146 split_page(page, order);
147
1da177e4
LT
148 /*
149 * Set the "dma handle"
150 */
151 *handle = page_to_dma(dev, page);
152
153 do {
154 BUG_ON(!pte_none(*pte));
155
1da177e4
LT
156 /*
157 * x86 does not mark the pages reserved...
158 */
159 SetPageReserved(page);
ad1ae2fe 160 set_pte_ext(pte, mk_pte(page, prot), 0);
1da177e4
LT
161 page++;
162 pte++;
37134cd5
KH
163 off++;
164 if (off >= PTRS_PER_PTE) {
165 off = 0;
166 pte = consistent_pte[++idx];
167 }
1da177e4
LT
168 } while (size -= PAGE_SIZE);
169
170 /*
171 * Free the otherwise unused pages.
172 */
173 while (page < end) {
1da177e4
LT
174 __free_page(page);
175 page++;
176 }
177
178 return (void *)c->vm_start;
179 }
180
181 if (page)
182 __free_pages(page, order);
183 no_page:
184 *handle = ~0;
185 return NULL;
186}
ab6494f0
CM
187#else /* !CONFIG_MMU */
188static void *
189__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
190 pgprot_t prot)
191{
192 void *virt;
193 u64 mask = get_coherent_dma_mask(dev);
194
195 if (!mask)
196 goto error;
197
c06e004c 198 if (mask < 0xffffffffULL)
ab6494f0
CM
199 gfp |= GFP_DMA;
200 virt = kmalloc(size, gfp);
201 if (!virt)
202 goto error;
203
204 *handle = virt_to_dma(dev, virt);
205 return virt;
206
207error:
208 *handle = ~0;
209 return NULL;
210}
211#endif /* CONFIG_MMU */
1da177e4
LT
212
213/*
214 * Allocate DMA-coherent memory space and return both the kernel remapped
215 * virtual and bus address for that space.
216 */
217void *
f9e3214a 218dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4 219{
1fe53268
DB
220 void *memory;
221
222 if (dma_alloc_from_coherent(dev, size, handle, &memory))
223 return memory;
224
23759dc6
LB
225 if (arch_is_coherent()) {
226 void *virt;
227
228 virt = kmalloc(size, gfp);
229 if (!virt)
230 return NULL;
231 *handle = virt_to_dma(dev, virt);
232
233 return virt;
234 }
235
1da177e4
LT
236 return __dma_alloc(dev, size, handle, gfp,
237 pgprot_noncached(pgprot_kernel));
238}
239EXPORT_SYMBOL(dma_alloc_coherent);
240
241/*
242 * Allocate a writecombining region, in much the same way as
243 * dma_alloc_coherent above.
244 */
245void *
f9e3214a 246dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4
LT
247{
248 return __dma_alloc(dev, size, handle, gfp,
249 pgprot_writecombine(pgprot_kernel));
250}
251EXPORT_SYMBOL(dma_alloc_writecombine);
252
253static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
254 void *cpu_addr, dma_addr_t dma_addr, size_t size)
255{
ab6494f0
CM
256 int ret = -ENXIO;
257#ifdef CONFIG_MMU
13ccf3ad
RK
258 unsigned long user_size, kern_size;
259 struct arm_vmregion *c;
1da177e4
LT
260
261 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
262
13ccf3ad 263 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1da177e4
LT
264 if (c) {
265 unsigned long off = vma->vm_pgoff;
266
267 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
268
269 if (off < kern_size &&
270 user_size <= (kern_size - off)) {
1da177e4
LT
271 ret = remap_pfn_range(vma, vma->vm_start,
272 page_to_pfn(c->vm_pages) + off,
273 user_size << PAGE_SHIFT,
274 vma->vm_page_prot);
275 }
276 }
ab6494f0 277#endif /* CONFIG_MMU */
1da177e4
LT
278
279 return ret;
280}
281
282int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
283 void *cpu_addr, dma_addr_t dma_addr, size_t size)
284{
285 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
286 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
287}
288EXPORT_SYMBOL(dma_mmap_coherent);
289
290int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
291 void *cpu_addr, dma_addr_t dma_addr, size_t size)
292{
293 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
294 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
295}
296EXPORT_SYMBOL(dma_mmap_writecombine);
297
298/*
299 * free a page as defined by the above mapping.
5edf71ae 300 * Must not be called with IRQs disabled.
1da177e4 301 */
ab6494f0 302#ifdef CONFIG_MMU
1da177e4
LT
303void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
304{
13ccf3ad
RK
305 struct arm_vmregion *c;
306 unsigned long addr;
1da177e4 307 pte_t *ptep;
37134cd5
KH
308 int idx;
309 u32 off;
1da177e4 310
5edf71ae
RK
311 WARN_ON(irqs_disabled());
312
1fe53268
DB
313 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
314 return;
315
23759dc6
LB
316 if (arch_is_coherent()) {
317 kfree(cpu_addr);
318 return;
319 }
320
1da177e4
LT
321 size = PAGE_ALIGN(size);
322
13ccf3ad 323 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
1da177e4
LT
324 if (!c)
325 goto no_area;
326
327 if ((c->vm_end - c->vm_start) != size) {
328 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
329 __func__, c->vm_end - c->vm_start, size);
330 dump_stack();
331 size = c->vm_end - c->vm_start;
332 }
333
37134cd5
KH
334 idx = CONSISTENT_PTE_INDEX(c->vm_start);
335 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
336 ptep = consistent_pte[idx] + off;
1da177e4
LT
337 addr = c->vm_start;
338 do {
339 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
340 unsigned long pfn;
341
342 ptep++;
343 addr += PAGE_SIZE;
37134cd5
KH
344 off++;
345 if (off >= PTRS_PER_PTE) {
346 off = 0;
347 ptep = consistent_pte[++idx];
348 }
1da177e4
LT
349
350 if (!pte_none(pte) && pte_present(pte)) {
351 pfn = pte_pfn(pte);
352
353 if (pfn_valid(pfn)) {
354 struct page *page = pfn_to_page(pfn);
355
356 /*
357 * x86 does not mark the pages reserved...
358 */
359 ClearPageReserved(page);
360
361 __free_page(page);
362 continue;
363 }
364 }
365
366 printk(KERN_CRIT "%s: bad page in kernel page table\n",
367 __func__);
368 } while (size -= PAGE_SIZE);
369
370 flush_tlb_kernel_range(c->vm_start, c->vm_end);
371
13ccf3ad 372 arm_vmregion_free(&consistent_head, c);
1da177e4
LT
373 return;
374
375 no_area:
1da177e4
LT
376 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
377 __func__, cpu_addr);
378 dump_stack();
379}
ab6494f0
CM
380#else /* !CONFIG_MMU */
381void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
382{
383 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
384 return;
385 kfree(cpu_addr);
386}
387#endif /* CONFIG_MMU */
1da177e4
LT
388EXPORT_SYMBOL(dma_free_coherent);
389
390/*
391 * Initialise the consistent memory allocation.
392 */
393static int __init consistent_init(void)
394{
ab6494f0
CM
395 int ret = 0;
396#ifdef CONFIG_MMU
1da177e4
LT
397 pgd_t *pgd;
398 pmd_t *pmd;
399 pte_t *pte;
ab6494f0 400 int i = 0;
37134cd5 401 u32 base = CONSISTENT_BASE;
1da177e4 402
1da177e4 403 do {
37134cd5
KH
404 pgd = pgd_offset(&init_mm, base);
405 pmd = pmd_alloc(&init_mm, pgd, base);
1da177e4
LT
406 if (!pmd) {
407 printk(KERN_ERR "%s: no pmd tables\n", __func__);
408 ret = -ENOMEM;
409 break;
410 }
411 WARN_ON(!pmd_none(*pmd));
412
37134cd5 413 pte = pte_alloc_kernel(pmd, base);
1da177e4
LT
414 if (!pte) {
415 printk(KERN_ERR "%s: no pte tables\n", __func__);
416 ret = -ENOMEM;
417 break;
418 }
419
37134cd5
KH
420 consistent_pte[i++] = pte;
421 base += (1 << PGDIR_SHIFT);
422 } while (base < CONSISTENT_END);
ab6494f0 423#endif /* !CONFIG_MMU */
1da177e4 424
1da177e4
LT
425 return ret;
426}
427
428core_initcall(consistent_init);
429
430/*
431 * Make an area consistent for devices.
105ef9a0
DW
432 * Note: Drivers should NOT use this function directly, as it will break
433 * platforms with CONFIG_DMABOUNCE.
434 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1da177e4 435 */
84aa462e 436void dma_cache_maint(const void *start, size_t size, int direction)
1da177e4 437{
1522ac3e
RK
438 void (*inner_op)(const void *, const void *);
439 void (*outer_op)(unsigned long, unsigned long);
1da177e4 440
1522ac3e 441 BUG_ON(!virt_addr_valid(start) || !virt_addr_valid(start + size - 1));
953233dc 442
1da177e4
LT
443 switch (direction) {
444 case DMA_FROM_DEVICE: /* invalidate only */
1522ac3e
RK
445 inner_op = dmac_inv_range;
446 outer_op = outer_inv_range;
1da177e4
LT
447 break;
448 case DMA_TO_DEVICE: /* writeback only */
1522ac3e
RK
449 inner_op = dmac_clean_range;
450 outer_op = outer_clean_range;
1da177e4
LT
451 break;
452 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
1522ac3e
RK
453 inner_op = dmac_flush_range;
454 outer_op = outer_flush_range;
1da177e4
LT
455 break;
456 default:
457 BUG();
458 }
1522ac3e
RK
459
460 inner_op(start, start + size);
461 outer_op(__pa(start), __pa(start) + size);
1da177e4 462}
84aa462e 463EXPORT_SYMBOL(dma_cache_maint);
afd1a321 464
43377453
NP
465static void dma_cache_maint_contiguous(struct page *page, unsigned long offset,
466 size_t size, int direction)
467{
468 void *vaddr;
469 unsigned long paddr;
470 void (*inner_op)(const void *, const void *);
471 void (*outer_op)(unsigned long, unsigned long);
472
473 switch (direction) {
474 case DMA_FROM_DEVICE: /* invalidate only */
475 inner_op = dmac_inv_range;
476 outer_op = outer_inv_range;
477 break;
478 case DMA_TO_DEVICE: /* writeback only */
479 inner_op = dmac_clean_range;
480 outer_op = outer_clean_range;
481 break;
482 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
483 inner_op = dmac_flush_range;
484 outer_op = outer_flush_range;
485 break;
486 default:
487 BUG();
488 }
489
490 if (!PageHighMem(page)) {
491 vaddr = page_address(page) + offset;
492 inner_op(vaddr, vaddr + size);
493 } else {
494 vaddr = kmap_high_get(page);
495 if (vaddr) {
496 vaddr += offset;
497 inner_op(vaddr, vaddr + size);
498 kunmap_high(page);
499 }
500 }
501
502 paddr = page_to_phys(page) + offset;
503 outer_op(paddr, paddr + size);
504}
505
506void dma_cache_maint_page(struct page *page, unsigned long offset,
507 size_t size, int dir)
508{
509 /*
510 * A single sg entry may refer to multiple physically contiguous
511 * pages. But we still need to process highmem pages individually.
512 * If highmem is not configured then the bulk of this loop gets
513 * optimized out.
514 */
515 size_t left = size;
516 do {
517 size_t len = left;
518 if (PageHighMem(page) && len + offset > PAGE_SIZE) {
519 if (offset >= PAGE_SIZE) {
520 page += offset / PAGE_SIZE;
521 offset %= PAGE_SIZE;
522 }
523 len = PAGE_SIZE - offset;
524 }
525 dma_cache_maint_contiguous(page, offset, len, dir);
526 offset = 0;
527 page++;
528 left -= len;
529 } while (left);
530}
531EXPORT_SYMBOL(dma_cache_maint_page);
532
afd1a321
RK
533/**
534 * dma_map_sg - map a set of SG buffers for streaming mode DMA
535 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
536 * @sg: list of buffers
537 * @nents: number of buffers to map
538 * @dir: DMA transfer direction
539 *
540 * Map a set of buffers described by scatterlist in streaming mode for DMA.
541 * This is the scatter-gather version of the dma_map_single interface.
542 * Here the scatter gather list elements are each tagged with the
543 * appropriate dma address and length. They are obtained via
544 * sg_dma_{address,length}.
545 *
546 * Device ownership issues as mentioned for dma_map_single are the same
547 * here.
548 */
549int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
550 enum dma_data_direction dir)
551{
552 struct scatterlist *s;
01135d92 553 int i, j;
afd1a321
RK
554
555 for_each_sg(sg, s, nents, i) {
01135d92
RK
556 s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
557 s->length, dir);
558 if (dma_mapping_error(dev, s->dma_address))
559 goto bad_mapping;
afd1a321 560 }
afd1a321 561 return nents;
01135d92
RK
562
563 bad_mapping:
564 for_each_sg(sg, s, i, j)
565 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
566 return 0;
afd1a321
RK
567}
568EXPORT_SYMBOL(dma_map_sg);
569
570/**
571 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
572 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
573 * @sg: list of buffers
574 * @nents: number of buffers to unmap (returned from dma_map_sg)
575 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
576 *
577 * Unmap a set of streaming mode DMA translations. Again, CPU access
578 * rules concerning calls here are the same as for dma_unmap_single().
579 */
580void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
581 enum dma_data_direction dir)
582{
01135d92
RK
583 struct scatterlist *s;
584 int i;
585
586 for_each_sg(sg, s, nents, i)
587 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
afd1a321
RK
588}
589EXPORT_SYMBOL(dma_unmap_sg);
590
591/**
592 * dma_sync_sg_for_cpu
593 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
594 * @sg: list of buffers
595 * @nents: number of buffers to map (returned from dma_map_sg)
596 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
597 */
598void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
599 int nents, enum dma_data_direction dir)
600{
601 struct scatterlist *s;
602 int i;
603
604 for_each_sg(sg, s, nents, i) {
309dbbab
RK
605 dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
606 sg_dma_len(s), dir);
afd1a321
RK
607 }
608}
609EXPORT_SYMBOL(dma_sync_sg_for_cpu);
610
611/**
612 * dma_sync_sg_for_device
613 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
614 * @sg: list of buffers
615 * @nents: number of buffers to map (returned from dma_map_sg)
616 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
617 */
618void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
619 int nents, enum dma_data_direction dir)
620{
621 struct scatterlist *s;
622 int i;
623
624 for_each_sg(sg, s, nents, i) {
2638b4db
RK
625 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
626 sg_dma_len(s), dir))
627 continue;
628
afd1a321 629 if (!arch_is_coherent())
43377453
NP
630 dma_cache_maint_page(sg_page(s), s->offset,
631 s->length, dir);
afd1a321
RK
632 }
633}
634EXPORT_SYMBOL(dma_sync_sg_for_device);